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Abstract

In this paper we will give a short and direct proof that Wolfgang
Kühnel’s 9-vertex simplicial complex CP 2

9 is homeomorphic to CP 2,
the complex projective plane. The idea of our proof is to recall the
trisection of CP 2 into 3 bi-disks and then to see this trisection inside a
symmetry-breaking subdivision ofCP 2

9. After giving the proof we will
elaborate on the construction and sketch an explicit homeomorphism.

1 Introduction

A k-simplex is a k-dimensional convex polytope with k + 1 vertices. For
k = 0, 1, 2, 3 respectively, a k-simplex is usually called a vertex , edge, triangle,
tetrahedron. When k is not important, a k-simplex is just called a simplex .

A simplicial complex is a finite collection C of simplices, all in an ambient
Euclidean space, such that

• If S ∈ C and S ′ is a sub-simplex of S then S ′ ∈ C.

• If S, T ∈ C then S ∩ T is either empty or in C.

Informally, the simplices in a simplicial complex fit together cleanly, without
crashing through each other. The support |C| of C is the union of all the
simplices in C. Often we blur the distinction between C and |C| and think of
a simplicial complex as a union of simplices.

∗Supported by N.S.F. grant D.M.S.-2102803.
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A simplicial complex may be described with no mention of the ambient
space containing it, but there is always the understanding that in principle
one can find an isomorphic complex in some Euclidean space. To give a
pertinent example, let RP 2

6 be the quotient of the regular icosahedron by
the antipodal map. This simplicial complex has 6 vertices, 15 edges, and 10
faces. One can reconstruct RP 2

6 in R5 by fixing some 5-simplex Σ ⊂ R5,
the convex hull of vertices v1, ..., v6, then mapping vertex k of RP 2

6 to vk and
extending linearly.

Figure 1: RP 2
6, the 6-vertex triangulation of RP 2.

Figure 1 shows another incarnation of RP 2
6. In this picture, the outer

edges of the hexagon are supposed to be identified according to the labels.
The complex RP 2

6 is called a 6-vertex triangulation of the real projective
plane RP 2 because its support is homeomorphic to RP 2. This triangulation
has the fewest number of vertices amongst triangulations of RP 2, so it is
called a minimal triangulation of RP 2. It is in fact the unique minimal
triangulation of RP 2. (Smaller examples like the quotient of the regular
octahedron by the antipodal map fail to be simplicial complexes.)

Here are some other examples related to minimal triangulations.

• The boundary of a tetrahedron is the unique 4-vertex minimal trian-
gulation of the 2-sphere. More generally, the boundary of a (k + 1)
simplex is the unique minimal triangulation of the k-sphere.

• If you identify the opposite sides of the big hexagon in Figure 4 below,
you get the unique minimal triangulation T 2

7 of the 2-torus. T 2
7 has 14

triangles, 21 edges, and 7 vertices.
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• In 1980, W. Kühnel discovered CP 2
9, the unique 9-vertex minimal tri-

angulation of the complex projective plane CP 2. This triangulation
has 36 4-simplices and a symmetry group of order 54.

• In 1992, U. Brehm and W. Kühnel [BK] defined HP 2
15 (and two vari-

ants), a 15-vertex simplicial complex with 490 8-simplices. In 2019, D.
Gorodkov [G] proved that HP 15 and the variants are PL homeomor-
phic to the quaternionic projective plane HP 2.

• So far it an open question as to whether there is a 27-vertex triangula-
tion of OP 2, the octonionic (a.k.a. Cayley) projective plane.

• The minimal triangulations of RP 3 and RP 4 respectively have 11 and
16 vertices. See [D],

• In 2021, K. Adiprasito, S. Avvakumov, R. Karasev [AAK] proved that
real projective space can be triangulated using a sub-exponential num-
ber of simplices.

The survey article by B. Datta [D] has a wealth of information about minimal
triangulations up to the year 2007 and a large number of references.

The subject of this paper is CP 9
2. In [KB], Kühnel and T. Banchoff

establish many interesting properties of CP 2
9 and give a rather intricate

proof that CP 2
9 really is homeomorphic to CP 2. Since [KB], there has been

a lot of work done trying to understand CP 2
9 from various points of view.

In particular, there are a number of proofs that CP 2
9
∼= CP 2, and also a

number of proofs that CP 2
9 is the only minimal triangulation of CP 2. See

the article by B. Morin and M. Yoshida [MY] for a survey of these proofs.
See also the paper by B. Bagchi and B. Datta [BD].

The purpose of this paper is to give a new and very nice proof that
CP 2

9
∼= CP 2. The basic idea of the proof here is to recall the trisection

of CP 2 into 3 bi-disks, and then to see this trisection inside a symmetry-
breaking subdivision of CP 2

9. The construction is perfectly compatible with
an easier version that works for RP 2

6, so I will explain that as well.
The picture developed here is related to the 10-vertex triangulation CP 2

10

of CP 2 that in [BK] is constructed by building outward from T 2
7 . Indeed

Denis Gorodkov, in a private communication, explained to me how one can
find a “path” from CP 2

9 to CP 2
10 using the subdivision idea and then some-

thing akin to bi-stellar flips. (I’ll let Denis tell this story elsewhere if he wants
to, but see the end of §2 for a hint.)
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My proof also has a close kinship with the “red-white-blue discussion” in
§1.3 of the M.P.I.M. preprint by Morin and Yoshida that is the precursor to
[MY] (and has the same title). This discussion is, in turn, related to Figure
8 in [KB]. Morin and Yoshida describe the red-white-blue discussion as a
“topological insight” but they don’t really push it forward into a proof. I
think that my picture is very similar, but clarified by the special subdivision.

The approach here possibly could shed light on Gorodkov’s result that
HP 2

15
∼= HP 2. The same subdivision and trisection ideas go through for

HP 2
15 almost verbatim, and I can see computationally that each of the 3 sub-

complexes is shellable and therefore PL homeomorphic to an 8-ball. How-
ever, the high dimensional topology involved in analyzing HP 2

15 makes a
direct topological analysis of the whole complex formidable. For instance,
the sub-complex that plays the role of T 2

7 has 288 6-simplices. A key step in
extending the proof here to HP 2

15 would be showing that this 288-monster
is homeomorphic to (S3 × S3 × S3)/S3 in a 3-fold symmetric way.

Here is an outline of the paper.

• In §2 I will give the analogous version of my proof for RP 2
6. This case

is quite concrete and one can see the whole idea at a glance.

• In §3 I will recall the trisection of CP 2 and discuss a few key properties
of the central torus in this decomposition.

• In §4 I will describe CP 2
9 and then explain my symmetry-breaking

subdivision. The construction parallels the real case.

• In §5 I will find the trisection inside the subdivision and construct a
homeomorphism h : CP 2

9 → CP 2 which respects the trisections.

• In §6 I will explain how one can see the real case of the construction
inside the complex case. This analysis leads to a refinement of h and
gives the full power of our main result, Theorem 5.1.

• In §7 I will sketch how to make h completely explicit.

I thank Tom Banchoff, Kenny Blakey, Thomas Goodwillie, Denis Gorod-
kov, Joe Hlavinka, Wolfgang Kühnel, Tyler Lane, Dennis Sullivan, and Oleg
Viro for helpful discussions. (Many of these discussions were about issues re-
lated to HP 2

15.) I also thank the anonymous referee for a number of helpful
comments, especially those pertaining to the real case of the construction.
These comments from the referee inspired §6-7.
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2 The Real Case

RP 2 is the space of scale equivalence classes of nonzero vectors in R3. We
denote the equivalence class of (x1, x2, x3) ∈ R3 by [x1 : x2 : x3] ∈ RP 2.

We have the trisection RP 2 = β1 ∪ β2 ∪ β3, where βj is the set where
max(|x1|, |x2|, |x3|) = |xj|. Points in β1 may be written uniquely in the form
[1 : x2 : x3], with |x2|, |x3| ≤ 1. Thus β1 is a square. So are β2 and β3. Each
intersection βi ∩ βj is a pair of opposite edges, and the triple intersection is
a union of the 4 points [±1 : ±1 : ±1]. If we interpret RP 2 as the quotient
of a cube by the antipodal map, then the 3 quotient faces are β1, β2, β3.

The trisection has 3-fold symmetry. The map Σ : (x1, x2, x3)→ (x2, x3, x1)
permutes the sets β1, β2, β3. In terms of the cube, Σ rotates around the ap-
propriate long diagonal. RP 2

6 has a very similar 3-fold symmetry: The
permutation S = (123)(456) acts as a rotational symmetry of RP 2

6.
We add a new vertex [123] at the center of the triangle (1, 2, 3), and also

new vertices [12], [13], [23] at the centers of the corresponding edges.

Figure 2: A subdivision of RP 2
6 into 18 triangles.

Using the new vertices, we divide the central triangle of RP 2
6 into 6 triangles

and we subdivide each of the adjacent triangles in half. The subdivision
has 18 = 3 × 6 triangles, with each having exactly one vertex from the set
{1, 2, 3}. For j = 1, 2, 3 we let Bk be the subset of 6 new triangles having k
for a vertex. The sets B1, B2, B3 are colored green, red, blue in Figure 2.

This is now the trisection, and there is a clear homeomorphism from this
subdivided complex to RP 2 which maps Bj to βj and conjugates S to Σ.

Incidentally, a related approach would be to add only [123] and then
to replace the sides (1, 2), (2, 3), (3, 1) with the sides ([123], 6), ([123], 5)
and ([123], 4). Gorodkov’s “path” from CP 2

9 to CP 10
2 is a more elaborate

complex-number analogue of this.
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3 The Smooth Trisection: Complex Case

The complex projective plane CP 2 is defined just as RP 2 but with respect
to the field C of complex numbers. We denote points in CP 2 by [z1 : z4 : z7].
The variable names will line up with the notation for CP 2

9. We have the
trisection CP 2 = β1 ∪ β4 ∪ β7, where βj is defined just as in the real case,
using the complex norm in place of the absolute value. This time, βj is the
product of 2 unit disks. The bi-disks β1, β4, β7 have disjoint interiors and are
permuted by the same map Σ as defined in the real case.

The boundary ∂β1 is a 3-sphere, and it decomposes into the solid tori
β14 and β17. Here βij = βi ∩ βj. To see that β14 is a solid torus, note
that β14 consists of points of the form [1 : u : z] with |z| ≤ |u| = 1 and is
therefore the product of the unit disk and the unit circle. The central torus
β147 = β14 ∩ β17 = β1 ∩ β4 ∩ β7 consists of points where |z1| = |z4| = |z7|. We
discuss β147 in more detail, with a view towards seeing it inside CP 2

9.

Hexagonal Structure: Let R3
0 ⊂ R3 denote the plane of points whose

coordinates sum to 0. Let H = R3
0 ∩ [−1, 1]3. The vertices of this regular

hexagon are the permutations of (1,−1, 0). Let H be the flat torus obtained
by identifying the opposite sides of H by translations. The translation vec-
tors are the cyclic permutations of ±(1, 1,−2). The map

(x1, x4, x7)→ [x∗1 : x∗4 : x∗7], x∗ = e
2πix
3

induces a homeomorphism H → β147. The main point behind this fact is
that [1∗ : 1∗ : (−2)∗] = [0∗ : 0∗ : 0∗], etc. We equip β147 with the metric
which makes H → β147 an isometry.

Symmetries: The 3 fixed points of Σ lie in β147 and correspond to the
points on H represented by the center and vertices of H. The fixed point set
of coordinatewise complex conjugation, which we call T , is RP 2. Note that
RP 2 ∩ β147 = {[±1 : ±1 : ±1]}. These points correspond to the center of H
and to the centers of the edges of H.

A Contractible Loop: The line in R3
0 where x1 = x4 bisects H and

contains the midpoints of a pair of opposite sides. This line gives rise to
a geodesic loop in H. See the loop a14 in Figure 4 below. The corresponding
loop α14 ⊂ β147 is given by {[1 : 1 : u]| |u| = 1}. The loop α14 is contractible
in β14: It bounds the disk in β14 consisting of points [1 : 1 : z] with |z| ≤ 1.
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4 The Complex and its Subdivision

The vertices of CP 2
9 are labeled 1, ..., 9. Here are 16 of the 36 4-simplices of

CP 2
9 listed on p. 15 of [KB].

• 15289 12389 13689 45289 42389 43689

• 14256 14356 14259 14368

• 14726 14768 (14783 14735 14759 14792)

Comparing our list to [KB], we have sometimes permuted the vertices so as
to highlight the indices 1, 4, 7. The other 24 4-simplices are orbits of the first
12 under the action of the fundamental permutation:

S = (147)(258)(369).

For instance, 14726 has orbit 14726 → 14759 → 14783. The four simplices
in parentheses are listed for the sake of making our tetrahedron list below
more transparent. In [KB] the authors exhibit a symmetry group of order
54 acting on CP 2

9. For us, one other special element of this group is the
symmetry T = (23)(56)(89).

Let [ij] be the midpoint of the edge i ↔ j. Let [ijk] be the center of
the triangle ijk. Let the rank of a simplex be the number of vertices which
belong to the set {1, 4, 7}. Our list above goes by rank. Parallel to the real
case, we divide each rank k simplex into k! smaller simplices, as follows: The
rank 1 simplices are untouched. The rank 2 simplex 14abc divides into

1[14]abc 4[14]abc,

and likewise with the indices 1, 4, 7 permuted. The rank 3 simplex 147ab
divides into

1[14][147]ab 1[17][147]ab 4[14][147]ab 4[47][147]ab 7[17][147]ab 7[47][147]ab.

We replace our original 36 simplices with the subdivided simplices. Since
there are respectively 18, 12, 6 simplices of rank 1, 2, 3 we get a total of

(1, 2, 6) · (18, 12, 6) = 78 = 3× 26

new simplices. (The rank 1 simplices count as “new”.) Each new simplex
has exactly one vertex from the set {1, 4, 7}.
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5 The Combinatorial Trisection

We have CP 2
9 = B1∪B4∪B7, where Bj is the union of the 26 new simplices

having j ∈ {1, 4, 7} as a vertex. Each Bj is the cone to vertex j of ∂Bj.
Hence Bi and Bj have disjoint interiors for i 6= j. Here is our main result.

Theorem 5.1 There is a homeomorphism h : CP 2
9 → CP 2 with the fol-

lowing properties:

1. h maps vertices 1, 4, 7 respectively to [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1].

2. h maps Bj to βj for j = 1, 4, 7.

3. h conjugates S to Σ.

4. h conjugates T to T .

In this section I will construct a non-explicit homeomorphism h which has
the first 3 properties but not necessarily the fourth. This should satisfy a
reader who just wants to see why CP 2

9
∼= CP 2. In §6, I will give a more

refined version of h which has the fourth property. In §7 I will sketch how to
make h explicit.

The first thing we do is list the tetrahedra in B14 = B1∩B4. We will derive
this tetrahedron list from the simplex list above. The reader might want to
check that this actually works, so for convenience we repeat the simplex list
here:

• 15289 12389 13689 45289 42389 43689

• 14256 14356 14259 14368

• 14726 14768 (14783 14735 14759 14792)

Now for the derivation. We get 13 tetrahedra contained in B14 by subdi-
viding the simplices on our list above and omitting 1 or 4. The tetrahedra
are listed in a way that corresponds to the simplices.

• 5289 2389 3689

• [14]256 [14]356 [14]259 [14]368

• [14][147]26 [14][147]68 [14][147]83 [14][147]35 [14][147]59 [14][147]92
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The images of these 13 tetrahedra under S−1 lie in B17 and are totally distinct
from the ones above. This accounts for all 26 tetrahedra in ∂B1. Hence, the
13 above are the complete list of tetrahedra comprising B14, and moreover
B14 and B17 have disjoint interiors.

Lemma 5.2 B14 is a solid torus.

Proof: Write B14 = B′14∪B′′14, where B′14 is the union of the first 3 tetrahedra
above and B′′14 is the union of the last ten. B′14 is a 3-ball because it is the
join of the path 5236 with the segment 89, and B′′14 is a 3-ball because it is
the cone to vertex [14] of ∂B′′14, a 10-triangle triangulation of the 2-sphere.

Figure 3 below shows ∂B′14 and ∂B′′14. Each one is drawn as the union
of 2 combinatorial hexagons glued along their boundaries according to the
labels. B′14 ∩ B′′14 is the union of the 2 disjoint grey triangles 259 and 368.
Topologically, we get B14 by gluing two 3-balls together along a pair of dis-
joint disks in their boundaries. The orientations of the gluings are such that
the result is a solid torus (as opposed to the so-called solid Klein bottle, a
nontrivial disk bundle over the circle). ♠

Figure 3: ∂B′14 and ∂B′′14. Glue the hex boundaries together.

We get the triangulation of B147 = ∂B14 by gluing the two triangulations
from Figure 3 along the grey triangles. Figure 4 shows the universal cover of
the triangulation. We get back to B147 by gluing the opposite sides of the big
hexagon by translations. This triangulation of B147 is exactly T 2

7 . Note that
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S acts on B147 fixing [147], [258], [369], points which respectively correspond
to the center and vertices of the hexagon, just as in the smooth case.

a

(0,1,-1)

(1,0,-1)

(-1,1,0)

(-1,0,1)

(0,-1,1)

(1,-1,0)

Figure 4: The universal covering of the triangulation of B147.

From all this structure we see that (after suitably scaling) there is an
isometry h147 : B147 → β147 which conjugates S to Σ and which maps the
green loop a14 to α14. The labels of the hexagon vertices, such as (1,−1, 0),
indicate precisely how the hexagon here lines up with the one described in
connection with the central torus of CP 2. Note that a14 is contractible in
B14 because a14 ⊂ B′′14, and recall that α14 is contractible in β14. Hence h147
extends to a homeomorphism h14 : B14 → β14.

Define h17 = Σ−1 ◦ h14 ◦ S and h47 = Σ ◦ h14 ◦ S−1. This gives us
homeomorphisms h17 : B17 → β17 and h47 : B47 → β47. The maps hij all
agree on B147 because h147 conjugates S to Σ. The union

h = h14 ∪ h17 ∪ h47 : ∂B1 ∪ ∂B4 ∪ ∂B7 → ∂β1 ∪ ∂β4 ∪ ∂β7

is a homeomorphism which respects the individual pieces and their inter-
sections. Since Bj and βj are cones over ∂Bj and ∂βj we can extend h, by
coning, to a homeomorphism from CP 2

9 = B1∪B4∪B7 to CP 2 = β1∪β4∪β7.
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6 The Extra Symmetry

The fixed set of T = (23)(56)(89) is a copy of RP 2
6. The 6 vertices are

1, 4, 7, [23], [89], [56]. If we rename these vertices 1̂, 2̂, 3̂, 4̂, 5̂, 6̂ we get the same
combinatorial pattern as in Figure 1. Our subdivision of CP 2

9 induces the
same subdivision as in Figure 2. In particular, the intersection RP 2

6 ∩B14 is
a union of 3 edges which together make 2 line segments, namely

4̂5̂ = [23][89] ⊂ B′14, 6̂[1̂2̂], [1̂2̂][1̂2̂3̂] = [56][14], [14][147] ⊂ B′′14.

The map h147 conjugates T to T . Figure 5 below indicates how h147 maps
the fixed points of T in B147 to the fixed points of T in β147.

Now we explain how to choose our homeomorphism h so that it conjugates
T to T . Figure 5 below illustrates the following 4 disks.

• Let D′14 be the cone to [[23][89]] of the loop a′14 shown in Figure 4.

• Let D′′14 be the cone to [14] of the loop a14 shown in Figure 4.

• Let ∆′14 be the disk [1 : −1 : z] with |z| ≤ 1. We think of ∆′14 as the
cone to [1 : −1 : 0] of ∂∆′14.

• Let ∆′′14 be the disk [1 : 1 : z] with |z| ≤ 1. We think of ∆′′14 as the cone
to [1 : 1 : 0] of ∂∆′′14.

[147]

[1:1:1]

[56]

[1:1:-1]
[89]

[1:-1:-1]
     [2

[1:-1:1]

Figure 5: One component of X14 or of χ14, depending on the label choice.

Let Y14 be the component of B14 − D′14 − D′′14 that contains the point
[259]. Let Υ14 be the component of β14−∆′14−∆′′14 which contains the point
[1 : 1 : i]. Both Y14 and Υ14 are solid balls. T interchanges Y14 with (the
closure of) B14 − Y14, the other component of B14 −D′14 −D′′14. Likewise T
interchanges Υ14 with (the closure of) β14 −Υ14.
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When we use the top label of each pair, Figure 5 shows Y14. (Think about
cutting a pink-frosted grey donut in half.) The pink boundary is half of B147.
The left grey disk is D′14 and the right grey disk is D′′14. The map T acts as
rotation by 180 degrees about the purple line bisecting the grey disks. The
intersection of the purple line with the grey disks is the part lying in our copy
of RP 2

6. When we use the bottom labels, Figure 5 shows the same things
for Υ14.

By construction h147(∂D
′
14) = ∂∆′14 and h147(∂D

′′
14) = ∂∆′′14. We define

h14 on each of D′14 and D′′14 by coning over the boundaries. By symmetry
this extension conjugates T to T and is defined in particular on ∂Y14. Our
extension maps the (pink and grey) sphere ∂Y14 to the (pink and grey) sphere
∂Υ14. We now extend to a homeomorphism from the ball Y14 to the ball Υ14

and use the action of T and T to extend the homeomorphism to all of B14.
Our improved h14 conjugates T to T .

The rest of the construction is as above. The union map h14 ∪ h17 ∪ h47,
defined on ∂B1 ∪ ∂B4 ∪ ∂B7, conjugates T to T because the pairs (S, T ) and
(Σ, T ) commute. The final coning process respects T and T , so the final
extension of h to B1 ∪B4 ∪B7 conjugates T to T .

Here is where h sends the vertices:

• 1→ [1 : 0 : 0].

• [14]→ [1 : 1 : 0].

• [147]→ [1 : 1 : 1].

• [56]→ [1 : 1 : −1].

• 2→ [1 : e4πi/7 : e12πi/7].

• [259]→ [1 : e4πi/7 : 0].

The remaining images can be readily deduced from the action of S, T,Σ, T .
The last two entries require some explanation. The coordinates of the point
p2 ∈ R2

0 corresponding to vertex 2 are (−1, 5,−4)/7. We found this by
solving the equation 2p2−Σ2(p2) = (−1, 2,−1). The choice of where to send
[259] is not determined by the construction above, but we might as well make
it. The explicit construction below makes this choice, and so it is convenient
to list it here.

12



7 Making the Homeomorphism Explicit

The only non-explicit part of our construction is the extenson of the sphere
map h147 : ∂Y14 → ∂Υ14 to the ball map h14 : Y14 → Υ14. In this section we
sketch an explicit extension.

Figure 6: A foliation of ∂Y14 −D′14 −D′′14, and the core of Y14.

Gluing the opposite blue sides of the parallelogram in Figure 6 gives the
cylinder ∂Y14 − D′14 − D′′14, drawn pink in Figure 5. The green loops a14
and a14′ are on the boundary. Figure 6 suggests an explicit foliation of ∂Y14
by polygonal loops. Intrinsically these are geodesic bigons in B147. The
intersections with the blue edges of the triangulation move linearly.

Let the core of Y14 be the path with vertices [14], [259], [[23][89]]. Figure
6 indicates a piecewise linear correspondence between the loops in the foli-
ation and the points on the core. We cone each loop in the foliation to the
corresponding point on the core. Now (after some checking of disjointness)
we have a disk foliation of Y14 which interpolates between D′14 and D′′14 and
respects the partition of Y14 into Y14 ∩B′14 and Y14 ∩B′′14.

We use h147 to transfer our foliation to ∂Υ14 − ∆′14 − ∆′′14. We change
coordinates:

[1 : u : z]→ (arg u, z).

In these coordinates, Υ14 = [0, π] × D2. Let s be the blue line segment in
Figure 6 that runs all the way across the cylinder and contains vertex 2. The
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intersection (tγ, zγ) = γ ∩ s is a center of symmetry of the loop γ. We cone γ
to (tγ, 0). Now (after some checking of disjointness) we have a disk foliation
of Υ14 which interpolates between ∆′14 and ∆′′14.

We extend h147 to Y14 by coning, so that it maps the one foliation to the
other. This description explicitly determines h14 : Y14 → Υ14. Again, the
rest of the construction is just symmetry and coning, so that final map h is
explicitly defined.
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