
Obtuse Triangular Billiards II: 100 Degrees

Worth of Periodic Trajectories

Richard Evan Schwartz ∗

January 25, 2006

Abstract

We give a rigorous computer-assisted proof that a triangle has a
periodic billiard path provided all its angles are at most 100 degrees.
One appealing thing about our proof is that the reader can use our
software online to see massive visual evidence for our result and also
to survey the computer part of the proof to a very fine level of detail.

1 Introduction

1.1 Background

Let T be a triangle−more precisely, a triangular region in the plane−with
the shortest edge labelled 1, the next shortest edge labelled 2, and the longest
edge labelled 3. A billiard path in T is an infinite polygonal path {si} ⊂ T ,
composed of line segments, such that each vertex si ∩ si+1 lies in the interior
of some edge of T , say the with edge, and the angles that si and si+1 make
with this edge are complementary. (See [G], [MT] and [T] for surveys on
billiards.) The sequence {wi} is the orbit type.

In 1775 Fagnano proved that the combinatorial orbit 123 (repeating) de-
scribes a periodic orbit on every acute triangle. It is an exercise to show
that 312321 (repeating) describes a periodic orbit on all right triangles. (See
[GSV], [H], and [Tr] for some deeper results on right angled billiards.) A

∗ This research is supported by N.S.F. Grant DMS-0305047, by a Guggenheim Fellow-
ship, and by the Ruth M. Davis Endowment.

1



rational triangle−i.e. a triangle whose angles are all rational multiples of
π−has a dense set of periodic billiard paths [BGKT]. (See also [M].) There
has been a lot of interest in rational billiards lately, owing to the deep con-
nections it has to many areas of mathematics, such as Teichmuller theory;
see e.g. [V] or the surveys mentioned above.

In [GSV] and [HH], some infinite families of periodic orbits, which work
for some obtuse irrational triangles, are produced. Aside from these results,
very little is known about the obtuse (irrational) case of triangular billiards.
One central conjecture is

Conjecture 1.1 (Triangular Billiards Conjecture) Every triangle has

a periodic billiard path.

I think it is fair to say that this 200 year old problem has been widely regarded
as impenetrable.

Pat Hooper and I wrote McBilliards, a graphical user interface which
searches for periodic billiard paths in triangles. Operating McBilliards I
discovered the following result:

Theorem 1.2 (100 Degree Theorem) Let T be an obtuse triangle whose

big angle is at most 100 degrees. Then T has a stable periodic billiard path.

A periodic billiard path is stable if an open set of triangles has the same
combinatorial type of billiard path. (See §4.2.) Pat Hooper has recently
shown in [H] that right triangles do not have stable periodic billiard paths.

It is the purpose of this paper to rigorously prove the 100 Degree Theorem.
The proof we give is a combination of traditional mathematical analysis and
rigorous computation. The whole proof, including the computational part,
can be surveyed to a very fine level of detail using McBilliards. Alternatively,
one can download McBilliards and then run it as a stand-alone application.
See 1.4 below for details.

1.2 Proof Outline

Let ∆ denote the parameter space of obtuse triangles. The point (x, y) ∈ ∆
represents a triangle with small angles x and y radians. Let S ⊂ ∆ denote
the set of points corresponding to obtuse triangles whose small angles are
x ≤ y, and whose big angle z = π − x − y satisfies

π

2
< z <

569π

1024
. (1)

2



Note that

100 degrees =
5π

9
radians <

569π

1024
radians.

For aesthetic and computational reasons we want to work as much as possible
with numbers which are dyadic rational multiples of π. For each word W
let O(W ) ⊂ ∆ denote the set of triangles for which W describes a periodic
billiard path. We call O(W ) an orbit tile. It suffices to cover S with orbit
tiles.

It is useful to define triangles P2 and P3 such that

∆ − S = P2 ∪ P3. (2)

See Figure 2.1 for a fairly accurate picture of P1 and P2, as well as the
other polygons we presently describe. Using McBilliards you can plot these
polygons exactly.

It turns out that There are 4 “trouble spots” in S−places which are some-
what difficult to cover. All these trouble spots occur along the boundary of ∆
corresponding to right triangles. Let pn denote the point in ∂∆ correspond-
ing to a triangle, two of whose angles are π/2 and π/n. The case n = ∞
corresponds to a degenerate triangle.

• It seems that no neighborhood of p4 can be covered by a single orbit
tile. However, we will cover a neighborhood P4 of p4 using 9 orbit tiles.
Actually, since we are taking x ≤ y in S, we only need 5 of these tiles
to cover S ∩ P4.

• It seems that no neighborhood of p5 can be covered by a single orbit
tile. However, we will cover a neighborhood P5 of p5 using 2 orbit tiles.

• In [S1] we proved that no neighborhood of p6 can be covered by finitely
many orbit tiles. However, in [S1] we covered a tiny neighborhood P6

of p6 using infinitely many orbit tiles. We will use this result here as
a black box, but will give ample pictorial evidence for it. The user of
McBilliards can see this evidence in great detail.

• In the remark in §2.2 we will give an easy proof that no neighborhood
of p∞ can be covered by finitely many orbit tiles. However, we will
cover a certain neighborhood P1

1 by a union of two infinite families of
tiles.

1To be consistent with the above notation we ought to call this neighborhood P∞, but
we prefer P1.

3



Let

S ′ = S − P4 − P5 − P6 − P1 = ∆ −
6⋃

j=1

Pj . (3)

To finish the proof of the 100 Degree Theorem we need to cover S ′ by orbit
tiles. To do this we will produce a list of 221 words W7, ..., W221, together
with 221 regions P7, ..., P221 such that S ′ ⊂ P7∪ ...∪P221 and Pj ⊂ O(Wj) for
all relevant j. (The reader can survey and plot all these words and polygons
using McBilliards. We will explain below how to do this.)

Once we have defined the polygons and words, we have 4 goals:

• Show that ∆ ⊂ ⋃
221

j=1 Pj.

• Show that Pj ⊂ O(Wj) for j = 7, ..., 221.

• Show that P4 and P5 are covered by orbit tiles.

• Show that P1 is covered by orbit tiles.

The first item has very little to do with billiards. We just have to show
that a certain collection of convex dyadic polygons covers ∆. We will explain
our algorithm for doing this and simply remark that it worls. The interested
reader can see the polygons using McBilliards and check visually that they
indeed form a covering of the relevant region.

1.3 Plan of the Paper

• In §2 we describe the regions P1, ..., P6 and (when relevant) the orbit
tiles which cover them. We defer the long and boring list of P1, ..., P221

and W7, ..., W221 to an appendix. All of this information from §2 and
the appendix can be obtained from McBilliards, where it is presented
in a much more natural way. However, we would like to have a written
record of our result which would survive even if computers do not.

• In §3 we describe how we prove computationally that ∆ is covered
⋃

Pi.
The reader can see our covering using McBilliards and can visually
inspect that our algorithm really works. This chapter has nothing to
do with billiards per se.

• In §4 we will develop some basic geometric and combinatorial theory
for triangular billiards.

4



• In §5 we will explain a computational algorithm which verifies an equa-
tion of the form

P ⊂ O(W ), (4)

where P is a polygon with and W is a word. Our theory works for any
kind of polygon, but we work with convex dyadic polygons for com-
putational reasons. This method is fully implemented in McBilliards.
Our method in §5 works perfectly for the polygons P30, ..., P221.

• In §6 we explain how to deal with the polygons P7, ..., P29. Each of
these polygons is special because it shares an edge with the right angle

line, the portion of ∂∆ which parametrizes right angled triangles.

• In §7 we deal with P4 and P5. For the most part, our treatment of P4

and P5 is computer-aided, but we need to intervene occasionally and
do some hands-on analysis.

• In §8-9 we will cover P1 with infinitely many orbit tiles. This part
of the proof is purely traditional, but of course is heavily inspired by
computer experimentation. P1 is the only polygon which shares an
edge with the boundary of our parameter space.

• In §10 we deal with the computational aspects of our calculations. In
brief, we reduce everything to a calculation involving huge integers,
and then use the BigInteger class in Java, which performs the basic
operations with integers of ”arbitrary” size. There is no roundoff error
in our calculations.

1.4 How to Use McBilliards

We expect that any reader of this paper would read it in tandem with Mc-
Billiards. For this reason, we will take the unusual step of explaining to the
user how he operates McBilliards. There are 3 options:

Beginners: Go to the link www.math.brown.edu/∼res/Java/App46.
This applet is a toy version of McBilliards specifically designed for the 100
Degree Theorem. Applet 46 shows the covering of S by the polygons dis-
cussed above, as well as the word list. You can verify informally that each
polygon lies in the appropriate orbit tile by inspecting the unfolding , a geo-
metric object which we will discuss in great detail in this paper.

5



Intermediate: After learning to use Applet 46, go the McBilliards webpage
www.math.brown.edu/∼res/Billiards/index.html. From the McBil-
liards website you can play McBilliards online. Open McBilliards and select
the 100 degree window from the more menu. The 100 degree window is some-
thing like Applet 46 embedded inside McBilliards. The difference is that you
can use all the McBilliards tools to interact with the window−i.e. plotting
and analyzing orbit tiles. You can follow all the steps in the computer part of
our proof using the 100 degree window. In particular, all the computational
tests we make in connection with the 100 Degree Theorem can be launched
from this window. Once you learn to use the McBilliards interface, you will
see that you can verify our proof of the 100 Degree Theorem down to a very
fine detail, in a concrete and visually natural way.

Advanced 1: Going back to the McBilliards webpage, you can browse
through Pat Hooper’s online documentation for McBilliards, which shows
every detail of every class, method, and interface in McBilliards. This is not
much fun, since there are hundreds of classes involved. However, the code
relevant to the 100 Degree Theorem only takes up a small subset of the total
program. To isolate the relevant code, we have put it in files which have the
Deg100 prefix, such as Deg100Verifier.java. However, there are some basic
classes, such as the complex number class and some graphics classes, which
are required to support the code in the Deg100 files.

Advanced 2: You can download McBilliards from the McBilliards webpage,
and then run it as a stand-alone application assuming that you have a fairly
recent version of Java installed on your computer. Here is the procedure:

• Untar the directory Current.tar (which is what you download).

• Enter the directory and type javac *.java. This compiles all the Java
files.

• Type java A2. This launches the application.

The stand-alone version also has some C and C++ plug-ins, which are un-
related to the Deg100 Theorem. If you want to run these, and you have a
C/C++ compiler, run the compile all command. At any rate, once you
have downloaded the code, you can inspect it as you see fit.

6



1.5 Discussion

I stopped at 100 degrees just because it is a nice round number. The hard
cutoff for our result is 112.5 degrees, or 5π/8 radians. The cutoff arises be-
cause there exists an infinite family of orbit tiles which accumulates on every
point in the boundary of the parameter space corresponding to a degener-
ate triangle whose angles are (π − x, x, 0), where x ∈ [π/2, 5π/8]. (This is
what we use to cover P1.) To get beyond 5π/8 we would need to cover other
neighborhoods of the parameter space boundary with orbit tiles. We have
not had any luck doing this. We can see that understanding the structure of
the parameter space boundary is probably the key challenge in solving the
Triangular Billiards Conjecture.

We think that probably the Triangular Billiards Conjecture is true, but
that the structure of obtuse triangular billiards is extremely complicated.
Originally we wrote McBilliards with the hope of proving the whole conjec-
ture, and we still have that hope; but the main goal is receding off into the
distance, like a mirage that always appears to the driver to be just ahead
on the road. On the other hand, the program has revealed a wealth of new
and totally unexpected phenomena for irrational billiards, a subject still in
its infancy. We hope to report on some of these phenomena in future papers.

1.6 Acknowledgements

I did the initial experiments for this project at the Max Planck Institute in
Bonn, during July 2004. I would like to thank the M.P.I. for their hospitality
and generous support, and also the Guggenheim Foundation. I would like
to thank Mike Boyle, Curt McMullen, Dan Rudolph, Martin Schmoll, Serge
Troubetzkoy, and Sergei Tabachnikov for their encouragement, and also for
helpful conversations related to this work. I would especially like to thank
Pat Hooper, who is my collaborator on McBilliards, for an infinite number of
helpful conversations about triangular billiards, computational geometry, and
McBilliards. Pat and I have made about equal contributions to the design
and algorithm components of McBilliards, but Pat is really the mastermind
behind the sophisticated Java architecture of the web based version.

7



2 Chopping up the Parameter Space

Here and in an appendix we will give the list of all the words and polygons
we use to prove the 100 Degree Theorem.

2.1 The Regions

Figure 2.1 shows a fairly accurate picture of the parameter space ∆ of obtuse
triangles, as well as the regions P1, ..., P6 discussed in the introduction. The
dotted lines indicate that P3 and P4 continue “behind” P2. (It is easier for
our algorithm if these triangles overlap.)

0 5
π

4
π

6
π

8
π

P1

P3

P4

P2

P6

P5S’

Figure 2.1

2.2 Covering P1

We introduce the notation
∣∣∣∣
k1 n1

k2 n2

∣∣∣∣ =
π

2
×
(

k1

2n1
,

k2

2n2

)
[example :

∣∣∣∣
2 1
2 3

∣∣∣∣ = (
π

8
,
3π

8
)] (5)

With this notation, the vertices of P1 are

P1 :

∣∣∣∣
2 1
2 3

∣∣∣∣

∣∣∣∣
0 0
2 3

∣∣∣∣

∣∣∣∣
0 0
0 1

∣∣∣∣ . (6)

8



We will prove that P1 is covered by the union of two infinite families of
orbit tiles {O(Ak)}∞k=1 and {O(Bk)}∞k=1. Here

Ak = 3wk3w
−1

k ; Bk = 3wk+13w
−1

k ; wk = 1(32)k+11(23)k2 (7)

Figure 2.2 shows the tiles O(A1), ..., O(A6) and the right hand side shows
O(B1), ..., O(B6) superimposed over the left hand side. the tiles continue
sweeping out to the left, covering P1.

Figure 2.2

Remark: It seems worthwhile to quickly explain why we need an infinite
number of orbit tiles to cover P1. Let T be a triangle whose largest angle is
90+ ε and whose smallest angle is δ, where δ << ε. Any billiard path P in T
must eventually hit the short side of T at a point x. But then at least one of
the segments S of P , incident to x, will make an angle comparable to ε with
one of the long sides. Tracing P out from x in the direction of this segment,
we see that P has to make about ε/δ bounces, moving roughly away from
the short side, before its direction can change enough for it to turn around.
Hence P cannot have period much less than ε/δ, a quantity we can make as
large as we like.

9



2.3 P2 and P3

The coordinates for P2 and P3 are:

P2 :
∣∣∣∣
0 0
0 0

∣∣∣∣
∣∣∣∣
1 1
1 1

∣∣∣∣
∣∣∣∣
0 1
0 0

∣∣∣∣ P3 :
∣∣∣∣
0 0
9 455

∣∣∣∣
∣∣∣∣
9 455
0 0

∣∣∣∣
∣∣∣∣
0 0
0 0

∣∣∣∣ (8)

2.4 Covering P4

We have coordinates

P4 :

∣∣∣∣
7 63
7 65

∣∣∣∣

∣∣∣∣
7 65
7 63

∣∣∣∣

∣∣∣∣
7 63
7 63

∣∣∣∣ (9)

Since we are taking x ≤ y in ∆ only the left half of P4 lies in ∆. In §7 we
cover P4 ∩ ∆ with the orbit tiles corresponding to the following 5 words:

C = (1232313)2.

D1 = 231323123231323123232132313232132313

D2 = 2313231323123231323132312323213231323132321323132313

E1 = 12323132312323213231323132321323132313231323

E2 = 123231323132312323213231323132313232132313231323132313231323

The left hand side of Figure 2.3 shows a close-up O(C) and O(D1) and
O(D2). Note that O(C) slops over the boundary of P4 ∩ ∆. The boundary
here is contained in the line through p4 of slope 1. (See the dotted line in
Figure 7.3.) The large tile O(C) is not completely shown. The union of these
three tiles covers all of P4 ∩ ∆ except for two line segments. These two line
segments are then covered by O(E1) and O(E2), as shown on the right hand
side of Figure 2.3.

10



Figure 2.3

2.5 Covering P5

We have coordinates

P5 :

∣∣∣∣
12 1641
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2459

∣∣∣∣ (10)

It seems that we cannot cover a neighborhood of P5 by a single orbit tile.
However, we can find two orbit tiles O(F ) and O(G) whose union contains a
neighborhood of p5. The words are

F = 3123231312313232313213132321

G = 132312323132321321312323132321312312323132321323

Figure 2.4 shows a plot of the tiles O(F ) and O(G), with O(F ) being the
larger one. The two tiles overlap, and share p5 as a vertex. The three vertical
lines are {x = π/k} for k = 4, 5, 6.

11



Figure 2.4

We will show that P5 ⊂ O(F ) ∪ O(G) in §7.

2.6 Covering P6

We have coordinates

P6 :
∣∣∣∣
10 345
10 679

∣∣∣∣
∣∣∣∣
12 1380
12 2712

∣∣∣∣
∣∣∣∣
12 1352
12 2740

∣∣∣∣
∣∣∣∣
9 169
9 343

∣∣∣∣ (11)

Let P ′
6 denote the region

{(x, y) ∈ ∆| |x − π

6
| <

1

175
; |(x + y) − π

2
| <

1

400
√

2
}. (12)

In [S1] we covered P ′
6 by a union of two infinite families of orbit tiles.

Lemma 2.1 P6 ⊂ P ′
6.

12



We have

|345π

2048
− π

6
| = .005624... < .005714... =

1

175
.

|169π

1024
− π

6
| = .005113... < .005714... =

1

175
.

This takes care of the condition on the x coordinate. The region P6 is a
parallelogram, with one of the long sides lying in the line x + y = π/2. To
finish our verification we just note that

|1380π

8192
+

2712π

8192
− π

2
| = .00153... < .00176... =

1

400
√

2
.

♠

Combining our lemma with the result of [S1] we see that P6 is covered by a
union of two infinite families of orbit tiles. We call these families {O(Yk)}∞k=8

and {O(Zk)}∞k=8. The words Yk are defined for all k ≥ 1 and the words Zk

are defined for all k ≥ 0.
We first define the Y family. Let

A = 3123; B1 = 23213; B2 = 23123; C1 = 213123; C2 = 123123.
(13)

We have Yk = 2yk2y
−1

k . For odd indices we have

y2k+1 = AB1(B2B1)
kC1(B1B1)

k; k = 0, 1, 2... (14)

For even indices we have

y2k+2 = AB1(B2B1)
kC2(B1B2)

k+1; k = 0, 1, 2... (15)

Now we define the Z family. Define

A = 123; B = 231; C = 32; D = 213; (16)

Next define E0 to be the empty word and

• E1 = D.D;

• E2 = DA.AD;

• E3 = DAD.DAD;

13



• E4 = DADA.ADAD;

and so forth. The decimal points are added to highlight the symmetry of the
words. Then Zk = 3zk3z

−1

k , where

zk = ABC3EkABC (17)

(The digit 3 included in the equation is deliberate.) We have started our
count at k = 0 to keep our notation consistent with [S1].

The left hand side of Figure 2.5 shows the tiles O(Y1), ..., O(Y4). The
“tips” of these tiles converge to the point P (π/6). The largest tiles O(Y1)
obscures the other tiles. The left vertical grey line indicates the set y = π/6
and the right grey vertical line indicates the set y = π/5.

The right hand side of Figure 2.5 shows how the tiles O(Y1), ..., O(Y4) and
O(Z0), ..., O(Z3) interlock and suggests how the neighborhood of P (π/6) is
filled up. The right hand side shows a more local picture then the left hand
side.

Our result in [S1] starts with the tiles O(Y8) and O(Z8) only because
we couldn’t easily get good rigorous estimates for the first few tiles. Ex-
perimentally, the picture looks pretty much the same wherever we start our
count.

Figure 2.5

14



2.7 Covering S ′

In the appendix we list W7, ..., W221 and P7, ..., P221. (For the sake of having
all the polygons in one place, we also list P1, ..., P6 again.) In all cases, we list
the word first and then the vertices of the convex polygon. To compress our
notation for the words, we replace all the length 4 strings by letters. There
are 24 allowable strings and we order them lexicographically. So, a = 1212,
b = 1213, ..., x = 3232. If the length of the word is not divisible by 4 we will
simply list the last two digits of the word at the end. (The reader can also
browse through this list online, using McBilliards.)

The first 23 words correspond to polygons which abut ∂∆. These are
listed first, sorted by word length. The remaining words are then listed,
sorted by word length. The longest word has length 216.

Our list of polygons is probably irredundant, meaning that the deletion
of any polygon on the list destroys the covering property. No polygon has
more than 8 vertices, and the coordinates all have the form x(π/2) where
x ∈ [0, 1] is a dyadic rational whose denominator is at most 217. Our list of
words is mildly redundant, but probably not twice as long as the shortest
list which could do the job.

15



3 The Covering Condition

3.1 The Covering Problem

The parameter space ∆ of obtuse triangles has vertices

∆ :
∣∣∣∣
0 0
0 0

∣∣∣∣
∣∣∣∣
0 1
0 0

∣∣∣∣
∣∣∣∣
0 0
0 1

∣∣∣∣ . (18)

Let P1, ..., P221 be the polygons listed in §2 and the appendix. In this chapter
we explain how McBilliards proves that ∆ ⊂ ⋃

Pj.
Let Pj be one of the polygons on our list. Let e be an edge of P . We say

that e is good if
e − ∂∆ ⊂

⋃

i6=j

Pi. (19)

In case e ∈ ∂∆ this condition is vacuous. We say that Pj is good if every
edge of Pj is good.

Lemma 3.1 ∆ ⊂ ⋃
Pj provided that every Pj is good.

Proof: If ∆ is not covered by our polygons then ∆ − ⋃
Pj contains some

open set U and some point of ∂U is contained in some edge e of some Pj .
But then e is not good. ♠

To make our problem easier, we scale all our polygons by the constant
227/π. The result is that all the coordinates of all the polygons are positive
integers between 0 and 223. Also, given the comments at the beginning of
§2.7 we know that all the coordinates are divisible by 29. This fact is useful
because we sometimes want to subdivide our edges in half a few time, while
retaining the property that the break points are integers. We now are left
with the problem of showing that a certain convex integer triangle is covered
by 221 other convex integer polygons.

3.2 The Bisection Algorithm

Let S be some segment in the plane, whose endpoints are integers. We call
S an integer segment . We say that S is admissible if the midpoint of S also
has integer coordinates. In this case, the two segments S1 and S2 formed by
bisecting S are also integer segments.

16



Let e be an edge of Pi. To show that a given edge e is covered by our
polygons, we perform the following algorithm. We start with a list of edges
whose sole member is e. At any stage of the algorithm we have a finite list
of integer segments. We consider the last segment S on the list.

• If we can show that S ⊂ Pj for some j 6= i then we omit S from our
list. Then we continue.

• If S is admissible and we cannot show that S ⊂ Pj for some j 6= i then
we omit S from our list and append S1 and S2 to the list. Then we
continue.

• If S is not admissible and we cannot show that S ⊂ Pj for some j 6= i
then we fail.

• If the list becomes empty we have succeeded in showing that e is good.

The main step in our algorithm involves showing that an integer segment
is contained in an integer convex polygon. This problem in turn boils down
to checking that each of the endpoints of the segment is contained in the
polygon. Showing that an integer point z is contained in an integer polygon
P is an integer calculation. We just check the orientations of all the triangles
obtained by coning the edges of P to z and see that they all agree. This
calculation is done entirely in Z and produces integers which have roughly
3 times as many digits as the coordinates of z and P . We implement our
algorithm in Java, using the BigInteger class. The BigInteger class does
exact arithmetic on arbitrarily large integers. Here “arbitrarily large” means
some huge finite number which depends on the physical characteristics of the
computer. We certainly never encounter numbers which have more than 100
digits in our algorithm, and these are small enough for the BigInteger class.
We will talk more about the BigInteger class in §6.

The interested reader can see and interact with the cover using McBil-
liards. In particular, one can re-run our algorithm, either one time at a time
or sequentially.

17



4 Billiard Paths and Defining Functions

In this chapter and the next we develop the machinery needed to establish
Equation 4 where we need it. We will also use this material in §8-10 when
we deal with the polygon P1.

4.1 Unfoldings

We always work with even length words. Given a word W = w1, ..., w2k we
define a seguence T1, ..., T2k of triangles, by the rule that Tj−1 and Tj are
related by reflection across the wjth edge of Tj . Here j = 2, ..., 2k. The
set U(W, T ) = {Tj}2k

j=1 is known as the unfolding of the pair (W, T ). This
is a well known construction; see [T]. Figure 4.1 shows an example, where
W = (1232313)2. We label the top vertices of U(W, T ) as a1, a2, ..., from
left to right. We label the bottom vertices of U(W, T ) as b1, b2, ..., from left
to right. This is shown in Figure 4.1. The unfold window in McBilliards
draws the unfolding U(W, T ) for any given word W and any given triangle
T .

a8

b8

a1

a2

b1

b2

b3 b4

b5 b6

b7

a3

a4
a6

a7

Figure
4.1

W represents a periodic billiard path in T iff the first and last sides of
U(W, T ) are parallel and the interior of U(W, T ) contains a line segment L,
called a centerline, such that L intersects the first and last sides at corre-
sponding points. We always rotate the picture so that the first and last
sides are related by a horizontal translation. In particular, any centerline of
U(W, T ) is a horizontal line segment. The unfolding in Figure 4.1 does have
a centerline, though it is not drawn. To show that a certain triangle has
W as a periodic billiard path we just have to consider the unfolding. After
we check that the first and last sides are parallel, and rotate the picture as
above, we just have to show that each a vertex lies above each b vertex.

18



4.2 Stability

The word W is stable iff O(W ) is an open set, and otherwise unstable.
Whether or not a word is stable is a combinatorial condition, checked ex-
actly by the computer. Here is teh well known stability criterion. See [S] for
a proof.

Lemma 4.1 Let W = w1, ..., w2n. Let ndj denote the number of solutions to

the equation wi = d with i congruent to j mod 2. Let nd = nd0 − nd1. Then

W is stable iff nd(W ) is independent of d.

McBilliards has a useful graphical interpretation of Lemma 4.1. The 1-
skeleton H of the hexagonal grid has 3 parallel families of edges. Given a
word, we can draw a path in H by following the edges as determined by the
word: we move along the dth family when we encounter the digit d. Figure
4.2 shows the path corresponding the word in §4.1, namely W = (1232313)2.
The word is stable iff the path is closed. We call this path the hexpath.

Figure 4.2

There is a canonical map from the set of triangles of the unfolding to the
set of vertices of the hexpath: We simply map Ti to the ith vertex vi. The
edge of U(T, ∗) between Ti and Ti1 corresponds naturally to the midpoint of
the edge joining vi and vi+1. The other two edges of Ti correspond naturally
to the midpoints of the other two edges of H emanating from vi. We call this
correspondence the angular correspondence. For any object of the unfolding
X, we let Θ(X) denote the point in the plane corresponding to X under
the angular correspondence. Below we will give formulas for the angular
correspondence and explain its geometric significance. Informally speaking,
we would say that the angular correspondence is the Fourier transform of the
unfolding.

19



4.3 Defining Functions

4.3.1 The Goal

Given two points p, q ∈ R
2 we write

p ↑ q; p l q; p ↓ q

iff the y coordinate respectively is greater than, equal, or less than the y
coordinate of q. Suppose that p and q are two vertices of our unfolding.
In this section we will give the formula for a function f = fp,q which has
the property that f = 0 iff p l q. These defining functions are computed
purely from the word W . Our sign convention, discussed below, includes the
convention that fai,bj

> 0 iff ai ↑ bj . Given the functions and their formulas,
we are left with the following problem: If Q ⊂ ∆ is some region and we want
to show that Q ⊂ O(W ), we just have to show that fai,bj

> 0 throughout Q,
for all pairs (ai, bj).

The reader can use the unfolding window in McBilliards to see the for-
mulas for the defining functions for any word and any pair of vertices on the
unfolding.

4.3.2 Turning Angles and Turning Pairs

For ease of exposition, assume that T is a triangle which is not isosceles. The
unfolding U(W, T ) has three kinds of edges, depending on the label the edge
inherits from T . The edges of U(W, T ) which have type j are isometric to
the jth edge of T . Here j = 1, 2, 3. We will frequently refer to an edge of
U(W, T ) by the labels on its endpoints. The first edge of U(W, T ) is always
e(a1, b1).

Let ρ denote the positive y-axis. For each edge e of U(W, T ) we let θ(e)
denote the counterclockwise angle through which ρ must be rotated in order
to produce a vector parallel to e. We work mod π, so that the direction e
points is irrelevant. We will sometimes use the notation θ(v, w) = θ(e(v, w)).
It is easy to see, inductively, that there are integers Me and Ne such that

θe(x, y) = Mex + Ney. (20)

Here (x, y) ∈ ∆ is the point on which e depends. In §4.4 we will explain how
Me and Ne are computed. For now we just use them as a black box. We call
(Me, Ne) the turning pair for e. We will explain below how to compute the
turning pairs.

20



4.3.3 The Formula for the Defining Functions

Let Ũ(W, T ) be the bi-infinite periodic continuation of U(W, T ). For any
d ∈ {1, 2, 3} there is an infinite, periodic polygonal path made from type-d
edges if Ũ(W, T ). The image of this path in U(W, T ) is what we call the
d-spine. Figure 4.3 shows the 3-spine for U(W, T ) where T is some triangle
and W = 123231323123232313.

a1

b1
b4

Figure 4.3

Let e1, ..., en be a complete and irredundant list of the edges which appear
in the d-spine. We label so that e1 is the leftmost edge. We introduce the
function

gd(x, y) =
n∑

i=1

(−1)i−1 exp(i(M(ei)x + N(ei)y)). (21)

We say that p and q are d-connected if there is a polygonal path of type-d
edges connecting p to q, and d is as large as possible. Every two points are
d-connected for some d ∈ {1, 2, 3}, and d is unique. Let e′1, ..., e

′
m be the set

of type-d paths joining p to q, ordered from left to right. We define

h(x, y) =
m∑

i=1

(−1)i−1 exp(i(M(e′i)x + N(e′i)y)). (22)

When U(W, T ) is rotated so that the first edge is vertical:

• The translation direction of U(W, T ) is parallel to ±ig(x, y).

• The vector pointing from p to q is parallel to ±h(x, y).

Therefore, the function
f(x, y) ± Im(gh) (23)

vanishes iff p l q. Here we have set g = gd.

21



Remark: The appearance of the factor (−1)i−1 is at first a bit puzzling.
However, we can explain it like this. Recall that we are working mod π and
thereby ignoring the direction (forwards or backwards) that a given edge
(considered instead as a vector) is pointing. The (−1)i−1 turns out to be the
fudge factor needed to correct for this loss of information.

After some trial and error we found that the sign out in front of Equation
23 is determined as follows: Let s be the number of edges on the list e1, ..., en

which lie to the left of e′1. (There is a canonical left-to-right order on all the
edges of the same type.) Then (−1)sIm(gh) > 0 iff the left endpoint of e1 is
a1 (respectively b1) and p ↑ q (respectively p ↓ q). Actually McBilliards uses
the above rule as a basis for establishing the following sign conventions:

1. Suppose p = ai and q = bj . Then f > 0 iff p ↑ q.

2. Suppose p = ai and q = bj and i < j. Then f > 0 iff q ↑ p.

3. Suppose p = bi and q = bj and i < j. Then f > 0 iff q ↑ p.

We introduce a shorthand notation for the function f . It suffices to list the
turning pairs defining h and then the turning pairs defining g. For instance,
in the example above the defining function for the pair (a1, b4) is recorded as

0 1
4 1
4 −1
6 −1
6 −3
0 −3

0 1 (+)
4 1

Here m = 2 and n = 6. The (+) indicates the sign choice. From the notation
we read off that

g(x, y) = exp(i(y)) − exp(i(4x + y)) + exp(i(4x − y)) − . . . − exp(i(−3y)).

h(x, y) = (+1) × (exp(i(y)) − exp(i(4x + y)));

We call this form 1 for the defining function.
To arrive at a second convenient form for our function we multiple g and

h together, collect the terms, and use the fact that sine is an odd function.
This gives us what we call Form 2 of the defining function:

f(x, y) =
∑

k

Jk sin(Akx + Bky); Jk ∈ N ; Ak, Bk ∈ Z. (24)

22



4.4 Computing the Turning Pairs

Now we explain an algorithm which generates (Me, Ne). In the end, it boils
down to this: There is a suitable real affine transformation R of the plane
such that (M(e), N(e)) = R(Θ(e)). In other words, up to coordinatizing the

plane, the angular correspondence above computes the angular pairs. Using
the unfold window in McBilliards, one can see the turning pairs computed
automatically.

4.4.1 Step 1: Triples

Let d be the first digit of W . Let d− ∈ {1, 2, 3} denote the congruence class
of d − 1 mod 3. We let d+ ∈ {1, 2, 3} denote the congruence class of d + 1
mod 3. Let d0 = d. Let ε ∈ {−1, 0, 1}. We define

α0(dε) = ε. (25)

Suppose that we have determined αi−1(1), αi−1(2) and αi−1(3). Let d be
the ith digit of W . Define

αi(dε) = αi−1(dε) + (−1)i2ε. (26)

In this way we produce a triple of labels for each triangle in the unfolding.
The unfolding window in McBilliards displays these triples when you click on
a triangle of the unfolding. If the plane is suitable coordinatized by variables
(x, y, z) such that x + y + z = 0 then the triple associated to T1 is precisely
the coordinates of Θ(Ti), the ith vertex of the hexpath.

4.4.2 Step 2: Edges

Let e be an edge of U(W, T ). Suppose that e is the dth edge of Ti. We define

β(e, dε) = αi(dε) − (−1)iε. (27)

Note that e could also be an edge of another triangle of U(W, T ). This
happens when Ti−1 and Ti are related by a reflection through e. In other
words d is the ith digit of W . In this situation Equation 27 gives the same
answer whether we use i−1 or i in the formula. This can be seen by comparing
Equations 26 and 27.

Let e = e(a1, b1), the leftmost edge of U(W, T ).

23



Lemma 4.2 We have the general formula

θ(e) − θ(e) = −β(e, 1)x + β(e, 2)y + β(e, 3)z

3
(28)

Here z is such that x + y + z = π.

Proof: Let e1 = e. We first check our formula on the edges of T1. If
1 is the first digit of W then the edge labels of e1 are (0, 0, 0) and hence
both sides of Equation 28 are 0. The edge labels of e2 are (−1,−1, 2). In
this case Equation 28 gives θ(e2) − θ(e1) = −(−x − y + 2z)/3 = −z, as it
should. The edge labels of e3 are (1,−2, 1). In this case Equation 28 gives
θ(e3) − θ(e1) = −(x − 2y + z)/3 = y, as it should.

(1,−2,1)

W=12...

(−2,−1,3)

(0,−1,1)

triangle labels

T1

T2

edge labels

y

e1

(0,0,0) z

y

(−2,−2,4)

z (−3,0,3)

x
x

(−1,−1,2)

Figure 4.4

Given the simple nature of the formulas in Equation 26 and 27 it suffices
to check the induction step for i = 2. In other words, we just have to see
that Equation 28 works for the edges of T2. Again, we can suppose that 1
is the first digit of W . Suppose that 2 is the second digit. Figure 4.4 shows
a picture of the situation. One easily checks that Equation 28 holds for all
these edges. When the second digit of W is a 3 the verification is similar. ♠

4.4.3 Step 3: Eliminating the third angle

It is useful to have a formula that doesn’t involve the angle z. We define

M(e) =
β(e, 3) − β(e, 1)

3
; N(e) =

β(e, 3) − β(e, 2)

3
. (29)

Since z = (−x − y) mod π have

θ(e) − θ(e) = M(e)x + N(e)y. (30)

24



5 The Verification Algorithm

Our goal is to verify that Pi ⊂ O(Wi) where Pi is a given convex dyadic
rational polygon and O(Wi) is the orbit tile of a word Wi. The method we
explain in this chapter can and does work just as written for i = 30, ..., 221.

Our verification algorithm tries to produce a cover of P by convex dyadic
squares P ⊂ ⋃

Qi, such that Qi ⊂ O(W ) for all i. (By dyadic rational square

we mean a square in ∆ whose sides are parallel to the coordinate axes and
whose vertices have the form x(π/2) where x ∈ [0, 1] is a dyadic rational.)

To show that Q ⊂ O(W ) we need to show that all the associated defining
functions fai,bj

are positive on Q. We will sometimes write fij = fai,bj
for

ease of notation. In the first section we will explain how we do this. In the
sections following the first one, we will explain our main algorithm.

5.1 Certificates of Positivity

Let Q be a dyadic rational square with center q and radius r. Here r denotes
half the edge length of Q. Suppose that f is a defining function for a pair of
vertices of the unfolding U(W, T ). There are two ways we try to certify that
f > 0 on Q, the gold and the silver . The gold method is nicer.

5.1.1 The Gold Method

Let ∇f = (fx, fy) be the gradient. From Equation 23 we have

fa = Im(gah + gha); a ∈ {x, y}. (31)

We use Equation 24 to get bounds on the second partial derivatives. Using
the letters a and b to stand arbitrarily for x and y, we have bounds on the
second derivatives:

|fab| ≤ Fab,

where

Fxx =
∑

k

A2

k|Jk|; Fxy =
∑

k

AkBk|Jk|; Fyy =
∑

k

B2

k|Jk|. (32)

We introduce the quantities

ax = r(Fxx + Fxy); ay = r(Fyx + Fyy). (33)

25



Finally, we define the rectangle

G(q, f) = [fx(q) − ax, fx(q) + ax] × [fy(q) − ay, fy(q) + ay]. (34)

Here q is the center of Q.
It follows from integration that

∇f(x, y) ⊂ G(Q, f); ∀(x, y) ∈ Q. (35)

We say that f is gold certified if G(Q, f) is disjoint from the coordinate
axes in R

2. This is to say that G(Q, f) is contained in one of the standard
quadrants in R

2.
If f is gold certified, then there is some vertex v of Q such that throughout

Q the gradient ∇f is a positive linear combination of the edges of Q which
emanate from Q. This means that f(x, y) > f(v) for all (x, y) ∈ Q. Thus, if
f is gold certified and f(v) > 0 then f |Q > 0. We say that we have shown
f |Q > 0 by the gold method if this situation obtains. Note that the gold
method only requires a finite number of computations. The gold method
works poorly if ∇f points nearly horizontally or vertically in Q.

5.1.2 The Silver Method

Let Q̂ denote the square with the following property: Q is midscribed in Q̂,
as shown in Figure 5.1. Note that Q̂ is not a dyadic rational because its sides
are not parallel to the coordinate axes. However. the vertices and center of
Q̂ all have the form πx, where x is a dyadic rational.

Q

Q

Figure 5.1

26



We use all the same notation as in the previous section. We not define
the rectangle

S(q, f) = [fx(q) − 2ax, fx(q) + 2ax] × [fy(q) − 2ay, fy(q) + 2ay]. (36)

It follows from integration that

∇f(x, y) ⊂ S(Q, f); ∀(x, y) ∈ Q̂. (37)

We say that f is silver certified if G(Q, f) is disjoint from the lines through
the origin of slope ±1. This is to say that S(Q, f) is contained in one of
images obtained by rotating the standard quadrants by 45 degrees.

If f is silver certified, then there is some vertex v of Q̂ such that through-
out Q̂ the gradient ∇f is a positive linear combination of the edges of Q̂
which emanate from Q̂. This means that f(x, y) > f(v) for all (x, y) ∈ Q̂.
In particular, this is true for all (x, y) ∈ Q. Thus, if f is silver certified and
f(v) > 0 then f |Q > 0. We say that we have shown f |Q > 0 by the silver

method if this situation obtains. Note that the silver method requires a finite
number of computations.

The silver method is not as nice as the gold method for the following
reason. If f |Q > 0 but Q is quite close to the level set, then it might happen
that f(v) < 0 on the relevant vertex of Q̂. For our purposes, the gold method
usually works, and the silver method takes over as a last resort when the gold
method fails. The two methods work together beautifully for our purposes.

5.1.3 A Technical Point

The constant r in the formulas above has the form

r =
π

2
x

where x is some dyadic rational number. When it comes time to do our
rigorous computation we will replace r by the larger

r̃ = 2x

because it is a rational quantity. We will then work with the rectangles
G̃(Q, f) and S̃(Q, f), which are defined as above, but with r̃ in place of r.
This replacement makes the functions a bit harder to certify, but helps us
reduce the problem to an integer calculation.

27



5.2 An Inefficient First Try

Here we describe a simple verification algorithm which is too slow to use, but
easy to understand. Following this section, we will describe the algorithm
we actually do use.

Let Q be a dyadic square and let W be a word. We say that W is good on
Q if, for every defining function fij we can prove that fij |Q > 0 either by the
gold method or by the silver method. If W is good on Q then Q ⊂ O(W ).

For our algorithm we start with a list of squares, having the Q0 as its sole
member. We have coordinates.

Q0 :
∣∣∣∣
0 0
0 0

∣∣∣∣
∣∣∣∣
0 0
0 1

∣∣∣∣
∣∣∣∣
0 1
0 1

∣∣∣∣
∣∣∣∣
0 1
0 0

∣∣∣∣ (38)

That is
Q0 = [0,

π

2
]2.

At any point of the algorithm we have a list of dyadic rational squares. We
let Q be the last square on the list. There are several options.

• If f is good on Q we delete Q from our list and add it to our covering.

• If Q ∩ P = ∅ then we delete Q from our list.

• If neither of the above is true, we replace Q on our list by the 4 squares
obtained by subdividing Q in half.

If our list ever becomes empty then we have a covering of P by dyadic squares,
each of which is contained in O(W ). This does the job. One very nice feature
of this algorithm is as follows if P ⊂ P ′ are two different polygons, and the
algorithm works for both P and P ′, then the covering of P ′ is obtained from
the covering of P simply by adding some more dyadic squares.

The algorithm is inefficient for a variety of reasons. The main reason is
that it requires us to evaluate all O(n2) defining functions for each square on
the list (which is not disjoint from P .) The algorithm we describe requires
O(n log(n)) evaluations for each such square.

5.3 The Tournament

As above, W is a fixed word. Let Q be a dyadic rational square. Say that a
player list for Q is a pair (A, B), where both A and B are lists of indices. We

28



think of A as being a list of some distinguished a vertices and B as being a
list of some distinguished b vertices. We say that lists i < j ∈ A are adjacent

if there is no index k ∈ A such that i < j < k. In this section we will make
some definitions for A and at the end make the same definitions for B.

We say that an A-function is a defining function associated to (ai, aj),
where i and j are adjacent indices in A. We say that a vertex i ∈ A is an
A-loser if one of the following two situations (when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be A-function for the pair
(ai, aj). Then −fQ can be shown to be positive using either the gold
or silver method.

• Let j < i be the index adjacent to i. Let f be A-function for the pair
(ai, aj). Then fQ can be shown to be positive using either the gold or
silver method.

One of the situations is not applicable if i is the first or last index in A. If i
is the only index in A then neither situation is applicable.

If i ∈ A is an A-loser it means that there is another index j ∈ A such
that ai ↑ aj throughout Q. In this case any result aj ↑ bk in Q automatically
implies that ai ↑ bk in Q. If i is not a round loser we call i an A-survivor .

We make all the same definitions for the B list, except that we reverse
the signs. That is, we say that a vertex i ∈ B is an B-loser if one of the
following two situations (when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be B-function for the pair
(bi, bj). Then fQ can be shown to be positive using either the gold or
silver method.

• Let j < i be the index adjacent to i. Let f be A-function for the pair
(bi, bj). Then −fQ can be shown to be positive using either the gold or
silver method.

We call the following elimination process a round (of a tournament):
We consider in order all the A-functions f1, ..., fm. We form a new list A′

consisting of the A-survivors. We call A stable (with respect to Q) if A′ = A.
If A is not stable we form a sequence A ⊃ A′ ⊃ A′′... until the list stabilizes.
We call this process the A-tournament on Q. We call the indices of the final
list the A-winners. We carry out the same processes for the B list.

29



5.4 The Improved Algorithm

We start our algorithm with the list consisting of the triple (Q0, A0, B0),
where Q0 = [0, π/2]2 as above, and A0 = B0 = {1, 2, 3, ..., k} are the complete
list of indices. Here k is half the length of W . During the algorithm we
maintain a list of triples like this. At any stage we consider the last triple
(Q, A, B) on the list.

If Q∩P = ∅ we discard (Q, A, B) from our list and move on. Otherwise...

• We perform the A-tournament and B-tournament to produce triples
(Q, A∗, B∗), where A∗ consists of the A-winners and B∗ consists of the
B-winners.

• For each index (i, j) ∈ A∗ × B∗ we try to show, using the gold and
silver methods, that fij |Q > 0. If we succeed for every pair then we
add Q to our covering of P . Otherwise...

• We delete (Q, A, B) from our list and then replace it by the 4 triples
(Qj, A

∗, B∗), where Q1, Q2, Q3, Q4 are the squares obtained by bisecting
Q.

If the list ever becomes empty then we have produced a covering of P by
dyadic squares, each of which is contained in O(W ). This is justified by the
following

Lemma 5.1 If Q is added to our cover then Q ⊂ O(W ).

Proof: Let (i, j) ∈ A0 × B0 be arbitrary indices. There is a nested se-
quence of squares Q0 ⊃ Q1... ⊃ Qn = Q together with a sequence of indices
i = i0, ..., in = i′ such that Q ⊂ Qk and aik ↑ aik+1

for all k. Moreover i′ ∈ A∗.
The same goes for j in place of i. Therefore, on Q we have ai ↑ ai′ ↑ bj′ ↑ bj . ♠

We point our 3 nice features of our algorithm:

• If P ⊂ P ′ ⊂ O(W ) and the algorithm works for both P and P ′, then
the covering produced for P ′ is obtained from the covering produced
for P just by adding some squares.

30



• The gold and silver certificates are inherited. If a defining function f
is gold/silver certifed on a square Q it is also gold/silver certified on a
subsquare Q′ of Q. We don’t need to recompute the bounds; we just
pass along the certificate during the subdivision, assuming the relevant
pair of indices gets passed along.

• If Q is one of the squares in our covering, then there is a canonical
sequence of squares Q0, ..., Qn = Q, where Qk+1 is one of the 4 squares
in the bisection of Qk for all k. The presence of Q in our cover can
be completely explained by looking at what happens in Q0, ..., Qn. We
don’t have to look at other “branches” of the algorithm. As we will
explain below, McBilliards exploits this feature to produce a nice way
for the (tireless) reader to inspect the operation of the algorithm piece
by piece. We will discuss this below in some detail.

Figure 5.1 shows the output of our algorithm for P32. These squares just
barely cover P32: The polygon has nearly the same shape.

Figure 5.1

31



5.5 Surveying the Algorithm

Now we explain how the reader can check the results of the tournament
algorithm.

• To run the verify algorithm for a particular word, select the verify single

mode on the 100 degree window interface and then click click on the
desired word. (These words are indexed by little square buttons on the
interface.) Be sure to have the trace verify button off.

• Once the picture is plotted on the main McBilliards window, turn on
the trace verify button and select your favorite dyadic square that you
have just plotted by clicking inside it. Now click on the same word you
just clicked.

• With the trace verify mode on, McBilliards re-runs the algorithm, dis-
carding any square which does not contain the selected point. This has
the effect of just tracing through the part of the algorithm which deals
with the selected square.

• Open up the unfolding window after the selected square has been plot-
ted. Along the bottom of the square you will see three kinds of boxes:
the top winners, the bottom winners, and the tournament record. The
tournament record consists of a bunch of pairs of the form (p, q), where
p loses to q on some box which contains the selected one. We call these
match boxes .

• If you click on one of these matchboxes, you will see the formulas for
the defining function associated to the relevant pair of vertices. You
also get to see a graphical display of the gradient and the quadrant
which contains the gradient throughout the dyadic square. By moving
the point around on the main interface, you can visually check that the
gradient remains within the quadrant. Also, you see displayed all the
quantities which go into the calculation of the certificates, so you can
recompute them yourself from the information.

• If you click on every single match box and make the computations your-
self, by hand, you will have given your own proof that the tournament
has performed correctly. Finally, you can go through all the pairs of
the form (top winner, bottom winner) and make all the same checks.

32



6 Vanishing on the Right Angle Line

Here we explain how to modify the algorithm in §5 to work for the indices
i = 7, ..., 29. What makes these polygons special is that they all have an edge
on the right angle line.

6.1 Exceptional Pairs

Say that a pair of vertices (ai, bj) is exceptional if the associated defining
function vanishes along the right angle line. We call such a defining function
exceptional as well. For any word W there is a list A of a vertices of U(W, ∗)
and a list B of b vertices of U(W, ∗) such that the set of exceptional pairs of
vertices is precisely A×B. For the words W30, ..., P229 the lists A and B are
typically (though not always) empty. However, the polygons P30, ..., P221 are
all (very) disjoint from the right angle line, and so the lists A and B do not
concern us. For the words W7, ..., W29 the lists A and B are always nonempty
and, as we mentioned above. the polygons P7, ..., P29 always have an edge on
the right angle line. For this reason, we need to understand what happens
with the defining functions associated to vertices in A×B. It is hard to deal
computationally with these defining functions, because they take arbitrarily
small positive values on points in the polygons.

Figure 6.1

Say that a dyadic square is exceptional if it has one or two vertices on the
right angle line and at least one vertex in the parameter space ∆ of obtuse
triangles. Figure 6.1 shows a picture of the two kinds of special dyadic
squares. Let Q be an exceptional dyadic square and let f be an exceptional
defining function. Say that f is certified on Q if the gold method shows that

33



∇f is contained in a quadrant throughout Q we also insist that ∇f points
into the obtuse parameter space. In this situation the axis of the quadrant
containing ∇f is perpendicular to the right angle line, and f > 0 on the
portion of Q which lies in ∆.

When we run our algorithm for the indices i = 7, ..., 29 we first isolate
the lists A and B. We then run the algorithm as in §5, except that we
automatically “pass” any exceptional defining function in the playoffs if the
dyadic square in question is exceptional and the defining function is certified
on the square. If the algorithm halts, we have a covering of Pi by a union of
dyadic squares and dyadic triangles, each of which is contained in O(Wi). It
only remains to explain how we recognize in advance that a pair of vertices
is exceptional. In the next section we will explain some general principles for
doing this, and then we will spend the rest of the chapter going through the
exceptions one at a time.

While reading our account, the reader may wonder how we know that
we have obtained an exhaustive list of exceptional pairs. Actually, it is not
necessary for us to do this. We just have to show that the algorithm halts with
the exceptional pairs that we have singled out. Given that the algorithm is
based on finite precision (though exact) arithmetic, another exceptional pair
would cause the algorithm to get hung up, producing a list of ever smaller
dyadic squares converging to the right-angle line. Since this does not happen,
we know that we have the complete list. The reader who experiments with
the unfoldings using McBilliards can see directly that our list is complete.

6.2 Using Symmetry

For each of the exceptional words, the unfolding U(W, ∗) has bilateral sym-
metry. The symmetry derives from the fact that we can write W = dV dV −1

where V is a word having of length

(length(W ) − 1)/2.

There are two important features of this symmetry. First, the first and
last edges of U(W, ∗) are always vertical. This allows us to predict the turning
angles of the other edges solely from their turning pairs. (In a minute we will
give an example.) Second, we only have to worry about half the vertices when
we run our algorithm. In particular, it suffices to deal with the exceptional
vertices on the left half of the unfolding.

34



Figure 6.2 shows the example of W11. In this case, the only exceptional
pair of vertices is (a5, b1).

Figure 6.2

The vertices a5 and b1 are joined by 2 edges of type 3. The union of these
two edges has a line of bilateral symmetry. Call this line Λ51. The turning
pair for Λ51 is (−2,−2). Mod π, the angle between the first edge, which is
always vertical, and Λ51, is −2x − 2y. But x + y = π/2 on the right angle
line. Hence Λ51 is vertical for any unfolding with respect to a right triangle.
Hence a5 l b1 for all points on the right angle line.

6.3 The Easy Cases

With 6 exceptions, the words W7, ..., W29 have the same analysis as W11.
That is, they have a single exceptional pair of vertices (on the left) and the
spine connecting these vertices has bilateral symmetry. In all these cases,
the same analysis as for W11 works here word for word. Here we list these
cases, together with the exceptional pairs. In the notation we use, the case
considered in the previous section is listed as (11; 5, 1). Here are the easy
cases:

(7; 5, 1) (9; 5, 10) (10, 5, 1) (11; 5, 1) (12; 8, 13) (13; 1, 11)
(14; 5, 1) (17; 5, 1) (19; 19, 3) (20; 5, 1) (22; 1, 23) (24; 27, 5)
(25; 5, 33) (26; 42, 31) (27; 38, 7) (28; 5, 45) (29; 48, 11)

(39)
Notice that the pair (a5, b1) occurs quite often. The reader can see pictures
of all these cases using the unfolding window of McBilliards. In the unfolding
window you can select a pair of vertices and see the edges connecting them
drawn. In this way you can verify that the path has bilateral symmetry and
the line Λ of bilateral symmetry has turning pair either (2, 2) or (−2,−2) and
hence is vertical when the unfolding is done with respect to a right triangle.

We will treat the remaining cases roughly in order of their complexity.

35



6.4 W8

Figure 6.3

Figure 6.3 shows U(W8, x) for some point x. We have highlighted 8
line segments which are all horizontal when x lies on the right angle line.
The turning pairs for these segments are all of the form (k, k) for k ∈
{±1,±3,±5}. Restricting our attention to the left hand side, we see that
the exceptional sets are A = {1, 2, 4, 5} and B = {8}. These are exactly the
ones we single out when we run our algorithm.

6.5 W21

For W21 we have A = {22, 23} and B = {4}. In this case, the pair (a4, b22)
has the same kind of bilateral symmetry as for the easy cases. Hence a4 l b22

for any unfolding with respect to a right triangle. Finally, the turning pair
for the edge connecting b22 and b23 is (1, 1). Hence, this edge is horizontal
for any unfolding with respect to a right triangle.

6.6 W16 and W23

For W16 we have A = {4} and B = {7, 8, 14, 15}. There is an edge of
U(W16, ∗) connecting a4 and b7, and this edge has turning pair (1, 1). Hence
(a4, b7) is an exceptional pair. There is an edge connecting b7 and b8 and this
edge has turning pair (5, 5). Hence b7 l b8 on the right angle line. Hence
(a4, b8) is an exceptional pair. There is a path connecting b8 to b14 which has
bilateral symmetry. The line of symmetry contains an edge whose turning
pair is (2, 2). Hence b8 l b14 on the right angle line. Hence (a4, b14) is an
exceptional pair. Finally, there is an edge connecting b14 to b15 which has
turning pair (−1,−1). Hence (a4, b15) is an exceptional pair.

For W23 we have A = {12, 13, 29, 30} and B = {9}. There is an edge
connecting b9 to a12 and this edge has turning pair (−5,−5). Hence (a12, b9)

36



is an exceptional pair. The other 3 pairs are shown to be exceptional just as
for W16.

6.7 W15 and W18

For W15 we have A = {1, 2, 4} and B = {8, 9, 11, 12, 13}. The same argu-
ments as in the previous section show that a1, a2, a4 all lie at the same height
when the unfolding is done with respect to a right triangle. The same goes
for b8, b9, b11, b12, b13. Finally, a4 and b8 are connected by an edge whose turn-
ing angle is (5, 5). Hence (a5, b8) is an exceptional pair. Hence all the pairs
listed are exceptional.

For W18 we have A = {1, 2, 4, 5, 6, 8, 9} and B = {14, 16, 17, 18}. This
case is essentially the same as the case of W15 and we omit the details.

37



7 Special Cases

We still need to deal with the tiny polygons P4 and P5. We will show that
P5 is contained in 2 orbit tiles and P4 is contained in 5 orbit tiles. We use
essentially the same technique as in the previous chapter. Namely, we show
that our verification algorithm halts when we ignore certain special pairs of
vertices and then we analyze the special pairs of vertices by hand.

7.1 Covering P5

We have

P5 :

∣∣∣∣
12 1641
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2459

∣∣∣∣ (40)

This is a tiny triangle whose hypotenuse contains p5 = (π/5, 3π/10). Let
H+ denote the half-plane given by x ≥ π/5 and let H− denote the half-plane
given by x ≤ π/5. Recall that

F = 3123231312313232313213132321

G = 132312323132321321312323132321312312323132321323

We will show that

P5 ∩ H+ ⊂ O(F ); P5 ∩ H− ⊂ O(G). (41)

7.1.1 Dealing with F

In terms of our listing, we have F = W7, but P ∩ H+ is not contained in
P7. Indeed P ∩ H+ shares a vertex with O(F ) and we have to work harder.
We have already seen that the pair (a5, b1) is exceptional. When we also
ignore the pairs (a5, b5) and (a5, b6) we find that our verification algorithm
produces a covering of P5 ∩ H+. We already know from our analysis in the
previous chapter that f51 > 0 on P5. The point here is that the relevant
line of bilateral symmetry has turning pair (−2,−2) and hence this line has
positive slope throughout P5. This positive slope forces a5 to lie above b1.

It remains to show that f55 and f56 > 0 on P5 ∩ H+. Figure 7.1 shows
a picture of U(F, T ) when T is the right triangle corresponding to the point
p5 ∈ P5.

38



Figure 7.1

The edge connecting a5 and b6 has turning pair (−4, 1). Points (x, y) ∈
P5 ∩ H+ have the form

x = π/5 + ε; y = 3π/10 − ε − δ.

Here ε and δ are numbers much smaller than π/10. The turning angle of the
edge connecting a5 to b5 is therefore

−π/2 − 3ε − δ.

This line has negative slope throughout P5 ∩ H+ and hence a5 ↑ b5 there.
The vertices a5 and b6 are connected by a path of length 2 whose line

of bilateral symmetry has turning pair (−3, 2). The corresponding turning
angle is

−ε − 2δ.

This line has positive slope for (x, y) ∈ P5∩H+ and hence a5 ↑ b6 throughout
P5 ∩ H+.

7.1.2 Dealing with G

In terms of our listing, we have G = W13. However, P5 ∩ H− is not a subset
of P13 so we have to do more work. When we omit the pairs (a1, b11) and
(a1, b12) and (a1, b13) our algorithm produces a covering of P5 ∩ H−. It just
remains to show that the defining functions associated to these pairs are
positive on P5 ∩ H−. The function f1,11 is positive on P5 for the symmetry
reason we discussed in the previous chapter.

Here we explain a proof which works for all 3 defining functions at once.
When we run our algorithm, each of these omitted defining functions gets
certified on a dyadic square which contains P5. We just check that, in all
3 cases, the quadrant which contains the gradients is the (−,−) quadrant.
Hence ∇f1j lies in the (−,−). Also, these functions all vanish at p5. Every

39



p ∈ P ∩H− can be joined to p5 by a path which points from p5 into the (−,−)
quadrant. Hence f1j > 0 on P ∩ H−, as desired. Hence P ∩ H− ⊂ O(G) as
desired.

Now we know that P ⊂ O(F ) ∪ O(G).

7.2 Covering P4

We have coordinates

P4 :

∣∣∣∣
7 63
7 65

∣∣∣∣

∣∣∣∣
7 65
7 63

∣∣∣∣

∣∣∣∣
7 63
7 63

∣∣∣∣ (42)

This is a small triangle whose hypotenuse is centered on p4 = (π/4, π/4).
Figure 7.3 shows how we cover P4 ∩ ∆ by 5 regions. The regions c, d1, d2

are meant to be open. The segments e1 and e2 are meant to be open line
segments. The 4 solid lines through p4 have slope −1,−1/3, 0,∞. Compare
the left hand side of Figure 2.3. The dotted line is contained in ∂∆, and
bisects P4.

d2

c

d1

e2

e1

Figure 7.3

Let C, D1, D2, E1, E2 be the words listed in §2.4. The rest of the chapter
is devoted to proving:

• c ⊂ O(C).

• d1 ⊂ O(D1).

• d2 ⊂ O(D2).

• e1 ∈ O(E1).

• e2 ∈ O(E2).

40



7.2.1 Dealing with C

We have C = W30. Let T be the triangle corresponding to the point p4, the
right isosceles triangle. Figure 7.4 shows U(C, T ).

Figure 7.4

The defining function fij vanishes at p4 when i ∈ {1, 2} and j ∈ {4, 5}.
When we run our algorithm with these vertex pairs excepted, it produces a
cover of P by 4 squares. Thus, all the defining functions but the excepted
ones are positive on P . The algorithm in this case does not also verify that
the gradients of the excepted functions lie in the (−,−) quadrant−this isn’t
true for f14 and f25.

In dealing with the 4 exceptional defining functions, we first compute that

|fxx|, |fxy|, |fyy| ≤ 26.

in all cases. We also note that P4 is contained in a square of radius 2−6.
Hence, both ∂xf and ∂yf vary by at most 2 units throughout P4.

• Here is the formula for f15.

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1
4 −3

We compute that ∇f15(p4) = (−8,−8). Hence ∇f15 lies in the (−,−)
quadrant throughout P4. Hence f15 > 0 on the interior of c.

• A similar computation to the one above gives ∇f24(p4) = (−8,−8).
Hence f24 > 0 on c.

41



• Here is the formula for f14:

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1

We compute that f14 vanishes identically along the line y = π/4.
Also, we compute that ∇f14(p4) = (0,−16). Hence ∇f14 has positive
y-coordinate throughout P4. Hence f14 > 0 on c.

• The calculation for f25 is just like the one for f14, but with the roles of
x and y switched. Hence f25 > 0 on c.

In summary, all (a, b) defining functions are positive on c. We conclude
that c ⊂ O(C).

7.2.2 Dealing with D1

In terms of our listing, D1 = W9. Here is a picture of U(D1, T ), where T
is the right angled isosceles triangle. Taking i and j on the left half of the
unfolding, we see that the defining function fij vanishes at p4 iff i ∈ {5, 6, 7, 8}
and j ∈ {1, 2, 3, 4, 10}. (The center point by convention counts as a vertex
on the left half.) When we run the algorithm with these pairs excepted, it
produces a covering of P4 by 3 squares. Once again, the algorithm here does
not verify anything about the gradients of the exceptional defining functions.

Figure 7.5

Reflection in a certain edge e swaps a6 and a8. The turning pair for e is
(2, 2). Since the leftmost edge stays vertical for all points in the parameter
space, e has negative slope throughout P4. Hence a6 ↑ a8 throughout P4.
This eliminates a6 from consideration.

42



b4 b10

a5 a8

Figure 7.6

Figure 7.6 shows U(D1, T
′) where T ′ is a triangle corresponding to a point

of ∆ between e1 and the right angle line. (This point isn’t actually in d1,
because such points give rise to a picture which looks almost identical to
Figure 7.5; we wanted to show the difference dramatically.) Figure 7.6 serves
as a reality check to the arguments we give below.

a6 is connected to a7 by an edge whose turning pair is (0, 2). As long as
y < π/4 this edge has positive slope and a7 ↑ a6. This condition holds in
d1. This eliminates i = 7 from consideration. Similar arguments show that
b2 ↑ b1 and b3 ↑ b2 and b3 ↑ b4 throughout d1. All in all, we just have to deal
with the 4 defining functions fij where i ∈ {5, 8} and j ∈ {4, 10}. Here is
the analysis:

• a8 and b4 are swapped by reflection in an edge whose turning pair
is (1, 3). This edge has positive slope throughout the interior of d1,
and vanishes on e1, the line of slope −1/3 through p4. Hence a8 ↑ b4

throughout d1. Hence f84 > 0.

• a5 and b10 are swapped by reflection in an edge whose turning pair is
(2, 2). Hence f5,10 > 0 on d1.

• b4 and a5 are connected by an edge whose turning pair is (−2, 4). This
edge has positive slope in d1. Hence f54 > 0 in d1.

• a8 and b10 are connected by an edge whose turning pair is (0, 2). This
line has negative slope in d1. Hence f8,10 > 0 in d1.

This takes care of all the cases. Hence d1 ⊂ O(D1).

43



7.2.3 Dealing with D2

In terms of our listing, D2 = W87. The analysis of D2 is almost identical
to the analysis of D1. We will omit most of the details, but illustrate the
main ideas with pictures. Figure 7.7 shows U(D2, T ) and Figure 7.8 shows
U(D3, T

′). Here T ′ is a triangle corresponding to a point which lies between
the lines e1 and e2. (We have gone outside d2 to get a more dramatic picture.)

Figure 7.7

b6 b14

a7 a12

Figure 7.8

When we except all the index pairs entailed by Figure 7.7 our algorithm
produces a covering of P4 by 4 squares. Using the turning pair arguments,
as for D1, we eliminate all the indices except i ∈ {7, 12} and j ∈ {6, 14}.
Figure 7.8 is a typical picture of the signs of the slopes of the relevant These
4 defining functions have the same analysis as for D1.

7.2.4 Dealing with E1

In terms of our listing, E1 = W107. Recall that e1 is the intersection of the line
of slope −1/3 through p4 with P4. Figure 7.9 shows a picture of U(E1, T ).
When we run our algorithm with all the excepted vertices, it produces a

44



covering of P4 by 47 squares. We also check, during the algorithm, that ∇f
has positive dot product with the vector (−3, 1) throughout P4 whenever f is
an exceptional defining function. This shows that all the exceptional defining
functions are negative on e1. Hence e1 ∈ O(E1).

Figure 7.9

Remark: Our gradient check is just a small tweak of the silver method.
We compute ∇f , then add all the error bounds coming from the second
partials, and check that the entire “error box” makes positive dot product
with (−3, 1).

7.2.5 Dealing with E2

In terms of our listing, E2 = W85.
Recall that e2 is the intersection of the horizontal line through p4 with

P4. Figure 7.10 shows a picture of U(E2, T ).

Figure 7.10

When we run our algorithm with all the excepted vertices, it produces
a covering of P4 by 29 squares. We also check, during the algorithm, that
∂xf < 0 throughout P4, whenever f is an exceptional defining function. This
shows that all the exceptional defining functions are negative on e2. Hence
e2 ∈ O(E2).

45



8 Overview

Our goal in §8-9 is to cover the polygon P1 by an infinite union of orbit
tiles. As we discusseed in §2 we are going to cover P1 with two infinite
families of orbit tiles. We will deal with the first family in this chapter and
the second family in §9. The words in the first family are palindromes in
the same sense that the words W7, ..., W29 are palindromes. Accordingly,
their unfoldings have bilateral symmetry. At this point the reader can forget
essentially everything done in §2-8.

8.1 The Unfoldings

Figures 8.1-8.3 show unfoldings for A1, A2, and A3 respectively, with for
various choices of triangle. The pattern continues in the obvious way.

Figure 8.1

Figure 8.2

46



Figure 8.3

To cover (most of) P1 with our first family of tiles, we break P1 into
subregions, each of which is covered by a single tile. Let Nn denote the open
triangular sector of N0 bounded by

• The line y = 3π/4;

• The line through (0, π/2) having slope −(n + 1)/2.

• The line through (0, π/2) having slope −(n + 2)/2.

The difference

P1 −
∞⋃

n=1

Nn

is an infinite union of line segments of rational slope. We will show that
Nn ⊂ O(An) for all n. This, all but countably many line segment of P1. We
use the second infinite family to cover these line segments. In this chapter we
will concentrate on the case n = 2, which is sufficiently complex to contain
all the ideas in the proof. At the end we will explain how the argument
generalizes.

8.2 The Top Vertices

By symmetry it suffices to consider the vertices on the right half of the un-
folding. We change our labelling scheme somewhat, and start counting our
vertices from the center, as in Figure 8.4. Figure 8.4 shows an enlarged ver-
sion of Figure 8.2. This picture will be our constant companion throughout
our analysis.

47



b1
b3

b5

b8

a8

a1

a2
a4 a6

Figure 8.4

Given a ray or vector r we let θ(r) denote the counterclockwise angle
through which we must rotate (0, 1) so that it points in the direction of r.
Unlike in §4 we work mod 2π rather than mod π. To simplify we write, for
instance, θ(a1b2) = θ(

−−→
a1b2). We let z denote the angle opposite edge 3, so

that x + y + z = π. Here are the angles of importance to us.

θ(a1a2) = 6x + π; θ(a7a8) = x; (43)

A less obvious computation is:

θ(b7a5) = π + 3x + 2y (44)

Here is a derivation of the third equation. We rotate
−−→
b1a1 by 6x to get

−−→a2a1. Then we rotate −−→a2a1 by 2y to get to
−−→
a2b7. Then we rotate

−−→
a2b7 by −3x

to get to
−−→
a5b7. We rotate this last ray by π to reverse the direction.

The conditions (x, y) ∈ N2 give rise to the angle constraints

x ∈ (0,
π

12
); y ∈ (

3π

8
,
π

2
). (45)

See Figure 8.1. From Equation 44 we now get θ(a1a2) ∈ (π, π + π/2). But
this means that a1 ↑ a2. Similarly, Equation 44 tells us that θ(a7a8) = x ∈
(0, π/2). Hence a8 ↑ a7.

It remains to compare the heights of the vertices a3, ..., a7. We are inter-
ested in the “fan”, a polygon whose vertices are b7 and a3, ..., a7. Note that
b7a5 is the line of bilateral symmetry for F .

48



b1
b3

b5

b8

a8

a1

a2
a4 a6

Figure 8.4

Our constraint (x, y) ∈ N2 gives

π − π/4 < 2y < π − 3x; 3x < π/4. (46)

Combining these bounds with Equation 44 we get

θ(b7a5) ∈ (
7π

4
, 2π) (47)

In particular, b5a7 has positive slope.
Equation 46 guarantees that F is contained in a halfplane. We can write

F = F1 ∪F2 where F1 is the convex hull of b7 and the odd vertices a3, a5, a7.
Then F2 is a union of 2 small triangles., as shown in Figure 8.5. Given the
conditions on F we see that a7 is the lowest vertex, amongst the odd vertices
of F .

a6

a5

a4
a3

b7

a7

Figure 8.5

49



Since the line of symmetry of F has positive slope and F lies in a half-
plane, the vertices a3, a5, a7 have increasing X coordinates. 2 Moreover, the
two triangles a3a4a5 and a5a6a7 are oriented clockwise. Finally, the line seg-
ments connecting b7 to the even vertices are longer than the line segments
connecting b7 to the odd vertices. From all that we have said, it follows that
each even vertex lies above at least one of the adjacent odd vertices. All in
all aj ↑ a2 for j = 3, 4, 5, 6. We have eliminated all the a vertices except a2

and a7.

8.3 The Bottom Vertices

We now make the same sorts of arguments as above, but for the bottom
vertices. This time we can eliminate the vertex bj if we can show that bi ↑ bj

throughout N2.
Since y < π/2 the line b1b2 has positive slope. Hence b2 ↑ b1. To

understand the vertices b2, ..., b4 we consider the “fan” whose vertices are
a1, b2, b3, b4, b5, b6. This polygon is isometric to the one considered in the pre-
vious subsection. The line of symmetry of F is a1b4. This line has negative
slope because of the fact that 3x < π/2. The same argument as above now
shows that b6 ↑ bj for j = 2, 3, 4, 5.

b1
b3

b5

b8

a8

a1

a2
a4 a6

Figure 8.4

The angle between
−−→
b7b6 and

−−→
b7a5 is 4x < π/3. Combining this information

2To distinguish between the (x, y) coordinates of the parameter space and the (X, Y )
coordinates of the Euclidean plane in which we draw the unfoldings we will henceforth use
capital letters for the X and Y coordinates of the unfoldings.

50



with Equation 47 we see that

θ(b7b6) ∈ (
7π

4
,
5π

2
) ≡ (−π

4
,
π

3
). (48)

From this we see that b6 ↑ b7. We have eliminated all the b vertices except
b8 and b8.

8.4 The Remaining Pairs

We have 4 pairs left to analyze.
Consider first (a7, b8). We have

θ(b8a7) = y ∈ (0, π/2).

Hence a7 ↑ b8.
Now consider (a2, b6). We have θ(a2b6) = 4x+y ∈ (π/2, π). Hence a2 ↑ b6.
Now consider (a2, b8). Note that a2 and b8 are symmetrically located with

respect to our favorite line b7a5. Thus a2 and b8 have the same height iff our
line is vertical. From Equation 44 and Equation 47 we see that this happens
for a point in closure(Nn) iff 2y + 3x = π. That is, (x, y) has to lie on the
right boundary line of N2. Equation 47 shows that a2 ↑ b8 for (x, y) ∈ N2.

Now consider (a7, b6). Note that a7 and b6 have the same height iff the
line b7a4 is vertical. Essentially the same analysis as we have already done
shows that our line has negative slope for (x, y) ∈ N2, and is vertical for
2y + 4x = π. Hence a4 ↑ b7. The two points have the same height when
(x, y) is in the left boundary of N2.

In summary N2 ⊂ O(A2).

8.5 The General Case

We deal with the top vertices first. The general versions of Equations 43 and
44 are

θ(a1a2) = (2n + 2)x + π; θ(a2n+3a2n+4) = x; (49)

θ(b2n+3an+3) = π + (n + 1)x + 2y (50)

Equation 49 eliminates a2n+4 and a1 from consideration.

51



The conditions (x, y) ∈ Nn give rise to the angle constraints

x ∈ (0,
π

4n + 8
); y ∈ (

3π

4
,
π

2
). (51)

For (x, y) ∈ Nn we have

π − π/4 < 2y < π − (n + 1)x. (52)

These equations combine together with Equation 50 to show that the line
b2n+3an+3 has positive slope. This line is the center of symmetry of the fan
with vertices b2n+3, a3, ..., a2n+3. The same argument as above then shows
that a2, ..., a2n+2 lie above aj ↑ a2n+3 for j = 2, ..., 2n + 2. In this way we
eliminate everything but a2 and a2n+3.

Essentially the same argument eliminates all the b vertices except b2n+2

and b2n+4. The key point is that the line a1bn+2, which is the line of symmetry
for the fan with vertices a1; b2, ..., b2n+2, has negative slope. This follows from
Equation 51.

The analysis of the edges is the same in the general case. The main points
that need to be observed are:

• The points a2 and b2n+4 have the same height iff b2n+4an+3 is vertical,
and this happens iff 2y + (n + 1)x = π.

• a2n+3 and b2n+2 have the same height iff the line b2n+3an+2 is vertical,
and this happens iff 2y + (n + 2)x = π.

All this information assembles together in the same way as in the case n = 2,
to show that Nn ⊂ O(An).

52



9 The Second Family

9.1 The Unfoldings

Let N ′
n denote the open line segment which is the common boundary of Nn

and Nn+1. Then Nn has slope −(n + 2)/2, and has endpoints

(0,
π

2
); (

π

4n + 8
,
3π

8
). (53)

We will show that N ′
n ⊂ τ ′

n. We are just trying to show that a single line
segment lies in the tile. This is all we need, and it allows us to use an
additional relation between the angles of the triangles of interest to us.

We will concentrate on the case n = 1 and at the end explain the changes
needed for the general case. We go back to our initial convention of labelling
the vertices starting from the left. The line N ′

1 corresponds to triangles whose
two acute angles satisfy

3x + 2y = π (54)

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

Figure 9.1 shows a picture of U(W ′
1, A) for some triangle satisfying Equa-

tion 54. The (near) central edge (a8, b8) is parallel to both (a1, b1) and
(a13, b13). Indeed the portion of U(W ′

1, A) to the left of (a8, b8) is isomet-
ric to the right half of U(W2, A) and the portion to the right of (a8, b8) is

53



isometric to the left half of U(W1, A). This is fitting, because O(W ′
1) fits

“between” O(W1) and O(W2).

9.2 Estimates for Rotation Angles

We define θ(r) as in §8.2. That is, θ(r) denotes the counterclockwise angle
through which (0, 1) must be rotated to produce a vector parallel to r. Recall
that x is the small angle of our triangles. The goal of this section is to prove:

θ(b13a13) ∈ (0, x); θ(a12, a13) ∈ (−x, 0). (55)

Lemma 9.1 There is some ε > 0 such that θ(a12, a13) ∈ [0, ε) is impossible.

Proof: The conditions in Equation 30 guarantee that the lines a11b12, a8b7,
and a5b2 are all parallel to a12a13. By symmetry, the points b13 and a3 are
related by a reflection in a8b7. The point a3 and b1 are related by a reflection
in a2b2.

If a12a13 is vertical or has negative slope, then a3 lies below b13. On the
other hand, if a12a13 is vertical has large negative slope then a2b2 has nega-
tive slope. (Here we are using 3x ≤ π/4. Compare Equation 46.) But then
b1 lies below a3. But then b1 lies below b13, a contradiction. ♠

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

54



Lemma 9.2 There is some ε > 0 such θ(b13, a13) ∈ (−ε, 0] is impossible.

Proof: Condition 54 guarantees that a10b12, a8b8, a4b2, and a1b1 are all
parallel to a13b13. Let a0 denote the reflection of a2 through the line a1b1.
Our normalization puts a0 and a12 at the same height. The points a0, a2,
a6 are successively related to each other by reflections in the lines mentioned
above. Likewise, the points a12, b11, b5 are successively related to each other
by reflections in the lines mentioned above. If a13b13 is either vertical or has
sufficiently large negative slope then b5 lies above a6.

The points a6 and b3 are related to each other by a reflection through
b2a7. The points b3 and b5 are related to each other by reflection in the line
a8b4. If a13b13 is either vertical or has sufficiently large negative slope then
these two last mentioned lines both have negative slope and hence b5 lies
below a6. This is a contradiction. ♠

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

In the terminology of §4 consider the 1-spine for U(W ′
1, T ). This is the

path of short edges defined by the vertex sequence:

(b1, a2, ..., a7, b3, ..., b11, a9, a10, a11, a12, b13)

Consider what happens when x ∈ N ′
1 tends to 0 and the corresponding

triangles are scaled so that the edges of the 1-spine have unit length. The

55



external angles between consecutive segments of the 1-spine converge to 0
and hence the 1-spine converges to a completely horizontal path. But this
means that θ(b13a13) → 0 and θ(a12a13) → 0 in the limit we are taking. From
the two lemmas above equation 55 must hold for sufficiently small α. We
also know that θ(b13a13) = x + θ(a12a13). It now follows from continuity and
our two lemmas that Equation 55 holds for all x, when (x, y) ∈ N ′

1.

9.3 The Top Vertices

We will use the same elimination technique as in §8.2.

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

1. From Equation 55 we get θ(a2a1) ∈ (x, 2x). Hence a1 ↑ a2.

2. We have θ(b2a5) = θ(a12a13). By Equation 55 we see that b2a5 has
positive slope. This line happens to be the line of symmetry for the
fan with vertices b2; a3, ...a7. The same argument as in §8.2 shows that
aj ↑ a7 for j = 2, 3, 4, 5, 6.

3. From Equation 55 we conclude that θ(a7a8) ∈ (0, 6x) ∈ (0, π/2). Hence
a8 ↑ a7.

4. a7 and a9 are related by reflection through a8b7, a line with negative
slope. Hence a7 ↑ a9.

56



5. Note that a12 and a10 are related by a reflection through b12a10, a line
which has negative slope because it is parallel to a13b13. Hence a10 ↑ a12.

6. a12 and a0, the point defined in the proof of Lemma 9.2, are at the
same height. Moreover, a0 and a2 are related by a reflection through
the negatively sloped a1b1. Hence a2 ↑ a12.

We have eliminated ass the a vertices except a9 and a12.

9.4 The Bottom Vertices

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

The same argument as in Item 3 above shows that b4 ↑ b2 and that
b13 ↑ b12.

Considering the fan with vertices a8, b3, ..., b11, whose line of symmetry
a8b7 has positive slope, we see that b3 ↑ bj for j = 4, ..., 11.

We have eliminated all the b vertices except b1, b3, and b13. Note that b13

and b1 are at the same height, from the way we have normalized. Thus, we
just have to consider b3 and b13.

Just as in §8 we have 4 pairs left to analyze. The pairs involving b13 are
easy to handle and we will dispose of them right now.

Consider the pair (a12, b13). We have θ(b13, a12) ∈ (y, x+y). We also have
3x + 2y = π. Hence θ(b13, a12) ∈ (0, π/2). Hence a12 ↑ b13.

57



Consider the pair (a9, b13). Since b13 and a9 are related by reflection
through b12a12 and θ(b12, a12) = θ(a12, a13) ∈ (−x, 0) we have a9 ↑ b13.

It remains to consider the pairs (a9, b3) and (a12, b3). Given Lemma 9.3
below, the result a12 ↑ b3 implies the result a9 ↑ b3. Our strategy is to first
prove Lemma 9.3 and then to deal with the pair (a12, b3) directly.

9.5 Eliminating one of the Pairs

Lemma 9.3 a9 lies above the line b3a12.

Proof: Let θ1 denote the angle 6 b3a8a9. Let θ2 denote the angle 6 b12a9a12.
The point a9 lies on b3a12 iff (π− θ2)+ θ1 = 6 a8a9b12 = 2y. Using this fact as
a guide, we check signs to determine that a9 lies above b4a12 provided that
π − θ2 + θ1 > 2y.

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

Using the law of sines we can normalize so that our triangles all have
side lengths sin(x), sin(y), sin(z). Let θ3 = 6 a9a12b12. Looking at the triangle
with vertices a3, a8, b9 and using the law of sines we get

θ3 =
sin(z)

sin(y)
θ1. (56)

Using that the sum of the 3 angles in a triangle is π, together with Equa-
tion 54, we get:

58



θ1 + θ3 = π − 9x = π − 4 × 3x + 3x = −3π + 8y + 3x = 5y − 3z. (57)

The first equation uses Equation 54. Solving for θ1 we get:

θ1 =
(5y − 3z) sin(y)

sin(y) + sin(z)
. (58)

Let θ4 = 6 a9a12b12.

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 9.1

From the law of sines we have

θ4 =
sin(z)

sin(y)
θ2. (59)

We also have

θ2 + θ4 = π − 3x = π − 2 × 3x + 3(π − y − z) =

π − 2(π − 2y) + 3π − 3y − 3z = 2π + y − 3z (60)

(We have complicated this equation so that it readily generalizes.) Solving
for θ2 we get

θ2 =
(2π + y − 3z) sin(y)

sin(y) + sin(z)
. (61)

59



Using Equations 58 and 61 we compute

(π − θ2 + θ1) − 2b =
(π − 2y)(sin(z) − sin(y))

sin(y) + sin(z)
. (62)

Note that sin(z) > sin(y). The expression in Equation 62 is positive as long
as y < π/2, which is certainly our situation. ♠

9.6 The Last Pair

Finally we come to the pair (a12, b3). At this point it is useful to cycle our
picture so that b3 is all the way to the left. See Figure 9.2. Figure 9.2 is
cut-and-paste equivalent to Figure 9.1.

b3

b11

b12

a12
a14

b14

b15

a13

a8

Figure 9.2

Note that a12 lies to the left of both b14 and b15. To see this note that
a14 and b15 are related by reflection in the nearly vertical line b14a17 and a14

and a12 are related by reflection in the nearly vertical line a13b13. These lines
make an angle of less that x with the vertical, from Equation 55. The same
argument shows that b3 lies to the left of a12.

Let σ1 and σ2 respectively denote the slopes of b15a12 and b3b15 when the
picture is rotated so that b15b14 is horizontal. Since a12 and b3 lie to the left
of both b14 and b15 the slopes σ1 and σ2 are finite. We will show that that

60



σ1 < σ2. This, together with the fact that b3 lies to the left of a12, shows
that a12 ↑ b3, as desired.

Consider the path of 8 vectors v1, ..., v8 defined by the vertex sequence

(b15, b14, a14, a13, a12, b12, b11, a8, b3). (63)

In the terminology of §4, this path is part of the 1-spine. The first vector
points from b15 to b14, and so forth. These vectors all have the same length,
which we normalize to be 1.

Let θk denote the counterclockwise angle by which v1 must be rotated to
produce vk. We now calculate these vectors.

Looking at Figure 9.2 have θ1 = 0 and

• θ2 = 6x + π = −4y + π.

• θ3 = 6x − 2z = −4y − 2z.

• θ4 = 4x − 2z + π = −2y + π.

• θ5 = 4x − 4z = −2y − 2z.

• θ6 = 8x − 4z + π = −4y + π.

• θ7 = 8x − 2z = −4y + 2z.

• θ8 = −2z + π.

In working out some of the equalities we used the relations

6x = −4y; 2αj = −2αj−1 − 2αj+1. (64)

These relations hold mod 2π, which is all we care about. The first equation
comes from Equation 54. To give an example derivation, we will work out
the derivations for θ4 and θ6:

4x − 2z = 4x + 2x + 2y = 6x + 2y = −4y + 2y = −2y.

8x − 4z = 12x − 4x − 4z = −8y + (4y + 4z) − 4z = −4y.

We want to eliminate x because this is the approach which generalizes to the
other words W ′

n.

61



To compute the slope of a point, we divide it’s y displacement by it’s
x-displacement. We set

Ck =
k∑

j=1

cos(θj); Sk =
k∑

j=1

sin(θj). (65)

Then σ1 = S4/C4 and σ2 = S8/C8. Since σ1 and σ2 are both finite the terms
C4 and C8 never vanish. We compute that

σ1 − σ2 =
2 sin(z)

C4C8

(cos(z) − cos(y)). (66)

The condition z ∈ (π/2, π) makes cos(z) < 0. The condition y ∈ (0, π/2)
makes cos(y) > 0. Hence σ1 − σ2 < 0. Hence σ1 < σ2.

This completes our proof that N ′
1 ⊂ τ ′

1, the first tile in the second family.

9.7 The General Case

For N ′
n we have the angle condition

(n + 2)x + 2y = π. (67)

The proof of Equation 55 works exactly the same way, with the same out-
come. Armed with Equation 55 we can use the same arguments as above to
eliminate all the pairs of vertices except (b3, a3n+6) and (b3, a4n+8). Figure
9.3 shows the situation for n = 2.

b3

a11 a16

Figure 9.3

62



Lemma 9.3 works in general, with the following changes: Equation 57
becomes

θ1 + θ3 = π − 4 × (n + 2)x − 3x = 8y − 3x = 5y + 3x. (68)

Eqution 60 becomes

θ2 + θ4 = 2× (n + 2)x− 3x = 2(π − 2y)− 3(π − y − z) = 2π + y − 3z. (69)

In other words, we get the same equations! The rest of the proof is the same.
The analysis of the pair (b4, a4n+8 generalizes in the same way. In general,

we consider the path of vectors

(b4n+11, b4n+10, a4n+10, a4n+9, a4n+8, b4n+8, b4n+7, a2n+6, b3). (70)

The angle sequences we get are

• θ2 = 2(n + 2)x + π = −4y + π.

• θ3 = 2(n + 2)x − 2z = −4y − 2z.

• θ4 = 2nx − 2z + π = −2y + π.

• θ5 = 2nx − 4z = −2y − 2z.

• θ6 = (4n + 4)x − 4z + π = −4y + π.

• θ7 = (4n + 4)x − 2z = −4y + 2z

• θ8 = −2z + π.

As above we will show the derivations for θ4 and θ6.

2nx − 2z = 2nx + 2x + 2y = (2n + 2)x + 2y = −4y + 2y = −2y.

(4n + 4)x − 4z = (4n + 8)x − 4x − 4z = −8y + 4y + 4z − 4z = −4.

The rest of the proof is the same.

63



10 Computational Details

10.1 BigIntegers and BigIntervals

We wrote McBilliards in Java. See www.java.sun.com for information
about this language.

The Java programming language has a class called the BigInteger. The
BigInteger is an integer, with an “arbitrary” number of base 10 digits. Here
“arbitrary” means “subject to the memory limitations of the machine”. Once
two BigIntegers are defined, they can be added, subtracted, multiplied, and
even exponentiated. If the process of computing the resulting quantity does
not exhaust the memory of the machine, then the result is correct. It would
probably take integers billions of digits long to exhaust the memory of the
machine. In our case we work with integers, all of which have fewer than 200
digits. For this reason, we are convinced that the basic arithmetic operations
of the BigInteger class work without fail on the numbers we supply.

Our basic method is to convert all our calculations into integer calcula-
tions and then to use BigIntegers to get the calculations exactly right. Our
trick is to multiply the naturally computed quantities of interest to us by a
huge integer, namely 2106, and then trap these quantities inside an interval
of BigIntegers. We then perform a calculation using BigInteger arithmetic,
and in the end produce in interval of BigIntegers which contains 2106 times
the quantity of interest to us.

The only real-valued functions we compute are the ones in Equation 23
and 24. Once we have these quantities, we do make some further algebraic
manipulations, as discussed in connection with the gold and silver methods
of §5. However, once we have finished with Equations 23 and 24, we have
our intervals of BigIntegers and then we manipulate them as discuss below.

We define a BigInterval to be a pair (L, R) of BigIntegers, with L ≤ R.
There are several basic operations which we can perform on these intervals:

• (L1, R1) + (L2, R2) = (L1 + L2, R1 + R2).

• (L1, R1) − (L2, R2) = (L1 − R2, L2 − R1).

• (L1, R1)×(L2, R2) =(L3, R3), where L3 =min(L1L2, L1R2, L2R1, L2R2)
and R3 = max(L1L2, L1R2, L2R1, L2R2).

These operations have the following property: If xj ∈ (Lj , Rj) for j = 1, 2
then xj ∗ yj ∈ (L1, R1) ∗ (L2, R3). Here (∗) is any of the 3 operations just

64



mentioned. All our calculations boil down to showing that x > 0 or x < 0
for some real number x. We do our calculations in such a way as to produce
a BigInterval (L, R) such that 2106x ∈ (L, R). We would show that x < 0 by
showing that R < 0 and we would show that x > 0 by showing that L > 0.

10.2 The Interval Cosine Function

Looking at Equations 23 and 31 we see that we need some way to deal with
the sine and cosine functions. When we run our subdivision algorithm, we
find that it never produces a dyadic square whose side length is less that
218. For this reason, we are only evaluating the sine and cosine functions on
numbers 3 of the form

(π/2)
k

220
.

Using the identities:

sin(x) = cos(π/2 − x); cos(x + nπ) = (−1)n cos(x)

we see that it suffices to consider the 221 values

ck := 253 cos(π/2 × k

220
); k = 0, ..., 221 − 1.

(There is nothing special about 253. We like it because it affords about the
same precision as a double in C.)

We now explain how we produce a BigInterval Ik such that ck ∈ Ik. Once
we have Ik, we evaluate Equations 23 and 31 using the operations discussed
above. Producing Ik is quite easy. The tricky part is proving rigorously that
our method really works. We know that there exist packages in Java which
perform this task for the elementary functions, but we prefer to work from
scratch. We want to stress that it doesn’t really matter how we produce our
BigInterval Ik. The important point is the proof that ck ∈ Ik. However, it
seems worth explaining our simple method.

10.2.1 Producing the Interval

We introduce the routine cosBestApprox. When we evaluate this routine
on the pair (k, 20) is produces a BigInteger Ck. We then take

Ik = (Ck − 4, Ck + 4).

3Actually we just need 218 rather than 220 but we want to give ourselves a little cushion
here.

65



The routine cosBestApprox essentially computes “the usual” cosine on the
relevant point−here n = 20 and k is as above− and then rounds to the
nearest BigInteger. Our method uses the BigDecimal class, which is just
a BigInteger, together with a separate integer which tells where to put the
decimal point. Here is our code, all of which can be found online in the file
Deg100Trig.java.

public static BigInteger cosBestApprox(int k,int n) {
double d=Math.PI/2.0;
d=d*k/Math.pow(2.0,n);
d=Math.cos(d);
BigDecimal Y1=new BigDecimal(d);
BigInteger BIG=getBIG();
BigDecimal Y2=new BigDecimal(BIG);
Y1=Y1.multiply(Y2);
BigInteger X=Y1.toBigInteger();
return(X);
}

The BigInteger BIG is 253. Here is the routine which gets it:

public static BigInteger getBIG() {
BigInteger BIG=new BigInteger(”9007199254740992”);
return(BIG); }

10.2.2 Checking that the Method Works

What we actually show is that

235720!ck ∈ 235720!Ik.

A huge number like this appears fairly naturally because we want to clear
denominators in some Taylor series approximations for cosine.

For j = 0, 1, ..., 10 let Lj be the greatest integer less than

240020!

240j(2j)!
× (π/2)2j. (71)

Let Rj = Lj + 1. We compute these 20 integers using Mathematica, which
has a reliable arbitrary precision evaluation of the trig functions. The reader
can see our values in the file Deg100Trig.java. Consider the sums

66



Ak = L0 − R1k
2 + L2k

4 − R3k
6 + ... − R10k

20 (72)

Bk = R0 − L1k
2 + R2k

4 − L3k
6 + ... + R9k

18 (73)

Considering the Taylor series for cosine, we easily get that

235720!ck ∈ [Ak, Bk]. (74)

To verify that ck ∈ Ik it suffices to check that

225720!(Ck − 4) < Ak; Bk < 235720!(Ck + 4).

This is purely a calculation involving BigIntegers. We perform the verifica-
tion and it works. As a control, we performed the verification using “2” in
place of “4” and it failed at some point. The program is contained in the
same file as already mentioned. The reader can launch the program right
from the 100 Degree window in McBilliards.

Remark: We found that 235720! worked well for us. This choice yields
the following values

• A8 = 193117979382323170336391434868704;

• A9 = 1416254196461936667;

• A10 = 8363.

• A11 = 0.

This, the choice 235720! is well adapted to an approximation based on about
10 terms of the Taylor series.

10.3 BigInterval Structures

As one last bit of structure, we define a BigComplexInterval to be a struc-
ture of the form X + iY where X and Y are BigIntervals. The arithmetic on
these objects is just the same as the arithmetic on ordinary complex num-
bers, except that we substitute the BigInterval operations for the ordinary
arithmetic operations on reals. (We never have occasion to do any division,
so we are just talking about addition, subtraction, and multiplication.)

67



Once we have our BigInterval version of sine and cosine, and the BigCom-
plexInterval class, we plug these objects into Equations 23 and 31, wrapping
every integer in sight inside a BigInterval. We then perform all the oper-
ations described in §5. Our algorithm halts for all 221 polygons and this
constitutes our proof of the 100 Degree Theorem.

The reader can run our algorithm and survey its output using McBilliards,
as discussed in the paper. In particular, the reader can run the algorithm
with or without the BigInterval arithmetic, and see that the output is about
the same in both cases. (The output is not exactly the same because we
make some convenient but arbitrary cutoffs in the numerical version.)

10.4 Sanity Checks

In order to help insure that we have programmed the computer correctly, we
have made 3 additional sanity checks in our calculations.

1. We make sure that our combinatorial method of computing the defining
functions, namely Equation 23, is correct. We introduce a straightfor-
ward geometric method of computing the defining functions geometri-
cally: We just take the unfolding for the word and the given triangle,
rotate it so that it is horizontal, and then measure the difference in
heights of the relevant vertices. For each word Wi we evaluate each
defining function on the first vertex of the polygon Pi, using both meth-
ods. As long as the geometric method yields a number which is at least
.001 we check, up to a tolerance of .000001, that there is a single ratio ρ
such that the ratio of the combinatorial answer to the geometric answer
is always ρ. (This ratio depends on the point of evaluation.) In other
words, up to a initial rescaling, the two methods agree. We consider
this to be extremely strong evidence that we have got Equation 23 cor-
rect, and also programmed it correctly into the computer. We do not
consider the very small percentage of defining functions which evaluate
to a very small number, because the roundoff error interferes with the
computation of the ratio.

2. We make sure that our BigInterval versions of our functions yield es-
sentially the same answers as our numerical versions. We make the
same evaluations as for the first sanity check, except now we compare
the numerical and BigInterval implementations of the combinatorial

68



method. We check that the first 7 digits of the left endpoint of the Big-
Interval version agree with the first 7 digits of 2106 times the numerical
version. In the interest of having the check move along at a steady
clip when run from the interface, we only check about 4 percent of the
defining functions. This still comes out to a huge number of checks.
Unlike the first check, where the point is to verify that all cases of a
complicated combinatorial procedure work, here we are just checking a
fairly straightforward conversion from ordinary arithmetic operations
to BigInterval operations.

3. We make sure that our formula for Equation 31 is correctly imple-
mented. For this purpose we compare the partial derivatives of the
defining functions with a crude version of the partial derivatives ob-
tained by taking a difference quotient. Our value of ∆x and ∆y in this
computation is 2−30. We check that the two computations of the partial
derivatives agree up to a fractional error of .001. By this we mean that
|X1−X2|/|X1| < .001. Here X1 and X2 are the two computed versions
of the same quantity. We also require X1, which is the difference quo-
tient, to be at least .000001. We test about 1 percent of the defining
functions. Given the simple nature of the passage from Equation 23 to
Equation 31, this is overwhelming evidence that we have programmed
Equation 31 correctly into the computer.

The reader can run our sanity checks, either for individual words or else
for all words in sequence, from the 100 Degree window in McBilliards. The
code for our sanity checks is contained in the file Deg100SanityCheck.java.
Indeed, all our computer code pertaining to the 100 Degree Theorem can be
launched from this window.

We also mention another sanity check. Originally we had programmed
McBilliards in C and Tcl. We originally did all the computations for this
paper in the C version. (We switched to Java so that the whole proof could
be easily accessible right on the web, to someone without specialized com-
puter knowledge; and also because we wanted to make a new and improved
McBilliards.)

Perhaps the best sanity check of all is that McBilliards works. This
program has many interlocking features, and the interested reader can see
that they all fit together in a way which would be extremely unlikely given
serious bugs in the program.

69



11 Appendix

11.1 The First 6 Regions
1 :∣∣ 2 1

2 3

∣∣ ∣∣ 0 0

2 3

∣∣ ∣∣ 0 0

0 1

∣∣
2 :∣∣ 0 0

0 0

∣∣ ∣∣ 1 1

1 1

∣∣ ∣∣ 0 1

0 0

∣∣
3 :∣∣ 0 0

9 455

∣∣ ∣∣ 9 455

0 0

∣∣ ∣∣ 0 0

0 0

∣∣
4 :∣∣ 7 63

7 65

∣∣ ∣∣ 7 65

7 63

∣∣ ∣∣ 7 63

7 63

∣∣
5 :∣∣ 12 1641

12 2455

∣∣ ∣∣ 12 1637

12 2455

∣∣ ∣∣ 12 1637

12 2459

∣∣
6 :∣∣ 10 345

10 679

∣∣ ∣∣ 12 1380

12 2712

∣∣ ∣∣ 12 1352

12 2740

∣∣ ∣∣ 9 169

9 343

∣∣

11.2 Tiles Abutting the Right-Angle Line
7 : rncxtfo∣∣ 12 1669

11 1027

∣∣ ∣∣ 10 439

12 2225

∣∣ ∣∣ 11 867

11 1181

∣∣ ∣∣ 14 6559

14 9825

∣∣ ∣∣ 9 199

9 281

∣∣ ∣∣ 14 6437

14 8781

∣∣
8 : mxgrordv∣∣ 14 5711

14 10174

∣∣ ∣∣ 12 1427

12 2548

∣∣ ∣∣ 12 1426

12 2552

∣∣ ∣∣ 9 163

9 349

∣∣ ∣∣ 11 504

11 1544

∣∣ ∣∣ 11 452

11 1544

∣∣ ∣∣ 11 566

11 1410

∣∣ ∣∣ 13 2734

13 5095

∣∣
9 : nmwwpltvn∣∣ 15 16211

14 8225

∣∣ ∣∣ 8 127

8 129

∣∣ ∣∣ 7 59

7 69

∣∣ ∣∣ 16 29829

16 35395

∣∣ ∣∣ 15 14441

16 35441

∣∣ ∣∣ 10 427

15 17757

∣∣ ∣∣ 15 13401

16 34775

∣∣
10 : rnmwxtvno∣∣ 15 11789

15 18421

∣∣ ∣∣ 14 6081

11 1207

∣∣ ∣∣ 8 95

8 161

∣∣ ∣∣ 8 91

8 165

∣∣ ∣∣ 14 5779

15 19379

∣∣
11 : rnpdwxtxhno∣∣ 10 325

9 327

∣∣ ∣∣ 10 323

10 701

∣∣ ∣∣ 9 157

9 355

∣∣ ∣∣ 12 1249

7 83

∣∣
12 : novdtrowxern∣∣ 9 229

9 283

∣∣ ∣∣ 13 3539

13 4653

∣∣ ∣∣ 14 6771

13 4565

∣∣ ∣∣ 14 6721

13 4473

∣∣ ∣∣ 12 1803

14 8943

∣∣
13 : hdtvkphkmwxh∣∣ 10 411

11 1187

∣∣ ∣∣ 11 839

11 1191

∣∣ ∣∣ 13 3276

13 4916

∣∣ ∣∣ 10 391

10 633

∣∣ ∣∣ 10 385

10 627

∣∣
14 : rnovdtwxerno∣∣ 11 725

11 1200

∣∣ ∣∣ 12 1467

12 2487

∣∣ ∣∣ 10 365

11 1305

∣∣ ∣∣ 15 11646

15 21040

∣∣ ∣∣ 10 363

10 661

∣∣ ∣∣ 12 1421

12 2675

∣∣ ∣∣ 10 361

10 605

∣∣
15 : mxerowplrovdv∣∣ 11 737

8 159

∣∣ ∣∣ 11 725

11 1293

∣∣ ∣∣ 8 85

8 171

∣∣ ∣∣ 7 37

7 91

∣∣ ∣∣ 10 289

9 359

∣∣ ∣∣ 11 727

11 1279

∣∣
16 : hdvowwphltrmxh∣∣ 8 123

8 133

∣∣ ∣∣ 12 1781

12 2315

∣∣ ∣∣ 6 27

4 9

∣∣ ∣∣ 14 7350

14 8867

∣∣ ∣∣ 7 61

8 133

∣∣
17 : rnmxhltwwpdvno∣∣ 10 387

10 637

∣∣ ∣∣ 10 393

10 631

∣∣ ∣∣ 12 1545

10 613

∣∣ ∣∣ 12 1531

12 2437

∣∣ ∣∣ 11 759

12 2435

∣∣
18 : mxhdvkplrowpkmxhdv∣∣ 8 89

12 2625

∣∣ ∣∣ 12 1433

11 1317

∣∣ ∣∣ 12 1399

12 2683

∣∣ ∣∣ 10 341

10 683

∣∣ ∣∣ 10 333

10 691

∣∣ ∣∣ 10 323

10 691

∣∣ ∣∣ 11 669

11 1357

∣∣
19 : hkovdtvcphlewxerkp∣∣ 10 373

10 651

∣∣ ∣∣ 10 389

10 635

∣∣ ∣∣ 11 793

8 155

∣∣ ∣∣ 11 791

11 1237

∣∣ ∣∣ 11 739

9 325

∣∣
20 : rnorlevdtwxevcorno∣∣ 12 1395

12 2701

∣∣ ∣∣ 12 1401

12 2695

∣∣ ∣∣ 10 351

13 5371

∣∣ ∣∣ 13 2799

13 5373

∣∣
21 : norlewwxernnovdttvcorn∣∣ 10 431

10 593

∣∣ ∣∣ 11 877

11 1171

∣∣ ∣∣ 11 879

11 1153

∣∣ ∣∣ 10 429

9 295

∣∣
22 : hkmvdtvdgrkphkordewxevkp∣∣ 11 723

12 2641

∣∣ ∣∣ 12 1481

12 2601

∣∣ ∣∣ 11 735

11 1313

∣∣ ∣∣ 11 723

11 1325

∣∣

70



23 : nordsnovdttvcphhlewwxernkxgrn∣∣ 15 14151

15 18617

∣∣ ∣∣ 16 28305

16 37157

∣∣ ∣∣ 14 7065

15 18481

∣∣ ∣∣ 15 14009

16 37283

∣∣ ∣∣ 6 27

6 37

∣∣
24 : hnorlewxtwxernphnovdtwxtvcornp∣∣ 13 2801

13 5391

∣∣ ∣∣ 13 2845

13 5347

∣∣ ∣∣ 11 711

13 5305

∣∣ ∣∣ 12 1397

12 2687

∣∣
25 : hnordewxtwxevkornphnorkmvdtwxtvdgrnp∣∣ 11 695

11 1353

∣∣ ∣∣ 14 5597

14 10787

∣∣ ∣∣ 14 5605

13 5367

∣∣ ∣∣ 12 1389

10 675

∣∣
26 : wrdtvnmwwphltrnovhncxtfpernowwphltvnmwxgt∣∣ 14 7073

14 9311

∣∣ ∣∣ 14 7079

14 9305

∣∣ ∣∣ 13 3533

14 9285

∣∣ ∣∣ 13 3529

14 9289

∣∣
27 : wxtvcornphnphkovdewxtwxtvderkphnphnorlewxt∣∣ 14 5531

14 10829

∣∣ ∣∣ 14 5562

14 10785

∣∣ ∣∣ 14 5562

14 10822

∣∣ ∣∣ 14 5535

14 10849

∣∣
28 : hnorkmvdewxtwxevdgrkornphnorkordevdtwxtvdevkornp∣∣ 12 1381

12 2715

∣∣ ∣∣ 9 173

9 339

∣∣ ∣∣ 14 5543

14 10823

∣∣ ∣∣ 14 5533

14 10835

∣∣ ∣∣ 12 1381

13 5423

∣∣
29 : wxtwxerkphnphnphnorlevdtwxtwxtwxevcornphnphnphkovdtwxt∣∣ 11 689

11 1359

∣∣ ∣∣ 11 691

11 1357

∣∣ ∣∣ 14 5525

14 10829

∣∣ ∣∣ 13 2753

13 5429

∣∣

11.3 Interior Tiles
30 : dsp13∣∣ 8 113

8 112

∣∣ ∣∣ 11 1011

11 1003

∣∣ ∣∣ 13 4044

13 4095

∣∣ ∣∣ 13 3105

13 4095

∣∣
31 : dtrp13∣∣ 8 98

8 127

∣∣ ∣∣ 12 1631

12 2049

∣∣ ∣∣ 12 1433

12 2347

∣∣ ∣∣ 8 82

8 143

∣∣
32 : rmxvo∣∣ 8 73

8 152

∣∣ ∣∣ 10 309

10 639

∣∣ ∣∣ 13 2403

13 5335

∣∣ ∣∣ 13 2389

13 5370

∣∣ ∣∣ 15 9398

15 21832

∣∣ ∣∣ 10 250

10 772

∣∣ ∣∣ 8 45

8 193

∣∣ ∣∣ 8 67

8 158

∣∣
33 : dwwpn23∣∣ 8 85

8 140

∣∣ ∣∣ 10 340

10 642

∣∣ ∣∣ 9 162

9 329

∣∣ ∣∣ 9 143

9 307

∣∣
34 : cpltvn∣∣ 14 7247

14 7917

∣∣ ∣∣ 14 7387

14 8191

∣∣ ∣∣ 14 6757

14 8631

∣∣ ∣∣ 14 6635

14 8415

∣∣ ∣∣ 14 7155

14 7951

∣∣
35 : drpoxv∣∣ 15 7315

13 5381

∣∣ ∣∣ 13 1873

16 43691

∣∣ ∣∣ 15 6913

16 46777

∣∣ ∣∣ 8 46

8 193

∣∣ ∣∣ 8 41

8 193

∣∣
36 : cpdwrn∣∣ 11 793

11 1086

∣∣ ∣∣ 15 12780

15 17442

∣∣ ∣∣ 15 13099

15 17857

∣∣ ∣∣ 15 12967

15 18083

∣∣ ∣∣ 15 12749

15 18001

∣∣ ∣∣ 9 199

9 281

∣∣ ∣∣ 11 788

11 1096

∣∣
37 : dttrnp13∣∣ 15 12437

15 16615

∣∣ ∣∣ 15 13259

15 16991

∣∣ ∣∣ 15 13125

15 17607

∣∣ ∣∣ 15 12933

15 17535

∣∣ ∣∣ 16 25544

16 34878

∣∣ ∣∣ 15 12483

15 17257

∣∣
38 : rpdxxho∣∣ 10 182

10 724

∣∣ ∣∣ 11 362

11 1458

∣∣ ∣∣ 9 81

9 386

∣∣ ∣∣ 10 134

10 772

∣∣
39 : cpltxhn∣∣ 14 5763

14 9611

∣∣ ∣∣ 14 5953

14 9833

∣∣ ∣∣ 14 6009

14 10013

∣∣ ∣∣ 14 5985

14 10135

∣∣ ∣∣ 14 5869

14 10203

∣∣ ∣∣ 14 5711

14 9655

∣∣
40 : cpdwwpn∣∣ 14 5509

14 8979

∣∣ ∣∣ 13 2867

13 4759

∣∣ ∣∣ 14 5780

14 10120

∣∣ ∣∣ 14 5577

14 10287

∣∣ ∣∣ 14 5495

14 10191

∣∣ ∣∣ 14 5211

14 9283

∣∣
41 : cperowx13∣∣ 16 28727

16 32775

∣∣ ∣∣ 16 28369

16 34265

∣∣ ∣∣ 16 28099

16 34535

∣∣ ∣∣ 16 27317

16 34877

∣∣ ∣∣ 16 27251

16 33991

∣∣
42 : dewwpkp13∣∣ 15 13769

15 15961

∣∣ ∣∣ 15 13785

15 16381

∣∣ ∣∣ 15 12913

15 17019

∣∣ ∣∣ 15 12965

15 16675

∣∣
43 : dxtwpph23∣∣ 10 254

10 646

∣∣ ∣∣ 11 484

11 1401

∣∣ ∣∣ 11 447

11 1371

∣∣ ∣∣ 8 63

8 162

∣∣
44 : cphlttvn∣∣ 15 14509

15 16416

∣∣ ∣∣ 15 14766

15 16629

∣∣ ∣∣ 15 14320

15 17140

∣∣ ∣∣ 16 28219

16 33663

∣∣
45 : drphoxtv∣∣ 15 9789

15 20419

∣∣ ∣∣ 15 10145

15 20875

∣∣ ∣∣ 15 9985

15 21839

∣∣ ∣∣ 15 9567

15 21839

∣∣ ∣∣ 15 9649

15 20733

∣∣
46 : cpernkwx13∣∣ 15 15393

15 16061

∣∣ ∣∣ 15 15731

15 16385

∣∣ ∣∣ 15 15355

15 16889

∣∣ ∣∣ 15 14869

15 16723

∣∣ ∣∣ 15 14859

15 16679

∣∣ ∣∣ 15 14929

15 16479

∣∣
47 : cpdwrdrp13∣∣ 15 11869

15 18793

∣∣ ∣∣ 15 12227

15 19047

∣∣ ∣∣ 12 1534

12 2424

∣∣ ∣∣ 12 1531

12 2482

∣∣ ∣∣ 12 1515

12 2490

∣∣ ∣∣ 15 11671

15 19493

∣∣

71



48 : dewwplrp13∣∣ 16 24872

16 37697

∣∣ ∣∣ 15 12187

15 19173

∣∣ ∣∣ 15 12007

15 18983

∣∣ ∣∣ 15 12163

15 18825

∣∣
49 : mxsphhkxv∣∣ 13 3271

13 4101

∣∣ ∣∣ 13 3093

13 4549

∣∣ ∣∣ 13 3041

13 4441

∣∣ ∣∣ 14 6162

14 8266

∣∣
50 : vhowxtrpe∣∣ 12 1461

12 2207

∣∣ ∣∣ 12 1529

12 2301

∣∣ ∣∣ 17 47175

14 9335

∣∣ ∣∣ 12 1433

12 2349

∣∣ ∣∣ 10 358

10 587

∣∣ ∣∣ 8 86

8 143

∣∣
51 : cpernowwx13∣∣ 16 28965

16 33515

∣∣ ∣∣ 16 29169

16 33747

∣∣ ∣∣ 16 29233

16 34699

∣∣ ∣∣ 16 28973

16 34983

∣∣ ∣∣ 16 28561

16 35237

∣∣ ∣∣ 16 28323

16 34177

∣∣
52 : cphoxtrmx13∣∣ 15 11613

15 20665

∣∣ ∣∣ 15 11615

15 20675

∣∣ ∣∣ 15 11251

15 21283

∣∣ ∣∣ 15 10817

15 21327

∣∣ ∣∣ 15 10791

15 21201

∣∣ ∣∣ 15 11185

15 20667

∣∣ ∣∣ 15 11475

15 20453

∣∣
53 : cphhltttvn∣∣ 16 29695

16 32959

∣∣ ∣∣ 16 30199

16 33265

∣∣ ∣∣ 16 29957

16 34165

∣∣ ∣∣ 16 29453

16 33879

∣∣ ∣∣ 16 29243

16 33567

∣∣
54 : cpetvdsorn∣∣ 15 14953

15 15915

∣∣ ∣∣ 15 15163

15 16383

∣∣ ∣∣ 15 14847

15 16705

∣∣ ∣∣ 15 14635

15 16603

∣∣ ∣∣ 15 14803

15 16067

∣∣
55 : cornncxgtv∣∣ 16 30283

16 32987

∣∣ ∣∣ 16 30585

16 33493

∣∣ ∣∣ 16 30261

16 33987

∣∣ ∣∣ 16 29903

16 33491

∣∣
56 : coroxhhdtv∣∣ 16 25943

16 37835

∣∣ ∣∣ 16 25471

16 38239

∣∣ ∣∣ 16 25325

16 38323

∣∣ ∣∣ 16 25049

16 38213

∣∣ ∣∣ 16 25079

16 38137

∣∣ ∣∣ 16 25275

16 37871

∣∣ ∣∣ 16 26031

16 37195

∣∣
57 : cphkotxhdv∣∣ 15 12239

15 18848

∣∣ ∣∣ 15 12048

15 19087

∣∣ ∣∣ 15 11768

15 19022

∣∣ ∣∣ 17 47813

17 75219

∣∣ ∣∣ 15 12062

15 18724

∣∣
58 : cphhdtrowx13∣∣ 15 14321

15 17567

∣∣ ∣∣ 15 14465

15 17779

∣∣ ∣∣ 15 14207

15 18133

∣∣ ∣∣ 15 13965

15 18097

∣∣ ∣∣ 15 13629

15 18023

∣∣ ∣∣ 15 13511

15 17677

∣∣ ∣∣ 15 13945

15 17585

∣∣
59 : drphkpdwxv23∣∣ 15 9625

15 21635

∣∣ ∣∣ 15 9709

15 21799

∣∣ ∣∣ 15 9659

15 22059

∣∣ ∣∣ 15 9623

15 22213

∣∣ ∣∣ 15 9517

15 22133

∣∣
60 : cphnkxtrmx13∣∣ 15 12729

15 19281

∣∣ ∣∣ 15 12779

15 19361

∣∣ ∣∣ 15 12749

15 19523

∣∣ ∣∣ 12 1552

12 2473

∣∣ ∣∣ 12 1535

12 2445

∣∣
61 : cpdwrdtrnp13∣∣ 16 25069

16 36943

∣∣ ∣∣ 16 25351

16 37423

∣∣ ∣∣ 16 25031

16 37643

∣∣ ∣∣ 16 24971

16 36945

∣∣
62 : cxtvnmwpkp13∣∣ 14 6270

14 9203

∣∣ ∣∣ 15 12535

15 18557

∣∣ ∣∣ 16 24789

16 37337

∣∣ ∣∣ 16 24683

16 37289

∣∣ ∣∣ 17 49436

17 74244

∣∣ ∣∣ 16 24737

16 37069

∣∣ ∣∣ 14 6216

14 9203

∣∣
63 : cphdtwrhox13∣∣ 17 49297

17 76429

∣∣ ∣∣ 16 24871

11 1203

∣∣ ∣∣ 15 12399

15 19281

∣∣ ∣∣ 15 12269

15 19394

∣∣ ∣∣ 17 48641

17 77465

∣∣ ∣∣ 17 48577

17 77029

∣∣
64 : cpltwrdvnp13∣∣ 12 1508

12 2281

∣∣ ∣∣ 13 3078

13 4623

∣∣ ∣∣ 15 12361

15 18563

∣∣ ∣∣ 13 3126

13 4693

∣∣ ∣∣ 14 6248

14 9400

∣∣ ∣∣ 13 3097

13 4733

∣∣ ∣∣ 13 3017

13 4664

∣∣ ∣∣ 12 1483

12 2295

∣∣
65 : dtrowwxhhhh∣∣ 16 32425

16 32875

∣∣ ∣∣ 16 32435

13 4115

∣∣ ∣∣ 15 15095

16 33939

∣∣ ∣∣ 16 29617

16 33747

∣∣
66 : owxvnpnmxtr∣∣ 13 2421

12 2539

∣∣ ∣∣ 8 81

13 5191

∣∣ ∣∣ 11 643

11 1333

∣∣ ∣∣ 12 1173

13 5161

∣∣
67 : mxtrphhowxv∣∣ 15 10917

14 10105

∣∣ ∣∣ 14 5461

14 10200

∣∣ ∣∣ 16 21837

15 20521

∣∣ ∣∣ 10 341

15 20529

∣∣ ∣∣ 13 2691

15 20437

∣∣
68 : cpernnowwwx13∣∣ 15 14822

15 16781

∣∣ ∣∣ 16 29825

16 33673

∣∣ ∣∣ 16 29281

16 34397

∣∣ ∣∣ 15 14606

15 17056

∣∣ ∣∣ 15 14709

15 16917

∣∣
69 : cphnowxtrmx13∣∣ 12 1511

12 2499

∣∣ ∣∣ 15 12227

15 20095

∣∣ ∣∣ 12 1527

19 317

∣∣ ∣∣ 11 761

11 1269

∣∣ ∣∣ 15 11885

15 20075

∣∣
70 : cornovdvowx13∣∣ 15 12765

15 19137

∣∣ ∣∣ 15 13175

15 18865

∣∣ ∣∣ 15 13167

15 19009

∣∣ ∣∣ 15 12845

15 19543

∣∣ ∣∣ 15 12581

15 19809

∣∣ ∣∣ 15 12463

15 19757

∣∣ ∣∣ 15 12511

15 19475

∣∣
71 : coroxhhlewx13∣∣ 16 25398

16 38194

∣∣ ∣∣ 16 25335

16 38740

∣∣ ∣∣ 14 6218

14 9727

∣∣ ∣∣ 16 24726

16 38915

∣∣ ∣∣ 16 24749

16 38665

∣∣
72 : rnmxgtwrdvno∣∣ 14 6047

14 8599

∣∣ ∣∣ 14 6351

14 8803

∣∣ ∣∣ 14 6417

14 9157

∣∣ ∣∣ 14 6401

14 9303

∣∣ ∣∣ 16 24736

16 37036

∣∣ ∣∣ 14 6177

14 9251

∣∣ ∣∣ 14 6159

14 9225

∣∣ ∣∣ 14 6011

14 8757

∣∣
73 : cplttvdvnorn∣∣ 17 52825

17 64673

∣∣ ∣∣ 17 52935

17 64789

∣∣ ∣∣ 17 51805

17 67297

∣∣ ∣∣ 17 51803

17 67299

∣∣ ∣∣ 17 51545

17 67329

∣∣ ∣∣ 17 51409

17 66325

∣∣ ∣∣ 17 51997

17 65133

∣∣

72



74 : cphhndtttwrn∣∣ 16 26265

16 32591

∣∣ ∣∣ 13 3326

13 4117

∣∣ ∣∣ 16 26227

16 33251

∣∣ ∣∣ 16 26155

16 33129

∣∣ ∣∣ 16 25975

16 32741

∣∣
75 : mxgtrnnowrdv∣∣ 15 14781

15 16387

∣∣ ∣∣ 15 14135

15 17263

∣∣ ∣∣ 15 14131

15 17123

∣∣ ∣∣ 15 14503

15 16391

∣∣
76 : mxsperovhkxv∣∣ 14 6099

14 8551

∣∣ ∣∣ 15 12327

15 17879

∣∣ ∣∣ 15 12313

15 18351

∣∣ ∣∣ 14 6122

14 9179

∣∣ ∣∣ 15 11991

15 17973

∣∣ ∣∣ 14 6008

14 8706

∣∣
77 : wpplvdxewppl∣∣ 16 13863

14 11003

∣∣ ∣∣ 13 1635

15 22937

∣∣ ∣∣ 10 166

10 772

∣∣ ∣∣ 10 157

10 772

∣∣ ∣∣ 12 731

12 2902

∣∣ ∣∣ 9 96

9 356

∣∣
78 : cplrphoxewxv∣∣ 15 9607

15 20881

∣∣ ∣∣ 15 9687

15 20941

∣∣ ∣∣ 13 2397

13 5353

∣∣ ∣∣ 15 9563

15 21489

∣∣ ∣∣ 15 9333

15 21749

∣∣ ∣∣ 15 9349

15 21499

∣∣
79 : vdrpgtwrhoxe∣∣ 16 24685

16 36577

∣∣ ∣∣ 16 24517

16 36989

∣∣ ∣∣ 16 23701

16 37263

∣∣ ∣∣ 16 23875

16 37067

∣∣ ∣∣ 16 24425

16 36565

∣∣
80 : dewwpdwrkphn∣∣ 16 24731

16 36623

∣∣ ∣∣ 15 12344

15 18471

∣∣ ∣∣ 15 12279

15 18478

∣∣ ∣∣ 16 24167

16 36997

∣∣ ∣∣ 16 24151

16 36731

∣∣
81 : cphlewpnkxtv∣∣ 16 25129

16 39627

∣∣ ∣∣ 16 25043

16 39691

∣∣ ∣∣ 16 24743

16 39777

∣∣ ∣∣ 16 24197

16 39365

∣∣ ∣∣ 16 24199

16 39327

∣∣ ∣∣ 16 24285

16 39155

∣∣ ∣∣ 16 24681

16 38899

∣∣
82 : cphncpltwrdv∣∣ 16 23887

16 37417

∣∣ ∣∣ 16 23885

16 37659

∣∣ ∣∣ 16 23711

16 37705

∣∣ ∣∣ 16 23429

16 37311

∣∣ ∣∣ 16 23447

16 37087

∣∣ ∣∣ 16 23807

16 37239

∣∣
83 : cpdwrdtvkphn∣∣ 15 12479

15 18891

∣∣ ∣∣ 15 12567

15 18901

∣∣ ∣∣ 15 12635

15 19045

∣∣ ∣∣ 15 12773

15 19495

∣∣ ∣∣ 15 12653

15 19505

∣∣ ∣∣ 15 12461

15 19223

∣∣ ∣∣ 15 12463

15 18929

∣∣
84 : dewpoxrplrmx13∣∣ 14 4553

14 11219

∣∣ ∣∣ 13 2291

11 1403

∣∣ ∣∣ 13 2263

13 5649

∣∣ ∣∣ 14 4487

13 5671

∣∣ ∣∣ 11 565

13 5629

∣∣ ∣∣ 13 2269

12 2809

∣∣
85 : dexhdwrkplrp13∣∣ 15 12281

15 18427

∣∣ ∣∣ 15 11995

15 18443

∣∣ ∣∣ 15 12203

15 18169

∣∣
86 : cpdwrdtwrhnp13∣∣ 16 24569

16 38719

∣∣ ∣∣ 15 12426

15 19469

∣∣ ∣∣ 16 24989

16 39287

∣∣ ∣∣ 16 25015

16 39385

∣∣ ∣∣ 16 24989

16 39453

∣∣ ∣∣ 16 24881

16 39387

∣∣ ∣∣ 16 24651

16 39109

∣∣
87 : nnmwwwplttvnn∣∣ 15 16211

16 32773

∣∣ ∣∣ 16 32427

14 8219

∣∣ ∣∣ 12 1939

16 33333

∣∣ ∣∣ 15 14975

14 8245

∣∣ ∣∣ 16 29803

16 32789

∣∣
88 : npewwwplttvhn∣∣ 13 3345

13 4279

∣∣ ∣∣ 13 3251

13 4271

∣∣ ∣∣ 13 3225

13 4263

∣∣ ∣∣ 13 3047

13 4183

∣∣ ∣∣ 13 3105

13 4149

∣∣ ∣∣ 13 3323

13 4229

∣∣
89 : npetwwpltwvhn∣∣ 14 6297

14 9416

∣∣ ∣∣ 14 6384

14 9457

∣∣ ∣∣ 14 6370

14 9495

∣∣ ∣∣ 14 6301

14 9450

∣∣
90 : cphdvkxewwpkp13∣∣ 17 53105

17 66425

∣∣ ∣∣ 17 53277

17 66589

∣∣ ∣∣ 17 52903

17 67367

∣∣ ∣∣ 17 52409

17 67417

∣∣ ∣∣ 17 52645

17 66695

∣∣
91 : cphdvdsmwwpkp13∣∣ 17 53591

17 64647

∣∣ ∣∣ 17 53699

17 64933

∣∣ ∣∣ 17 52825

17 66025

∣∣ ∣∣ 17 52495

17 65393

∣∣
92 : dttwwpkphhnmx13∣∣ 15 12157

15 17869

∣∣ ∣∣ 15 12245

15 17979

∣∣ ∣∣ 15 12129

15 18199

∣∣ ∣∣ 15 12067

15 18283

∣∣ ∣∣ 15 11967

15 17963

∣∣
93 : cpltwxewwphnp13∣∣ 15 11339

15 18959

∣∣ ∣∣ 15 11589

15 19423

∣∣ ∣∣ 15 11683

15 19931

∣∣ ∣∣ 15 11681

15 20077

∣∣ ∣∣ 15 11569

15 19909

∣∣ ∣∣ 15 11267

15 19049

∣∣
94 : cxttvdsnphhkp13∣∣ 13 3201

13 4352

∣∣ ∣∣ 14 6432

14 8743

∣∣ ∣∣ 15 12769

15 17470

∣∣ ∣∣ 15 12776

15 17452

∣∣ ∣∣ 15 12780

15 17443

∣∣
95 : cphnmxgtwxtrp13∣∣ 14 5672

14 9386

∣∣ ∣∣ 14 5723

14 9414

∣∣ ∣∣ 14 5742

14 9427

∣∣ ∣∣ 14 5784

14 9528

∣∣ ∣∣ 14 5790

14 9558

∣∣ ∣∣ 14 5805

14 9662

∣∣ ∣∣ 14 5753

14 9622

∣∣ ∣∣ 14 5666

14 9437

∣∣
96 : nplvdtrowxewpn∣∣ 16 23243

16 36983

∣∣ ∣∣ 16 23693

16 38339

∣∣ ∣∣ 16 23709

16 38687

∣∣ ∣∣ 16 22457

16 36795

∣∣
97 : mxsmwpnnplvkxv∣∣ 10 356

10 597

∣∣ ∣∣ 14 5779

14 10120

∣∣ ∣∣ 14 5733

14 10237

∣∣ ∣∣ 16 22893

16 40843

∣∣ ∣∣ 14 5623

14 9811

∣∣
98 : drplwxrphphdwx13∣∣ 17 37849

17 87293

∣∣ ∣∣ 17 37827

17 87289

∣∣ ∣∣ 17 37443

17 87165

∣∣ ∣∣ 17 37425

17 87099

∣∣ ∣∣ 17 37507

17 86877

∣∣ ∣∣ 17 37889

17 87067

∣∣
99 : dewxtrorkphnmx13∣∣ 15 11741

15 18877

∣∣ ∣∣ 15 11803

15 19043

∣∣ ∣∣ 15 11609

15 19269

∣∣ ∣∣ 15 11546

15 19178

∣∣ ∣∣ 15 11580

15 19120

∣∣ ∣∣ 15 11627

15 19044

∣∣

73



100 : cpltvdvmxsornp13∣∣ 15 11841

15 18571

∣∣ ∣∣ 15 11789

15 18811

∣∣ ∣∣ 15 11719

15 18903

∣∣ ∣∣ 15 11669

15 18745

∣∣ ∣∣ 15 11759

15 18573

∣∣
101 : cphlewpnkxtrmx13∣∣ 16 24461

16 38053

∣∣ ∣∣ 16 24583

16 38187

∣∣ ∣∣ 16 24593

16 38329

∣∣ ∣∣ 16 24395

16 38457

∣∣ ∣∣ 16 24143

16 38315

∣∣ ∣∣ 16 24419

16 38053

∣∣
102 : hdvdsornorkxexh∣∣ 16 26845

16 32073

∣∣ ∣∣ 16 26851

16 32177

∣∣ ∣∣ 16 26185

16 33149

∣∣ ∣∣ 16 25479

16 33819

∣∣ ∣∣ 16 25803

16 33165

∣∣
103 : vdvowpoxrplrmxe∣∣ 14 4773

14 10849

∣∣ ∣∣ 14 4801

13 5427

∣∣ ∣∣ 14 4697

13 5495

∣∣ ∣∣ 14 4635

6 43

∣∣
104 : dewpnmwpkormxtv∣∣ 16 21907

16 40133

∣∣ ∣∣ 16 21913

16 40489

∣∣ ∣∣ 16 21885

16 40531

∣∣ ∣∣ 16 21593

16 40777

∣∣ ∣∣ 16 21835

16 40187

∣∣
105 : cpdwwpkmwpnovdv∣∣ 16 22055

16 40421

∣∣ ∣∣ 16 21959

16 40601

∣∣ ∣∣ 15 10923

15 20289

∣∣ ∣∣ 16 21833

16 40572

∣∣ ∣∣ 16 21966

16 40322

∣∣
106 : nordewwpltvdgrn∣∣ 13 3482

13 4606

∣∣ ∣∣ 14 7041

14 9278

∣∣ ∣∣ 13 3504

13 4656

∣∣ ∣∣ 13 3474

13 4665

∣∣
107 : dttrowwwxhhhhhh∣∣ 16 32421

15 16395

∣∣ ∣∣ 16 32419

13 4095

∣∣ ∣∣ 16 30763

15 16363

∣∣ ∣∣ 16 31033

14 8221

∣∣
108 : dvmxtwpoxtwpnpn23∣∣ 16 18573

16 44031

∣∣ ∣∣ 16 18979

16 44471

∣∣ ∣∣ 16 18893

16 44639

∣∣ ∣∣ 16 18343

16 44437

∣∣ ∣∣ 16 18335

16 44309

∣∣ ∣∣ 16 18565

16 44033

∣∣
109 : dewpmxwwplrphox13∣∣ 16 18717

16 44473

∣∣ ∣∣ 16 18453

16 44831

∣∣ ∣∣ 16 18313

16 44851

∣∣ ∣∣ 16 18201

16 44759

∣∣ ∣∣ 16 18263

16 44421

∣∣ ∣∣ 16 18529

16 44405

∣∣
110 : drphkphkpdwxewx13∣∣ 16 21843

15 20115

∣∣ ∣∣ 16 21841

15 20021

∣∣ ∣∣ 16 21665

15 20029

∣∣ ∣∣ 13 2683

14 10183

∣∣ ∣∣ 16 21557

16 40785

∣∣
111 : cpltwwxsmxhhnnp13∣∣ 16 25206

16 37398

∣∣ ∣∣ 16 25327

16 37519

∣∣ ∣∣ 16 25507

16 37707

∣∣ ∣∣ 16 25515

16 37723

∣∣ ∣∣ 16 25367

16 37953

∣∣ ∣∣ 16 25101

16 37505

∣∣
112 : npgtvdtrowxewrhn∣∣ 14 6462

14 9183

∣∣ ∣∣ 14 6523

14 9256

∣∣ ∣∣ 14 6545

14 9343

∣∣ ∣∣ 14 6547

14 9501

∣∣ ∣∣ 14 6515

14 9511

∣∣ ∣∣ 14 6362

14 9380

∣∣ ∣∣ 14 6175

14 8943

∣∣
113 : nmwwxgrnnordttvn∣∣ 15 14569

15 17543

∣∣ ∣∣ 15 14613

15 17815

∣∣ ∣∣ 15 14177

15 18507

∣∣ ∣∣ 15 14043

15 18309

∣∣
114 : nowvhdtrowxhetrn∣∣ 15 14415

15 17483

∣∣ ∣∣ 15 14861

15 17529

∣∣ ∣∣ 13 3700

13 4431

∣∣ ∣∣ 15 14403

15 17759

∣∣ ∣∣ 15 14369

15 17731

∣∣
115 : cpgtrnnmwxhhlttv∣∣ 16 29277

16 35201

∣∣ ∣∣ 16 29421

16 35279

∣∣ ∣∣ 12 1838

12 2217

∣∣ ∣∣ 16 29377

16 35733

∣∣ ∣∣ 16 29279

16 35841

∣∣ ∣∣ 16 28973

16 35889

∣∣ ∣∣ 16 28969

16 35851

∣∣ ∣∣ 16 29185

16 35335

∣∣
116 : cxttrowxevhnnorn∣∣ 16 25623

16 34871

∣∣ ∣∣ 16 25775

16 34871

∣∣ ∣∣ 16 26085

16 35189

∣∣ ∣∣ 16 25749

16 35134

∣∣ ∣∣ 16 25633

16 35111

∣∣ ∣∣ 16 25581

16 34929

∣∣ ∣∣ 13 3199

13 4363

∣∣
117 : hlewxsnphnkxtvcp∣∣ 15 12607

15 19915

∣∣ ∣∣ 15 12239

15 20311

∣∣ ∣∣ 15 12137

15 20007

∣∣ ∣∣ 15 12383

15 19603

∣∣
118 : hdtwvhkphkpetwxh∣∣ 15 12555

15 18513

∣∣ ∣∣ 15 12527

15 18621

∣∣ ∣∣ 13 3129

17 74615

∣∣ ∣∣ 16 24982

16 37412

∣∣ ∣∣ 17 49819

15 18775

∣∣ ∣∣ 16 24701

16 37492

∣∣ ∣∣ 16 25098

16 36290

∣∣
119 : rncpgttvdewwrhlfo∣∣ 15 14781

15 16413

∣∣ ∣∣ 15 14705

15 16969

∣∣ ∣∣ 15 14587

15 17267

∣∣ ∣∣ 15 14507

15 16653

∣∣ ∣∣ 15 14545

15 16499

∣∣
120 : cpdwxrplwxrphphdv∣∣ 17 37761

17 87895

∣∣ ∣∣ 17 37935

17 87971

∣∣ ∣∣ 17 38063

17 88087

∣∣ ∣∣ 17 37773

17 88589

∣∣ ∣∣ 17 37691

17 88563

∣∣ ∣∣ 17 37631

17 88055

∣∣
121 : rnormxtvdewxvorno∣∣ 12 1371

16 40507

∣∣ ∣∣ 15 11023

15 20305

∣∣ ∣∣ 16 21963

14 10219

∣∣ ∣∣ 14 5479

14 10218

∣∣ ∣∣ 14 5464

14 10207

∣∣ ∣∣ 16 21853

16 40743

∣∣
122 : rkxvmxhhkphdvmxso∣∣ 16 24771

16 38047

∣∣ ∣∣ 16 24791

16 38079

∣∣ ∣∣ 16 24379

16 38353

∣∣ ∣∣ 16 23953

16 38139

∣∣ ∣∣ 16 23935

16 38083

∣∣ ∣∣ 16 24383

16 37961

∣∣
123 : cphncplrowxewwpdv∣∣ 15 12441

15 19455

∣∣ ∣∣ 15 12456

15 19479

∣∣ ∣∣ 15 12460

15 19502

∣∣ ∣∣ 15 12366

15 19568

∣∣ ∣∣ 15 12370

15 19465

∣∣ ∣∣ 15 12392

15 19403

∣∣
124 : vdvnorowxtrornmxe∣∣ 12 1489

12 2289

∣∣ ∣∣ 12 1484

12 2302

∣∣ ∣∣ 14 5751

14 9405

∣∣ ∣∣ 12 1434

12 2353

∣∣ ∣∣ 12 1402

12 2357

∣∣ ∣∣ 13 2833

13 4677

∣∣ ∣∣ 12 1433

12 2320

∣∣
125 : mxsmwpncplfplvkxv∣∣ 14 5714

14 10170

∣∣ ∣∣ 15 11445

15 20372

∣∣ ∣∣ 16 22896

16 40839

∣∣ ∣∣ 14 5725

12 2559

∣∣ ∣∣ 11 715

13 5119

∣∣ ∣∣ 14 5709

14 10201

∣∣ ∣∣ 13 2851

13 5087

∣∣

74



126 : dvmxtwxwwplrphnpn23∣∣ 16 18919

16 43745

∣∣ ∣∣ 16 19271

16 44327

∣∣ ∣∣ 16 18759

16 43901

∣∣
127 : cphdtwwpkotxhhnmx13∣∣ 17 47949

17 74327

∣∣ ∣∣ 17 47943

17 74411

∣∣ ∣∣ 17 47517

17 74585

∣∣ ∣∣ 17 47367

17 74525

∣∣ ∣∣ 17 47431

17 74423

∣∣ ∣∣ 17 47711

17 74305

∣∣
128 : dewpnplrowpoxtxhdv∣∣ 17 38211

17 86061

∣∣ ∣∣ 17 38299

17 86165

∣∣ ∣∣ 17 38189

17 86395

∣∣ ∣∣ 17 37701

17 86911

∣∣ ∣∣ 17 37725

17 86603

∣∣ ∣∣ 17 38139

17 86091

∣∣
129 : mxsotxhhnnphdwrkxv∣∣ 15 11941

15 17930

∣∣ ∣∣ 14 6139

14 9211

∣∣ ∣∣ 14 5937

14 9067

∣∣
130 : vdtrnphltwwphnowxe∣∣ 14 6131

14 10057

∣∣ ∣∣ 14 6167

14 10065

∣∣ ∣∣ 14 6075

14 10299

∣∣ ∣∣ 11 747

10 645

∣∣
131 : cphncpltwwxtvnmwpn∣∣ 16 23955

16 37099

∣∣ ∣∣ 16 24095

16 37199

∣∣ ∣∣ 14 6039

14 9326

∣∣ ∣∣ 16 24201

16 37511

∣∣ ∣∣ 16 24083

16 37825

∣∣ ∣∣ 16 23969

16 37707

∣∣ ∣∣ 16 23923

16 37529

∣∣ ∣∣ 16 23893

16 37173

∣∣
132 : nphdvkxtrowxsmxhhn∣∣ 14 6039

14 9326

∣∣ ∣∣ 14 6223

14 9412

∣∣ ∣∣ 14 6333

14 9508

∣∣ ∣∣ 14 6222

14 9536

∣∣ ∣∣ 14 6185

14 9527

∣∣ ∣∣ 14 5946

14 9335

∣∣
133 : cphkpetwwpltvdewpn∣∣ 16 24990

16 37444

∣∣ ∣∣ 16 25061

16 37444

∣∣ ∣∣ 16 25062

16 37494

∣∣ ∣∣ 16 24980

16 37507

∣∣ ∣∣ 16 24962

16 37500

∣∣ ∣∣ 15 12479

15 18745

∣∣
134 : nmwxewrkphhkotvdtvn∣∣ 14 6881

14 8198

∣∣ ∣∣ 17 53965

17 66997

∣∣ ∣∣ 17 53199

17 67299

∣∣ ∣∣ 14 6828

14 8195

∣∣
135 : rnpkmxhdwxtxhdvkpno∣∣ 10 295

12 2779

∣∣ ∣∣ 15 9461

15 21883

∣∣ ∣∣ 14 4767

15 21587

∣∣ ∣∣ 13 2399

14 10673

∣∣ ∣∣ 14 4865

11 1339

∣∣ ∣∣ 13 2407

13 5503

∣∣ ∣∣ 15 9551

15 22445

∣∣
136 : dvmxvplwxrplwxrphph∣∣ 16 18638

16 43911

∣∣ ∣∣ 16 18707

16 44131

∣∣ ∣∣ 16 18610

16 44148

∣∣ ∣∣ 16 18565

16 44036

∣∣
137 : cphphnplrowxwxtxhdv∣∣ 16 18748

16 43790

∣∣ ∣∣ 16 18795

16 43911

∣∣ ∣∣ 16 18707

16 43828

∣∣ ∣∣ 16 18700

16 43819

∣∣ ∣∣ 16 18725

16 43799

∣∣
138 : cpltwwpndexhdwrkphn∣∣ 16 24093

16 37051

∣∣ ∣∣ 16 23905

16 37375

∣∣ ∣∣ 16 23623

16 37631

∣∣ ∣∣ 16 23625

16 37603

∣∣ ∣∣ 16 23711

16 37339

∣∣ ∣∣ 16 24055

16 37001

∣∣
139 : cphkotxhltvdtrnphdv∣∣ 17 47989

17 75179

∣∣ ∣∣ 17 47667

17 75255

∣∣ ∣∣ 17 47555

17 75225

∣∣ ∣∣ 17 47541

17 75209

∣∣ ∣∣ 17 47561

17 75051

∣∣ ∣∣ 17 47871

17 74981

∣∣
140 : cplrphowpdvdewpoxtx13∣∣ 16 18201

16 44723

∣∣ ∣∣ 16 18411

16 44707

∣∣ ∣∣ 16 18407

16 44815

∣∣ ∣∣ 16 18335

16 44923

∣∣ ∣∣ 16 18213

16 45013

∣∣ ∣∣ 16 18163

16 44955

∣∣ ∣∣ 16 18143

16 44835

∣∣
141 : cpdwrdtvdtrowwphnnp13∣∣ 17 48497

17 72263

∣∣ ∣∣ 17 48591

17 72333

∣∣ ∣∣ 17 48655

17 72927

∣∣ ∣∣ 17 48623

17 72993

∣∣ ∣∣ 17 48597

17 72987

∣∣ ∣∣ 17 48445

17 72627

∣∣ ∣∣ 17 48471

17 72331

∣∣
142 : cpltvdtwrkphnkxexhhn∣∣ 16 24302

16 36430

∣∣ ∣∣ 16 24249

16 36438

∣∣ ∣∣ 16 24198

16 36418

∣∣ ∣∣ 16 24291

16 36328

∣∣
143 : rnorkxvmxevdvmxsorno∣∣ 15 12049

15 18489

∣∣ ∣∣ 14 6045

15 18501

∣∣ ∣∣ 14 5991

15 18755

∣∣ ∣∣ 13 2989

15 18801

∣∣ ∣∣ 15 11949

15 18813

∣∣ ∣∣ 15 11927

15 18849

∣∣ ∣∣ 14 5945

15 18825

∣∣ ∣∣ 13 2979

15 18741

∣∣
144 : hkmwwpdvcphlexhltvkp∣∣ 16 26631

16 37191

∣∣ ∣∣ 16 26723

16 37281

∣∣ ∣∣ 16 25999

16 38229

∣∣ ∣∣ 16 25359

16 38745

∣∣ ∣∣ 16 24785

16 38793

∣∣ ∣∣ 16 24815

16 38723

∣∣ ∣∣ 16 25695

16 37863

∣∣
145 : rkplvnmwxevdtvnmwpko∣∣ 14 6385

14 9395

∣∣ ∣∣ 16 25099

16 38089

∣∣ ∣∣ 16 25177

16 37841

∣∣ ∣∣ 9 197

16 37787

∣∣
146 : rnmwpkmwxevdtvkplvno∣∣ 15 12389

15 18923

∣∣ ∣∣ 15 12351

15 19411

∣∣ ∣∣ 15 12199

15 19965

∣∣ ∣∣ 15 12133

15 20113

∣∣ ∣∣ 15 12115

15 19957

∣∣ ∣∣ 15 12131

15 19655

∣∣ ∣∣ 15 12139

15 19619

∣∣
147 : cpdxhnplrordrplwxvmx13∣∣ 16 19221

16 43315

∣∣ ∣∣ 16 19207

16 43441

∣∣ ∣∣ 16 19069

16 43577

∣∣ ∣∣ 16 18645

16 43839

∣∣ ∣∣ 16 19101

16 43305

∣∣
148 : cpdvdevdtwrdrorkornp13∣∣ 15 12444

15 19243

∣∣ ∣∣ 15 12417

15 19275

∣∣ ∣∣ 14 6184

14 9661

∣∣ ∣∣ 15 12340

15 19305

∣∣
149 : mxernpgtwwpltwrhnovdv∣∣ 15 12661

15 19025

∣∣ ∣∣ 15 12583

15 19107

∣∣ ∣∣ 15 12319

15 19251

∣∣ ∣∣ 15 12271

15 19275

∣∣ ∣∣ 15 12235

15 19279

∣∣ ∣∣ 15 12189

15 19265

∣∣
150 : hdtwrdrpernovhoxgtwxh∣∣ 16 24995

16 36877

∣∣ ∣∣ 16 25209

16 37529

∣∣ ∣∣ 16 25205

16 38221

∣∣ ∣∣ 16 25037

16 37647

∣∣ ∣∣ 16 24973

16 36941

∣∣
151 : cphnmxsornphltvdtwrdv∣∣ 15 11610

15 18962

∣∣ ∣∣ 16 23203

16 38008

∣∣ ∣∣ 14 5797

14 9515

∣∣ ∣∣ 14 5796

14 9516

∣∣ ∣∣ 16 23130

16 38111

∣∣ ∣∣ 16 23143

16 37927

∣∣

75



152 : hdtwxgrovhnperordtwxh∣∣ 16 22932

16 38330

∣∣ ∣∣ 16 22960

16 38324

∣∣ ∣∣ 17 45937

17 76786

∣∣ ∣∣ 14 5743

16 38509

∣∣ ∣∣ 15 11463

16 38477

∣∣ ∣∣ 16 22915

15 19199

∣∣
153 : cphkornmwpkmwxevdtrmx13∣∣ 15 12493

15 19375

∣∣ ∣∣ 15 12507

15 19381

∣∣ ∣∣ 15 12299

15 19929

∣∣ ∣∣ 15 12235

15 19953

∣∣ ∣∣ 15 12337

15 19621

∣∣ ∣∣ 15 12431

15 19462

∣∣
154 : cphoxtrowpkmwxvphdvmx13∣∣ 17 45853

17 81473

∣∣ ∣∣ 16 22847

16 40953

∣∣ ∣∣ 15 11401

16 41071

∣∣ ∣∣ 17 45549

17 82249

∣∣ ∣∣ 17 44773

17 82657

∣∣
155 : cphmxtwwpdwwpncplrphdv∣∣ 16 21858

16 40723

∣∣ ∣∣ 16 21948

16 40725

∣∣ ∣∣ 16 21947

16 40798

∣∣ ∣∣ 16 21925

16 40892

∣∣ ∣∣ 16 21904

16 40904

∣∣ ∣∣ 16 21817

16 40851

∣∣
156 : cpltwxewxewwphnornmwpn∣∣ 15 11485

13 4793

∣∣ ∣∣ 15 11514

15 19177

∣∣ ∣∣ 14 5756

14 9653

∣∣ ∣∣ 14 5741

14 9634

∣∣ ∣∣ 15 11483

15 19234

∣∣
157 : cpdwrdtwrdvmxernorkphn∣∣ 16 24547

16 38023

∣∣ ∣∣ 16 24593

16 37973

∣∣ ∣∣ 16 24697

16 38065

∣∣ ∣∣ 16 24697

16 38075

∣∣ ∣∣ 16 24675

16 38393

∣∣ ∣∣ 16 24625

16 38537

∣∣ ∣∣ 16 24585

16 38491

∣∣ ∣∣ 16 24545

16 38075

∣∣
158 : rnnphdvkxttwwxsmxhhnno∣∣ 13 3159

13 4635

∣∣ ∣∣ 15 12674

15 18583

∣∣ ∣∣ 13 3197

13 4701

∣∣ ∣∣ 13 3185

13 4712

∣∣ ∣∣ 14 6351

14 9413

∣∣ ∣∣ 14 6333

14 9384

∣∣ ∣∣ 13 3143

13 4639

∣∣
159 : mxermxsnplrowpnkxvovdv∣∣ 15 11588

15 20249

∣∣ ∣∣ 15 11535

15 20396

∣∣ ∣∣ 15 11455

15 20500

∣∣ ∣∣ 15 11375

15 20523

∣∣ ∣∣ 15 11431

15 20447

∣∣
160 : vhndewwpkotwrkpltvdfpe∣∣ 16 27671

16 33049

∣∣ ∣∣ 16 26643

16 33405

∣∣ ∣∣ 16 26479

16 33401

∣∣ ∣∣ 16 27463

16 32947

∣∣
161 : cplrphmxvornpkmxhdwxtx13∣∣ 16 18627

16 43857

∣∣ ∣∣ 16 18743

16 43909

∣∣ ∣∣ 16 18737

16 44859

∣∣ ∣∣ 16 18683

16 44789

∣∣ ∣∣ 16 18603

16 44179

∣∣ ∣∣ 16 18601

16 44139

∣∣
162 : drphoxewxvmxtwxrphowpn23∣∣ 17 38291

17 86047

∣∣ ∣∣ 17 38285

17 86085

∣∣ ∣∣ 17 38231

17 86251

∣∣ ∣∣ 17 38101

17 86193

∣∣ ∣∣ 17 38069

17 86153

∣∣ ∣∣ 17 38087

17 85703

∣∣
163 : drplwxvmxhhphnplrowxwx13∣∣ 16 18843

16 43622

∣∣ ∣∣ 16 18813

16 43679

∣∣ ∣∣ 16 18798

16 43690

∣∣ ∣∣ 16 18788

16 43619

∣∣ ∣∣ 16 18813

16 43600

∣∣
164 : cphdtwrhnorkphdvmxgtwx13∣∣ 14 6193

14 9641

∣∣ ∣∣ 15 12371

16 38761

∣∣ ∣∣ 16 24667

16 38767

∣∣ ∣∣ 16 24713

16 38637

∣∣ ∣∣ 16 24723

16 38615

∣∣ ∣∣ 15 12369

16 38585

∣∣
165 : rkplvnovdtvdewxernmwpko∣∣ 16 25197

16 37807

∣∣ ∣∣ 16 24931

15 19111

∣∣ ∣∣ 16 24793

16 38421

∣∣ ∣∣ 16 24621

16 38539

∣∣ ∣∣ 16 25055

16 37893

∣∣
166 : cphdrorkornovdvowxevdtv∣∣ 17 50009

17 76811

∣∣ ∣∣ 16 25049

16 38423

∣∣ ∣∣ 16 24991

16 38505

∣∣ ∣∣ 16 24907

16 38611

∣∣ ∣∣ 17 49861

17 77059

∣∣ ∣∣ 17 49905

17 76975

∣∣ ∣∣ 17 49923

17 76945

∣∣
167 : mxhdvcplrowplrowplexhdv∣∣ 13 2763

12 2709

∣∣ ∣∣ 15 11377

15 21257

∣∣ ∣∣ 15 11329

10 663

∣∣ ∣∣ 12 1349

13 5443

∣∣
168 : cpdwwpkmwpnovdvkxvmxgrp13∣∣ 14 5465

14 10141

∣∣ ∣∣ 13 2740

13 5073

∣∣ ∣∣ 14 5464

14 10196

∣∣ ∣∣ 15 10912

15 20395

∣∣ ∣∣ 14 5459

14 10176

∣∣
169 : wxvcpkmwpnpdxhnplvkplext∣∣ 16 18729

16 43937

∣∣ ∣∣ 16 18773

16 43963

∣∣ ∣∣ 16 18923

16 44271

∣∣ ∣∣ 16 18891

16 44691

∣∣ ∣∣ 16 18883

16 44685

∣∣ ∣∣ 16 18759

16 44485

∣∣ ∣∣ 16 18733

16 44355

∣∣
170 : mxtvdrphoxgrordrphoxewxv∣∣ 15 9593

15 21378

∣∣ ∣∣ 14 4829

14 10720

∣∣ ∣∣ 15 9412

15 21964

∣∣ ∣∣ 14 4704

14 10939

∣∣ ∣∣ 16 18963

16 43356

∣∣
171 : hdtwrdrpevkphkmvhoxgtwxh∣∣ 16 25067

16 37255

∣∣ ∣∣ 16 25171

16 37587

∣∣ ∣∣ 16 25197

16 38229

∣∣ ∣∣ 16 25197

16 38285

∣∣ ∣∣ 16 25173

16 38307

∣∣ ∣∣ 16 25065

16 38049

∣∣ ∣∣ 16 25019

16 37815

∣∣ ∣∣ 16 25011

16 37375

∣∣
172 : vdtvkplvnpgtwrhnmwpkmwxe∣∣ 16 24906

16 38069

∣∣ ∣∣ 16 24830

16 38390

∣∣ ∣∣ 16 24725

16 38316

∣∣ ∣∣ 16 24900

16 37992

∣∣
173 : hnmwxtwxgrnphnordtwxtvnp∣∣ 14 5686

14 10670

∣∣ ∣∣ 12 1415

7 83

∣∣ ∣∣ 12 1433

11 1313

∣∣ ∣∣ 12 1439

10 659

∣∣
174 : nphncpdwwxtrowxttxhlfphn∣∣ 15 11427

15 18805

∣∣ ∣∣ 17 46115

17 75427

∣∣ ∣∣ 15 11674

15 19002

∣∣ ∣∣ 16 23415

15 19117

∣∣ ∣∣ 15 11602

15 19005

∣∣ ∣∣ 16 22893

16 37662

∣∣
175 : cpltvdvnplvdtrowxtrovhnp13∣∣ 14 5781

14 9549

∣∣ ∣∣ 16 23177

16 38200

∣∣ ∣∣ 16 23171

16 38242

∣∣ ∣∣ 16 23150

16 38242

∣∣
176 : nornnmwxewwwplttvdtvnnorn∣∣ 16 26217

16 33423

∣∣ ∣∣ 16 26535

16 33761

∣∣ ∣∣ 16 26611

16 33989

∣∣ ∣∣ 16 26501

16 34177

∣∣ ∣∣ 16 26283

16 33879

∣∣
177 : mxsmxhhnplwwpltwpnphdvkxv∣∣ 16 21847

16 40573

∣∣ ∣∣ 16 21859

16 40577

∣∣ ∣∣ 14 5475

14 10156

∣∣ ∣∣ 16 21850

16 40633

∣∣

76



178 : cpdwrdtvdewxernmwpkorkphn∣∣ 16 24993

16 38109

∣∣ ∣∣ 16 24967

16 38195

∣∣ ∣∣ 13 3107

16 38457

∣∣ ∣∣ 17 49689

17 76963

∣∣ ∣∣ 16 24761

16 38497

∣∣ ∣∣ 16 24795

16 38403

∣∣ ∣∣ 16 24861

16 38279

∣∣ ∣∣ 16 24951

16 38117

∣∣
179 : cphkphhnmxgtwwxtrowxevdrp13∣∣ 14 6226

14 9340

∣∣ ∣∣ 14 6246

14 9363

∣∣ ∣∣ 15 12490

15 18751

∣∣ ∣∣ 15 12449

15 18716

∣∣
180 : mxgtwxgroxhhnnphdrordtwrdv∣∣ 16 24749

16 38715

∣∣ ∣∣ 16 24801

16 38875

∣∣ ∣∣ 16 24863

16 39171

∣∣ ∣∣ 16 24865

16 39263

∣∣ ∣∣ 16 24853

16 39287

∣∣ ∣∣ 16 24659

16 38817

∣∣ ∣∣ 16 24627

16 38537

∣∣
181 : nphhncxtvkxtrowxsmwxtfphhn∣∣ 14 6239

14 9334

∣∣ ∣∣ 15 12504

15 18680

∣∣ ∣∣ 14 6269

14 9349

∣∣ ∣∣ 14 6262

14 9362

∣∣ ∣∣ 15 12502

15 18715

∣∣ ∣∣ 15 12491

15 18705

∣∣ ∣∣ 13 3117

14 9341

∣∣
182 : cpdwrdtvkplrpevdtwrkphdvnp13∣∣ 16 24692

16 37009

∣∣ ∣∣ 16 24719

16 37010

∣∣ ∣∣ 16 24742

16 37013

∣∣ ∣∣ 16 24829

16 37049

∣∣ ∣∣ 16 24705

16 37079

∣∣ ∣∣ 16 24685

16 37019

∣∣
183 : vdrphoxgrovdwxtxerordrphoxe∣∣ 17 37455

17 87387

∣∣ ∣∣ 17 37563

17 87389

∣∣ ∣∣ 17 37919

17 87757

∣∣ ∣∣ 17 37873

17 88331

∣∣ ∣∣ 17 37837

17 88325

∣∣ ∣∣ 17 37595

17 88101

∣∣ ∣∣ 17 37457

17 87859

∣∣
184 : cphphkphowpnplwxtxhdwxtxhdv∣∣ 16 18983

16 43316

∣∣ ∣∣ 16 18990

16 43329

∣∣ ∣∣ 16 18967

16 43357

∣∣ ∣∣ 16 18949

16 43355

∣∣ ∣∣ 16 18945

16 43349

∣∣ ∣∣ 16 18938

16 43324

∣∣
185 : cpdwrkphdrorncxtvkxtvnmxhhn∣∣ 16 24656

16 36934

∣∣ ∣∣ 16 24725

16 36997

∣∣ ∣∣ 16 24719

16 37010

∣∣ ∣∣ 16 24703

16 37038

∣∣ ∣∣ 15 12336

15 18532

∣∣ ∣∣ 16 24662

16 37071

∣∣ ∣∣ 16 24618

16 36984

∣∣ ∣∣ 13 3080

13 4619

∣∣
186 : nphncpdwwxtvkpkmwxttxhlfphn∣∣ 16 23193

16 37773

∣∣ ∣∣ 16 23221

16 37867

∣∣ ∣∣ 16 23075

16 37781

∣∣ ∣∣ 16 22839

16 37587

∣∣ ∣∣ 16 22963

16 37585

∣∣
187 : mxermxtrovhowplrperowxvovdv∣∣ 15 11442

15 20323

∣∣ ∣∣ 15 11454

15 20351

∣∣ ∣∣ 15 11438

15 20380

∣∣ ∣∣ 15 11428

15 20384

∣∣ ∣∣ 15 11405

15 20370

∣∣
188 : mxsmwxtrovhnphhnperowxtvkxv∣∣ 16 23063

16 37725

∣∣ ∣∣ 16 23203

16 38068

∣∣ ∣∣ 15 11613

15 19063

∣∣ ∣∣ 15 11659

16 38395

∣∣ ∣∣ 15 11621

15 19197

∣∣ ∣∣ 16 23161

16 38233

∣∣ ∣∣ 16 23008

16 37819

∣∣ ∣∣ 14 5748

14 9443

∣∣
189 : rkphncpdwrdtvdewxgtxhlfphko∣∣ 16 25017

16 38125

∣∣ ∣∣ 15 12479

17 76945

∣∣ ∣∣ 17 49711

17 77587

∣∣ ∣∣ 17 49625

17 77519

∣∣ ∣∣ 16 24821

16 38611

∣∣ ∣∣ 16 24830

16 38552

∣∣ ∣∣ 17 49701

17 76959

∣∣ ∣∣ 16 24939

16 38189

∣∣
190 : wxwwpnormxvphmxvphmxvornpltxt∣∣ 16 18761

16 43265

∣∣ ∣∣ 16 18968

16 43357

∣∣ ∣∣ 16 18992

16 43377

∣∣ ∣∣ 16 19016

16 43438

∣∣ ∣∣ 16 18942

16 43416

∣∣ ∣∣ 16 18783

16 43322

∣∣
191 : mxernovhoxgtwwpltwrdrpernovdv∣∣ 15 12490

15 18704

∣∣ ∣∣ 16 25007

16 37422

∣∣ ∣∣ 16 24993

16 37432

∣∣ ∣∣ 16 24965

16 37447

∣∣ ∣∣ 15 12480

15 18709

∣∣
192 : vdtvkplvnperowxtrovhnmwpkmwxe∣∣ 15 12433

15 19008

∣∣ ∣∣ 16 24861

16 38193

∣∣ ∣∣ 16 24733

16 38521

∣∣ ∣∣ 16 24583

16 38565

∣∣ ∣∣ 16 24739

16 38013

∣∣
193 : mxtwxvmxgrphkphphkphordvmxtwxv∣∣ 15 9473

15 21673

∣∣ ∣∣ 16 18945

16 43416

∣∣ ∣∣ 13 2367

14 10879

∣∣ ∣∣ 15 9419

14 10929

∣∣ ∣∣ 15 9425

13 5449

∣∣ ∣∣ 15 9445

14 10837

∣∣
194 : cphdvmxernovhnordtrowpkmwxgtwx13∣∣ 17 50729

17 74899

∣∣ ∣∣ 17 50733

17 74923

∣∣ ∣∣ 17 50665

17 75031

∣∣ ∣∣ 17 50621

17 75051

∣∣ ∣∣ 17 50539

17 74947

∣∣ ∣∣ 17 50717

17 74837

∣∣
195 : cphdvnphhnnornowwpltwwxewxgtwx13∣∣ 16 24992

16 37429

∣∣ ∣∣ 16 24992

16 37448

∣∣ ∣∣ 16 24991

16 37448

∣∣ ∣∣ 16 24981

16 37441

∣∣ ∣∣ 16 24979

16 37438

∣∣
196 : cphnphdrordtwxtrowplexhhmxtrmx13∣∣ 16 22821

16 40817

∣∣ ∣∣ 17 45737

17 81639

∣∣ ∣∣ 17 45799

17 81717

∣∣ ∣∣ 15 11417

15 20469

∣∣ ∣∣ 17 45483

17 81849

∣∣ ∣∣ 17 45513

17 81727

∣∣ ∣∣ 16 22773

16 40842

∣∣
197 : dewpnmwpkornphnphdvmxtrowxtwxtv∣∣ 16 21811

15 20283

∣∣ ∣∣ 15 10921

13 5071

∣∣ ∣∣ 15 10922

15 20287

∣∣ ∣∣ 13 2733

16 40683

∣∣ ∣∣ 14 5459

16 40705

∣∣
198 : cphdrorkphdvnphhncpltwwxewxgtwx13∣∣ 16 24994

16 37504

∣∣ ∣∣ 16 25033

16 37521

∣∣ ∣∣ 16 25069

16 37624

∣∣ ∣∣ 16 25070

16 37700

∣∣ ∣∣ 16 25051

16 37717

∣∣ ∣∣ 16 25008

16 37645

∣∣ ∣∣ 16 24993

16 37614

∣∣ ∣∣ 16 24990

16 37595

∣∣
199 : cphkphhnowwpltwwxewxevdvmxsornp13∣∣ 16 24621

16 36920

∣∣ ∣∣ 16 24648

16 36926

∣∣ ∣∣ 16 24644

16 36981

∣∣ ∣∣ 16 24623

16 36975

∣∣ ∣∣ 16 24613

16 36961

∣∣ ∣∣ 16 24615

16 36949

∣∣
200 : mxernordfplvkxtrowxsmwpndgrnovdv∣∣ 16 25007

16 37428

∣∣ ∣∣ 16 25037

16 37434

∣∣ ∣∣ 16 25036

16 37453

∣∣ ∣∣ 16 24968

16 37449

∣∣ ∣∣ 15 12499

16 37431

∣∣ ∣∣ 16 25003

16 37429

∣∣
201 : cpdwwxvowxtwwpdvcphnorkphnmwpnmx13∣∣ 17 45657

17 81552

∣∣ ∣∣ 15 11424

15 20409

∣∣ ∣∣ 15 11412

15 20421

∣∣ ∣∣ 13 2849

13 5098

∣∣
202 : cplvnpetwxevdewxsmxhltwrhnorkornp13∣∣ 17 49729

17 76853

∣∣ ∣∣ 17 49725

17 76925

∣∣ ∣∣ 17 49687

17 77001

∣∣ ∣∣ 17 49665

17 76919

∣∣
203 : cpdwrkphlexhhncpltwwxewxsornovdvnp13∣∣ 14 6157

15 18495

∣∣ ∣∣ 16 24619

16 36983

∣∣ ∣∣ 12 1535

14 9233

∣∣ ∣∣ 13 3073

11 1153

∣∣ ∣∣ 13 3079

15 18493

∣∣

77



204 : cphkoroxhhdtvdttwwpltvdexhdvnorkphn∣∣ 16 25009

16 37474

∣∣ ∣∣ 16 25025

16 37494

∣∣ ∣∣ 16 25003

16 37537

∣∣ ∣∣ 16 24979

16 37554

∣∣ ∣∣ 16 24974

16 37518

∣∣ ∣∣ 16 24979

16 37508

∣∣
205 : rnmxhdvcphnkxtrowxtrowxsnphlexhdvno∣∣ 13 3111

14 9643

∣∣ ∣∣ 14 6223

12 2415

∣∣ ∣∣ 14 6175

14 9669

∣∣ ∣∣ 13 3093

14 9649

∣∣ ∣∣ 14 6199

14 9646

∣∣
206 : cphkotxhltrnperowpndewxewwxtrovhnmx13∣∣ 16 24721

16 37031

∣∣ ∣∣ 16 24664

16 37177

∣∣ ∣∣ 16 24634

16 37144

∣∣ ∣∣ 16 24677

16 37062

∣∣ ∣∣ 16 24690

16 37044

∣∣
207 : cpdwwxtrmxewwpltwwpkornphdvdewpnnphn∣∣ 16 23217

16 38020

∣∣ ∣∣ 16 23241

16 38044

∣∣ ∣∣ 16 23270

16 38076

∣∣ ∣∣ 16 23268

16 38085

∣∣ ∣∣ 16 23254

16 38089

∣∣ ∣∣ 16 23206

16 38046

∣∣ ∣∣ 16 23207

16 38022

∣∣
208 : nphhnmxgtwwpltvdtrowxewwpltwrdvnphhn∣∣ 16 24963

16 37595

∣∣ ∣∣ 15 12507

15 18826

∣∣ ∣∣ 16 25063

16 37717

∣∣ ∣∣ 14 6251

16 37787

∣∣ ∣∣ 14 6215

16 37633

∣∣
209 : wxwwplrphoxevdrphmxvphoxevdrphowpltxt∣∣ 17 36943

17 87557

∣∣ ∣∣ 17 37211

17 87579

∣∣ ∣∣ 17 37723

17 87767

∣∣ ∣∣ 17 37693

17 87843

∣∣ ∣∣ 14 4675

15 21937

∣∣ ∣∣ 14 4659

14 10963

∣∣
210 : cpdwrdtvdttwxgtwwpltvkphnnornmxhhncphn∣∣ 17 49229

17 73898

∣∣ ∣∣ 16 24615

16 36950

∣∣ ∣∣ 16 24617

16 36955

∣∣ ∣∣ 16 24610

16 36959

∣∣ ∣∣ 16 24608

16 36952

∣∣ ∣∣ 16 24612

16 36949

∣∣
211 : mxhdvmxhdvkplrowplrowplrowpkmxhdvmxhdv∣∣ 13 2751

13 5436

∣∣ ∣∣ 9 175

11 1345

∣∣ ∣∣ 11 699

13 5375

∣∣ ∣∣ 14 5465

12 2719

∣∣
212 : cphdtwwxewwpltwrdvmxevdfphkornorkphlfplv∣∣ 15 12498

15 18713

∣∣ ∣∣ 16 25001

16 37426

∣∣ ∣∣ 17 50007

17 74857

∣∣ ∣∣ 16 24997

16 37479

∣∣ ∣∣ 16 24970

16 37463

∣∣
213 : cphdvnphhkphlfphlfphkmwwpltwwxttvdtvkxtv∣∣ 15 12489

15 18717

∣∣ ∣∣ 17 49963

17 74882

∣∣ ∣∣ 16 24972

16 37447

∣∣ ∣∣ 15 12485

15 18719

∣∣
214 : cpltvdvmxewwpltwwpkornphdvdewxtvnornornp13∣∣ 16 23207

16 38010

∣∣ ∣∣ 15 11617

15 19016

∣∣ ∣∣ 16 23257

16 38092

∣∣ ∣∣ 15 11618

15 19061

∣∣ ∣∣ 16 23228

16 38121

∣∣ ∣∣ 16 23210

16 38116

∣∣ ∣∣ 16 23203

16 38069

∣∣ ∣∣ 16 23198

16 38027

∣∣
215 : cphkphdvnmwxewwpltvdtrowxewwpltvdfphkornp13∣∣ 15 12355

15 18520

∣∣ ∣∣ 16 24738

16 37070

∣∣ ∣∣ 16 24732

16 37120

∣∣ ∣∣ 17 49443

17 74242

∣∣ ∣∣ 17 49401

17 74245

∣∣ ∣∣ 16 24693

16 37104

∣∣
216 : cpdwwxtvdfpltwxewwpdwrdrphhnorkxvnphkphdrp13∣∣ 16 23192

16 37975

∣∣ ∣∣ 16 23212

16 37978

∣∣ ∣∣ 13 2901

13 4753

∣∣ ∣∣ 15 11601

15 19041

∣∣ ∣∣ 16 23189

15 19039

∣∣ ∣∣ 15 11595

16 38027

∣∣
217 : cphdvnornovhnorkphkphdvnmwxewxgtwxgtwxgtwx13∣∣ 15 12342

15 18528

∣∣ ∣∣ 13 3085

13 4633

∣∣ ∣∣ 15 12337

15 18532

∣∣ ∣∣ 15 12337

15 18528

∣∣
218 : mxsmwxtrorkphnmxevdrphhoxevdvnphkorowxtvkxv∣∣ 16 23222

16 38119

∣∣ ∣∣ 16 23256

16 38121

∣∣ ∣∣ 16 23226

16 38139

∣∣
219 : nphdvmxernorkphdtwwxtrowxttwxhhkornovdvmxhhn∣∣ 16 24834

16 38551

∣∣ ∣∣ 15 12415

15 19292

∣∣ ∣∣ 15 12398

15 19292

∣∣ ∣∣ 16 24829

16 38553

∣∣
220 : rnmxhhkphdvnperowxttwwxttwwxtrovhnmxhhkphdvno∣∣ 15 12493

15 18793

∣∣ ∣∣ 15 12508

15 18828

∣∣ ∣∣ 13 3117

15 18805

∣∣
221 : cphnphnmwpkormxtvdewpnovdvnplrowxtwxtvkpltxhdv∣∣ 15 10921

15 20287

∣∣ ∣∣ 16 21861

16 40583

∣∣ ∣∣ 15 10923

15 20300

∣∣

78



12 References

[BGKT] M. Boshernitzyn, G. Galperin, T. Kruger, S. Troubetzkoy, Peri-

odic Billiard Trajectories are Dense in Rational Polygons, Trans. A.M.S.
350 (1998) 3523-3535

[G] E. Gutkin, Billiards in Polygons: Survey of Recent Results , J. Stat.
Phys. 83 (1996) 7-26

[GSV], G.A Galperin, A. M. Stepin, Y. B. Vorobets, Periodic Billiard Tra-

jectories in Polygons , Russian Math Surveys 47 (1991) pp. 5-80

[H] W.P. Hooper, Periodic Billiard Paths in Right Triangles are Unstable,
Geometriae Dedicata (2006) to appear

[HH] L.Halbeisen and N. Hungerbuhler, On Periodic Billiard Trajectories

in Obtuse Triangles, SIAM Review 42.4 (2000) pp 657-670

[M] H. Masur, Closed Trajectories for Quadratic Differentials with an Appli-

cation to Billiards , Duke Math J. 53 (1986) 307-314

[MT] H. Masur and S. Tabachnikov, Rational Billiards and Flat Structures,
Handbook of Dynamical Systems 1A (2002) editors: B. Hassleblatt and A.
Katok

[S1] R. Schwartz, Obtuse Triangular Billiards I: Near the (2, 3, 6) Trian-

gle, Journal of Experimental Mathematics (2006) to appear

[T] S. Tabachnikov, Billiards , SMF Panoramas et Syntheses, 1 (1995)

[Tr] S. Troubetzkoy, Billiards in Right Triangles , preprint 2004.

[V] W. Veech, Teichmuller Curves in Moduli Space: Eisenstein Series and

an Application to Triangular Billiards, Invent Math 97 (1992) 341-379

[W] S. Wolfram, Mathematica: A System for Doing Mathematics by Com-

puter , Wolfram Press (2000)

79


