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Abstract

Let Sǫ denote the set of Euclidean triangles whose two small angles
are within ǫ radians of π

6 and π
3 respectively. In this paper we prove

two complementary theorems:

• For any ǫ > 0 there exists a triangle in Sǫ which has no periodic
billiard path of combinatorial length less than 1/ǫ.

• Every triangle in S1/400 has a periodic billiard path.

1 Introduction

Let T be a triangle−more precisely, a triangular region in the plane−with
the shortest edge labelled 1, the next shortest edge labelled 2, and the longest
edge labelled 3. A billiard path in T is an infinite polygonal path {si} ⊂ T ,
composed of line segments, such that each vertex si ∩ si+1 lies in the interior
of some edge of T , say the with edge, and the angles that si and si+1 make
with this edge are complementary. (See [G], [MT] and [T] for surveys on
billiards.) The sequence {wi} is the orbit type. A periodic billiard path
corresponds to a periodic orbit type. The combinatorial length of the periodic
billiard path is the length of the minimal period of the orbit type.

In 1775 Fagnano proved that the combinatorial orbit 123 (repeating) de-
scribes a periodic orbit on every acute triangle. It is an exercise to show

∗ This research was supported by N.S.F. Grant DMS-0305047, by a Guggenheim Fel-
lowship, and by the Ruth M. Davis Endowment
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that 312321 (repeating) describes a periodic orbit on all right triangles. (See
[GSV], [H], [Ho], and [Tr] for some deeper results on right angled billiards.)
A rational triangle−i.e. a triangle whose angles are all rational multiples of
π−has a dense set of periodic billiard paths [BGKT]. (See also [M].) The the-
ory of rational billiards has deep connections to Riemann surface theory−see
e.g. [V]−and also the many references in [MT].

In [GSV] and [HH], some infinite families of periodic orbits, which work
for some obtuse irrational triangles, are produced. Aside from these results,
very little is known about the obtuse (irrational) case of triangular billiards.
The purpose of this paper is to point out some unexpected complexity in
this case. We view this paper as an indication of the depth of the triangular

billiards problem, a problem from the 18th century which asks if every triangle
admits a periodic billiard path.

Pat Hooper and I wrote McBilliards, 1 a graphical user interface which
searches for periodic billiard paths in triangles and then organizes the data
in an efficient display. The results in this paper, and many of the ideas for
the proofs, were discovered using McBilliards.

Let Sǫ denote the set of obtuse triangles T such that the jth angle of T
is within ǫ radians of jπ/6 for j = 1, 2. Thus triangles in Sǫ are very close
to T∞ when ǫ is small. Our first result is:

Theorem 1.1 For any ǫ > 0 there exists a triangle in Sǫ which has no

periodic billiard path of combinatorial length less than 1/ǫ.

To complement Theorem 1.1 we prove:

Theorem 1.2 Every triangle in S1/400 has a periodic billiard path.

Theorem 1.2 is not optimal. Our point is just to get an effective estimate
on the size of the neighborhood covered. Theorem 1.2 is the main step in
proving that a triangle has a periodic billiard path provided that all its angles
are at most 100 degrees. We have now completed the proof of this result.
See [S1] and [S2]. Also, we have written a java applet [S3] which clearly
illustrates both Theorem 1.2 and the 100 degree theorem. Using McBilliards,
we can see that (probably) a triangle has a periodic billiard path if its angles
are less than 5π/8 (or 112.5 degrees) but beyond that we cannot yet decide.

1One can download McBilliards from my website www.math.umd.edu/∼res
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In terms of the above result, T∞ is unique amongst the right triangles.
The right angled isosceles triangle has the property that any triangle suffi-
ciently close to it has one of 9 combinatorial types of billiard path; and any
other right triangle has the property that any triangle sufficiently close to it
has one of 2 combinatorial types of billiard path.

It seem experimentally that the obtuse isosceles triangle with small angle
π/2n satisfies a result like Theorem 1.1. Here n = 3, 4, 5.... There are sporadic
non-isosceles examples as well, such as the obtuse triangle with small angles
(π/6, π/12). These triangles are all Veech triangles [MT] and we think that
there is some connection between Theorem 1.1 and Veech triangles. We hope
to eventually establish this, but at the moment it is just a thought.

Theorems 1.1 and 1.2 complement each other. Each one makes the other
one look more surprising. We now describe another related pair of results
like this.

Theorem 1.3 Let {Tn} be a sequence of triangles with angles

π

6
+ ǫn;

π

3
− ǫn − ιn;

π

2
+ ιn

with ǫn and ιn positive. Suppose that lim ǫn = 0 and lim ιn/ǫn = 0. Then

limLn = ∞, where Ln is minimal combinatorial length of a periodic billiard

path on Tn.

Theorem 1.4 Let {Tn} be a sequence of triangles with angles

π

6
+ ǫn;

π

3
− ǫn − ιn;

π

2
+ ιn

Suppose that lim ǫn, ιn = 0 and inf ιn/ǫn > 0. Then supLn <∞, where Ln is

minimal combinatorial length of a periodic billiard path on Tn.

We can certainly take the sequence in Theorem 1.3 to be a rational. Thus,
even though periodic orbits are dense on a rational triangle, Theorem 1.3
demonstrates that the shortest periodic billiard path on a rational triangle
might be extremely long even when the geometry of the triangle is bounded.

Now we illustrate Theorem 1.2. The parameter space ∆ of obtuse trian-
gles is itself a triangle. (x, y) ∈ ∆ represents the triangle, whose acute angles
are x and y. For each word W we let O(W ) ⊂ ∆ denote the set of triangles
for which W describes a periodic billiard path. We call O(W ) an orbit tile.
We will cover S1/400 with two infinite and interlocking families of orbit tiles,
the Y family and the Z family . See §3 for definitions of these families.
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Figure 1

Figure 1 shows a plot taken from McBilliards. We show plots of some
of the Y tiles and some of the Z tiles together. The Y family alternates in
color between light and lighter. The Z family alternates in color between
dark and darker. The plot takes place in a neighborhood of p∞ = (π

6
, π

3
), the

point which represents T∞. The pattern continues in the obvious way, and
the “ridge” between the two families approaches p∞ parabolically.

One thing that is not clear from the picture is that our tiles overlap each
other rather than abut. (This is the usual difficulty with drawing opaque
objects.) Also, the apparent straight lines in Figure 1 are actually not straight
lines. This nonlinearity accounts for most of the complexity in the proof of
Theorem 1.2.

Here is an overview of the paper. Our basic idea in proving Theorem 1.2 is
simply to capture as much of the structure of Figure 1 as is necessary. In some
places we rely on Mathematica [W] for symbolic manipulation, though in the
most nontrivial cases we will explain mathematically how our formulas are
derived. In §2 we will give background information. In §3 we will introduce
the words {Yk} and {Zk}. These words are responsible for the Y tiles and
Z tiles discussed above. We will also compute some combinatorial objects
associated to our words.

In §4 we will prove Theorem 1.4 using the Y family of tiles. Theorem 1.4
is a stepping stone to the proof of Theorem 1.2. Our basic idea is to use the
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Z tiles to fill in the gaps left over by the Y tiles. In order to get this program
to work, we need a few technical estimates, and we make these in §5. The
reader should certainly just skim these results on the first pass through the
paper. In §6 we analyze the Z tiles and thereby finish the proof of Theorem
1.2.

Theorem 1.3 immediately implies Theorem 1.1 and the proof of Theorem
1.3 is independent from the proof of Theorems 1.2 and 1.4. The reader
interested only in Theorem 1.3 can just read §2.1 and §7-8. Our idea for
Theorem 1.3 is to look at geometric limits of potential counterexamples to
the theorem and see how they relate to the (2, 3, 6) Euclidean tiling.

One key step in our proof of Theorem 1.3 is the result of Galperin-Stepin-
Vorobets [GSV] that T∞ does not have any stable periodic billiard trajecto-
ries. A periodic billiard path is stable if it works for an open set of triangles.
Hooper [H] has recently proved the instability result for all right triangles.
(This was another result we discovered using McBilliards.) As we mentioned
above, Theorem 1.1 is not true for other right triangles, so in light of [H] our
argument requires more than just the instability result.

The reader may wonder if the innocent looking Theorem 1.2 has a simpler
proof. Since we don’t have any better ideas currently, we can’t answer this
question. However, we note that Theorem 1.1 forces Theorem 1.2 to involve
an infinite list of words. Also, based on months of extensive experimentation
with McBilliards, we can say that our proof absolutely produces the simplest
explicit list of words which work. There are other infinite families which seem
also to work, but they are more complicated and we have not completely
analysed them.

I would like to thank Pat Hooper, Curt McMullen, Martin Schmoll, Serge
Tabachnikov, and Serge Troubetzkoy for helpful and interesting conversations
related to billiards. I would especially like to thank Pat, who is my collabora-
tor on McBilliards. Finally, I would like to thank the Max Planck Institute in
Bonn, and the University of Bonn, for providing a stimulating environment
in which the results of this paper were discovered.
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2 Preliminaries

2.1 Unfoldings

A word is a finite sequence W = (w1, ..., w2k) with no repeated indices. (We
only consider even words in this paper.) Given W and a labelled triangle T
we define a sequence T1, ..., T2k of triangles, by the rule that Tj−1 and Tj are
related by reflection across the wjth edge of Tj . Here j = 2, ..., 2k. The set
U(W,T ) = {Tj}2k

j=1 is known as the unfolding of the pair (W,T ). This is a
well known construction; see [T]. Figure 2.1 shows U(Y1, T∞) and Figure 2.2
shows U(Z1, T∞). Here Y1 = (231232...) and Z1 = (312323...). These words
are the beginnings of the infinite families which we define in §3. We label
the top row of vertices of U(W,T ) as a1, a2, ..., from left to right. We label
the bottom row of vertices of U(W,T ) as b1, b2, ..., from left to right.

a1 a4 a7

a9

b1 b3 b5

b6 b9

Figure 2.1

a1

a3 a7

a9 a11 a13

b1
b2 b4 b7

b9 b13

Figure 2.2

Let V −1 denote the reverse of a word V . We say that W is a special

palindrome if W = wV wV −1, where w is a digit and V is an odd word. In
this situation, the unfolding U(W,T ) has a line of bilateral symmetry for any
T . We also require that the first and last sides of U(W,T ), for any triangle
T , are parallel to the line of symmetry and hence to each other. The words
we consider for Theorems 1.2 and 1.4 are special palindromes; the parallel
condition follows from our computations below of the so-called spine profiles.
When W is a special palindrome we rotate so that the line of symmetry of
U(W,T ) is vertical, as in Figures 2.1 and 2.2.
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We say that a centerline for W is a line segment L, perpendicular to the
line of bilateral symmetry, which joins the first and last edges of U(W,T ), and
is contained in the interior of U(W,T ). Such a line segment is horizontal.
In a fairly tautological way, W describes a periodic billiard path in T iff
U(W,T ) has a centerline. Neither U(Y1, T∞) nor U(Z1, T∞) has a centerline.
However, Figures 2.3 and 2.4 show triangles T1 and T2 such that U(Y1, T1) and
U(Z1, T2) have centerlines. In order to get a more detailed picture we only
show the left halves of our unfoldings. The right halves are mirror images.
The horizontal lines shown in Figure 2.3 and 2.4 show the boundaries of the
set of centerlines. The thickened segments will be explained below.

Figure 2.3

Figure 2.4

To show that W describes a periodic billiard path for T we just have to
verify that W is a special palindrome and then check that all the a vertices
in U(W,T ) lie above all the b vertices. We let O(W ) ⊂ ∆ denote the set of
T such that U(W,T ) has these properties. We call O(W ) an orbit tile.

We introduce the notation v ↑ w to indicate that a vertex v lies above
a vertex w for all points in a certain region of ∆. In practice, the region of
interest to us will be clear from the context. To show that O(W ) contains
a certain region of parameter space we just need to show that ai ↑ bj for
all index pairs (i, j). Given the bilateral symmetry of our tiles, we will only
consider the vertices which lie on the left half of our unfoldings.
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2.2 The Tilt and Spine Profiles

We say that a line segment of U(W,T ) is near vertical if the corresponding
line segment is vertical for U(W,T∞). Since we are working with special
palindromes, we will only consider the near vertical edges on the left. Also,
we omit the left and center vertical edges, because these remain vertical with
respect to any triangle. There are 3 near vertical segments of U(Y1, T ) and
7 near vertical segments of U(Z1, T ). See Figures 2.3 and 2.4.

Let θ′j denote the counterclockwise angle through which the y axis must
be rotated to produce a line parallel to the jth near vertical. We take θ′j mod
π, so that we don’t have to worry about the orientations of our edges. The
angle θ′j is a function of a point (x, y) ∈ ∆, the parameter space. Given our
normalization, we have integers (M ′

j , N
′

j) so that

θ′(x, y) = M ′

ix+N ′

iy (1)

We call the collection {(M ′

j , N
′

j)} the tilt profile of the word. The tilt profiles
for Y1 and Z1 are respectively:

{(−2, 2), (−4,−4), (−2,−2)}. (2)

{(−2,−2), (−4,−1), (−6, 0), (−8,−2), (−6, 0), (−4, 2), (−2, 1)} (3)

We say that a triangle T is k-normalized if the kth side has length 1.
Given a palindrome W there is a unique minimal polygonal path, consisting
of k-edges, which connects a vertex on the leftmost edge of U(W,T ) to a
vertex on the middle edge. We call this path the k-spine. Figure 3.1 shows
the 2-spine of U(Y1, T∞). Figure 3.6 shows the 1-spine of U(Z1, T∞). (See
§3.)

We label the edges of the k-spine as E1, E2, .... Let θj denote the coun-
terclockwise angle though which the y axis must be rotated to produce a line
parallel to Ej . Again we work mod π. Then there are integers Mj and Nj

such that
θj(x, y) = Mjx+Njy (4)

We call the sequence {(Mj , Nj)} the k-spine profile of W .
When W is a long word it makes sense to plot the k-spine profile on the

integer lattice rather than list out a long string of integer points. Figure 3.5
shows the 2-spine profiles for Y1, Y2, Y3, Y4. Figure 3.11 shows the 1-spine
profiles for Z1, Z2, Z3. (See §3.)
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2.3 Defining Functions

Suppose that k ∈ {1, 2} is fixed. Let m ≤ n be integers such that the edges
Em, ..., En of the k-spine exist. Let λm denote the left vertex of Em and let
ρn denote the right vertex of En. Let πy denote the projection onto the yth
coordinate. We define

fmn = πy(ρn) − πy(λm). (5)

This definition of course depends on whether we take k = 1 or k = 2, but in
all cases the choice should be clear from the context. Figure 2.5 illustrates
our construction for f59 = πy(b6) − πy(a5), with respect to the word Z1.

a5

b6

Figure 2.5

Lemma 2.1

fmn(x, y) = ±
n∑

j=m

(−1)j cos(Mjx+Njy). (6)

Proof: For the purposes of derivation, let’s orient Ej so that it points

(roughly) from left to right. Let θ̂j denote the counterclockwise angle through
which the vector (0, 1) must be rotated so that it points in the same direction
as Ej . This time we work mod 2π. Let λj and ρj denote the left and right

endpoints of Ej . From basic trigonometry we have πy(λj)−πy(ρj) = cos(θ̂j).
Summing over j and using the fact that λj+1 = ρj , we have

fmn =
n∑

j=m

cos(θ̂j) = ±
n∑

j=m

cos(Mjx+Njy + ǫjπ) =

±
n∑

j=m

(−1)ǫj cos(Mjx+Njy); ǫj ∈ {0, 1}. (7)
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To finish our derivation we just have to show that the sequence {ǫj} al-

ternates. Suppose that ǫj = 0. Then θ̂j = Mjx + Njy. Let E−

j+1 denote
the edge coincides with Ej+1 but has the opposite orientation. Then Ej and
E−

j+1 both point towards vj = ρj = λj+1. But then there are integers mj

and nj such that E−

j+1 is obtained by rotating Ej about vj , through an angle
of mjx + njy. Here (mj , nj) has one of the forms (kj , 0), (0, kj), or (kj , kj),
for some kj ∈ Z. The form depends on the vertex type of vj, and kj is the
number of triangles in the unfolding which are incident to vj and between

our two edges. So, θ̂j+1 ± π has the form Mj+1x+Nj+1y. Hence ǫj+1 = 1. A
similar argument shows that ǫj+2 = 0. ♠

Remarks:
(i) The (±) out in front of Equation 6 is what we call the global sign. It is
not hard to see, for the words of interest to us in this paper, that the global
sign is positive iff E1 has negative slope.
(ii) The interested reader can use McBilliards and see these functions com-
puted automatically in the tile analyzer window. However, McBilliards
does not give Equation 6 exactly as written. The user will recognize Equa-
tion 6 as the real part of the numerator of form 1 in McBilliards. For
palindromes the complicated denominator given by McBilliards reduces to a
constant and form 1 is equal to Equation 6. The point here is that Equation
6 only works only for palindromes whereas the formula in McBilliards works
for all words.

2.4 Bounds on Partial Derivatives

We have the general bound

|∂ sin(Mx+Ny)|, |∂ cos(Mx+Ny)| ≤ max(|M |, |N |)

Here each ∂ could be either ∂x or ∂y. This gives us an absolute bound on
and kth iterated partial derivatives:

|∂kfmn| ≤
n∑

j=m

max(|Mj |k, |Nj|k). (8)

These bounds hold throughout the parameter space ∆.
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3 The Words and Their Profiles

3.1 The Y Unfoldings

In this section we introduce our words {Yk}. To describe these words, we
will draw the left halves of the unfoldings U(Yk, T∞) for k = 1, 2, 3, 4. The
obvious pattern continues.

Figure 3.1

Figure 3.2

Figure 3.3

a1 a4 a7 a10 a13 a16

a18 a20 a22 a24

b1 b3 b5 b7 b9

b12 b15 b18 b21 b24

Figure 3.4
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3.2 Profiles for the Y Family

We saw in §2 that the tilt profile for Y1 is {(−2,−2), (−4,−4), (−2,−2)}. We
re-write this as {1, 2, 1}(−2,−2). In general, the tilt profile for Yk is

{1, 2, ..., k, k + 1, k, ..., 2, 1}(−2,−2) (9)

21

43

5
4

8

2

1

6

3

7

12

1110

8

2

17

13
9

14

6 15

7

165

4

4

98

6

3

11

6 7

10

2

10

18

19

3

201

12

5
9 8

1

1

2

16

15

3 14

5

134

12

7
11

Figure 3.5

Figure 3.5 shows the 2-spine profiles for k = 1, 2, 3, 4. The grey dot is the
origin. The pattern continues in the obvious way: we get a growing ladder.
Notice that the way in which the ladder is traced out depends (mildly) on
the parity of k.

McBilliards computes these profiles automatically, and we just copied
down the pattern. We point out that the very simple repetitive nature of the
unfoldings allows us to easily predict the pattern from the first few instances.
In [S2] we explain how McBilliards does these computations in general. In
§3.5 we will explain a specialized algorithm for computing the 1-spine profiles
for the Z family. This specialized algorithm does not work in general. We
have chosen to focus on the Z family because this family is considerably
more interesting and intricate. One can reproduce the above pictures using
an algorithm similar to the one we discuss in §3.5.

12



3.3 The Z Unfoldings

Here we show the left halves of the unfoldings U(Zk, T∞) for k = 1, 2, 3, 4, 5.
Equations 12 and 13 below explain the general case.

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

a1

a3 a7

a9

a11

a13

a15

a17 a19 a21 a23 a25

b1 b5 b7 b9 b25b21b17b13

Figure 3.10

3.4 Labelled Spines for the Z Family

Let Σk be the 1-spine of U(Zk, T∞). We let E1, E2, ... be the edges of Σk,
moving from left to right. We label Ej by one of {+,−, 0} according to
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whether Ej lies on the upper boundary of U(Zk, T∞), the lower boundary, or
neither boundary. We assign a second label, in {+,−}, to Ej, according to
whether or not it has positive or negative slope. As one can see from Figure
3.6, the labelling scheme for Σ1 is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 + + + + + + 0 − 0 0 − − − − −
+ + − − + + − − + + − − + + − −

(10)

The second label sequence for Σk is +,+,−,−,+,+,−,−, ... independent
of k. We can recover U(Zk, T∞), and hence Zk, from the first label sequence
associated to Σk, as follows: Let T be the tiling of the plane by (2, 3, 6)
triangles. We draw Σk on T . Let mj be the midpoint of Ej . For each j we
color in all the triangles X of T such that X contains a vertex with Ej and
X intersects:

• (+) case: the vertical downward ray starting at mj .

• (0) case: the vertical line through mj .

• (−) case: the vertical upward ray starting at mj.

The union of colored triangles is U(Zk, T∞).
To describe the first labelling sequence in general we define

A = 0,+,+,+,+,+,+, 0; C = −,−,−,−;

B− = −, 0, 0,−; B0 = 0,+, 0,−; B+ = 0,+,+, 0. (11)

We also write Xk = X...X, repeated k times. For the odd words we have

Σ2k−1 : ABk−1
+ Bk

−
C; k = 1, 2, 3, 4... (12)

For the even words we have

Σ2k : ABk−1
+ B0B

k
−
C; k = 1, 2, 3, 4.... (13)

3.5 Computing the Z Spine Profiles

Now we explain our specialized algorithm which computes the spine profiles
for the sequence above. Again, we remark that McBilliards uses a different
and more general algorithm. One can use the unfold window in McBilliards
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to check that our computations here match the general computations done
there.

We define the (mj , nj) pairs by the rule:

(Mk, Nk) =
k∑

j=1

(mj, nj). (14)

It turns out that (m1, n1) = (0,−1) in all cases. For j > 1 the pair (mj , nj)
associated to Ej depends on the labels of Ej−1 and Ej . Of the 36 possibilities,
18 occur in practice. Here are 9 of them:
∣∣∣∣∣∣∣∣∣

− −
− −

2
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

+ +
+ −

0
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0 −
− −

2
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0 +
+ −

0
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

0 0
+ −

0
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

+ +
− +

0
4

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

− −
+ +

2
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

− 0
+ +

2
2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

+ 0
+ −

0
2

∣∣∣∣∣∣∣∣∣
(15)

The other 9 rules can be derived from symmetry: If we reverse all the signs
of the edge labels, we also reverse the signs of the vectors. For each of the
first 8 listed rules, one can find either the rule or its “negative” on Figure
3.6. The 9th rule appears on Figure 3.7.

Figure 3.6

Here we use our algorithm to obtain the 1-spine profile for Z1. We write
the (m,n) pairs below the labels.

0 + + + + + + 0 − 0 0 − − − − −
+ + − − + + − − + + − − + + − −
0 −2 0 −2 0 −2 0 −2 0 2 0 2 0 2 0 2
−1 −2 2 −2 4 −2 2 −2 −2 2 2 2 −2 2 −4 2

(16)
Once we compute the 1-spine profile for Zk we can compute the tilt profile

{(M ′

j, N
′

j)} according to the formula:

(M ′

j , N
′

j) =
1

2
(M2j+2, N2j+2) +

1

2
(M2j+3, N2j+3); j = 1, 2, 3... (17)
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8 3
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24

38

7

24

6

8

9

10

11

7

12

13

5

3
15

14

1

1

1

18

10

22

19

15

16

5

17

24

23

20

21

6

9

11

12

13

14

9

11

5

12
14

16

13

15
17

18

19

20

16

10

6

Figure 3.11

Figure 3.11 shows the 1-spine profiles for Z1, Z2, Z3 in black, and the tilt
profiles in grey. The pattern continues in the obvious way.
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4 Proof of Theorem 1.4

4.1 Proof Outline

As in the introduction, p∞ = (π
6
, π

3
) denotes the point in ∂∆ corresponding

to our favorite triangle, T∞. We work in radians. We know that acute and
right triangles have periodic billiard paths, so to prove Theorem 1.2 it suffices
to consider (x, y) ∈ ∆ with x+ y > π

2
.

Figure 4.1

Figure 4.1, which is a plot taken from McBilliards, shows the orbit tiles
O(Y1), O(Y2), O(Y3), O(Y4), with the big tile O(Y1) partially obscuring the
others. The plot takes place in a neighborhood of p∞. First of all we prove

Lemma 4.1 Let S− ⊂ ∆ denote those points (x, y) such that

x+ y ∈ (
π

2
,
π

2
+

1

144
); x ∈ [

π

15
,
π

6
].

Then S− ⊂ O(Y1).

After Lemma 4.1 we just have to worry points (x, y) with x > π/6.
Let Ψk ⊂ ∆ be the triangular region with vertices:

1 : p∞; 2 : p∞ +
(
0,

−1

4(k + 2)2

)
3 : p∞ +

(
2k − 1

8(k + 2)2
,
−2k − 1

8(k + 2)2

)
.

(18)
Figure 4.2 shows a schematic picture of Ψk which retains some of the basic
geometric features.
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• The topmost edge of Ψk, which we call ψk, has slope

−2k − 1

2k − 1
= −1 − 2

2k − 1
∈ (−1 − 2

k
,−1) (19)

• The bottom edge of Ψk has slope −1.

• For each (x, y) ∈ Ψk there is some (x, y0) ∈ ∂∆ such that

|y − y0| ≤
1

4(k + 2)2
. (20)

Most of this chapter is devoted to proving

Lemma 4.2 (Containment) Ψk ⊂ O(Yk) for all k = 1, 2, 3....

Our proof has 6 steps. At the end of the chapter we will modify our proof of
the Containment Lemma so as to give a proof of Lemma 4.1. The Contain-
ment Lemma and Lemma 4.1 immediately imply Theorem 1.4. The union⋃
O(Yk) unfortunately does not cover Sǫ − S− for any ǫ > 0. This is why we

need the Z family for Theorem 1.2.
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4.2 Step 1

Lemma 4.3 All the near vertical lines on the left hand side of U(Yk, T ) have

negative slope provided that T corresponds to a point in Ψk.

Proof: From the symmetry of the tilt profile in Equation 9 it suffices to take
j ≤ k + 1. In this case, our counterclockwise rotation angle is

θ′j = M ′

jx+N ′

jy = −2j(x+ y) ∈ −2j(
π

2
− 1

4(k + 2)2
,
π

2
) ∈ (0,

π

20
) mod π.

(21)
This completes the proof ♠

We will use Lemma 4.3 to eliminate all but 12 pairs. We will carry out
Step 1 for k = 4. The general case follows the same pattern.

a1 a4 a7 a10 a13 a16

a18 a20 a22 a24

b1 b3 b5 b7 b9

b12 b15 b18 b21 b24

Figure 3.4

We write ai|aj if reflection in a near vertical line swaps ai and aj , and ai

lies on the left of this line of symmetry. In this case, Lemma 4.3 implies that
aj ↑ ai throughout Ψ4. We write ai|aj |ak if ai|aj and aj |ak. Working greedily
from the left we have

a1|a7|a13 a2|a6|a8|a12|a14 a3|a5|a9|a11|a15 a4|a10|a16

a17|a19|a21|a23 a18|a22 a20|a24

We have eliminated everything but a1, a2, a3, a4, a17, a18, a20. Since a1b1 is
vertical and T is obtuse, a2 ↑ a1. Since the angles of T are within

sup
k∈N

1

4(k + 2)2
=

1

36
(22)

of the angles of T∞ we clearly have a1 ↑ a3. (Here we are giving an estimate
which works for all k.) Since x < π/4 the point a4 lies above the line a3a5.
This eliminates a4. We now have eliminated everything but a3, a17, a18, a20.
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Figure 3.4

Things work in the opposite direction for the b vertices. If bi|bj we have
bj ↑ bi This eliminates bi (rather than bj) from consideration. We have

b1|b5|b9 b2|b4|b6|b8|b10 b3|b7|b11
b12|b18|b24 b13|b17|b19|b23 b14|b16|b20|b22 b15|b21

We have eliminated everything but b9, b10, b11, b21, b22, b23, b24. Since a16b10
has negative slope and our triangles are obtuse, b10b11 has positive slope.
Hence b11 ↑ b10. This eliminates b10. Given the estimate in Equation 22 and
the fact that a24b24 is always vertical, we clearly have b23 ↑ b21, b22, b23. We
omit the easy details. We have now eliminated everything but b9, b11, b23.

3 3k + 5 3k + 6 3k + 8
(3) (17) (18) (20)

2k + 1 (9) 6 6 6 6
2k + 3 (11) 4 2 3 2
6k − 1 (23) 5 5 5 5

(23)

Equation 23 shows a chart of the 12 pairs, with the a vertex indices
running across the top and the b vertex indices running down the left side.
The numbers in parentheses indicate the index values when k = 4. The
numbers 2, 3, 4, 5, 6 placed in the middle of the grid indicate the steps in
which the remaining pairs are analyzed. Our chart is designed for k even.
When k is odd, the value 6k − 1 must be changed to 6k − 2.

4.3 Step 2

We will give the argument in the case k = 4. The general case is essentially
identical. We have b11|a20. By Lemma 4.3 we have a20 ↑ b11 throughout
Ψ4. The line L through a17 and b11 bisects the 5th and 6th near verticals in
the unfolding. Since these near verticals have negative slope, L has positive
slope. Hence a17 ↑ b11 throughout Ψk.
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4.4 Step 3

Let g = πy(a3k+6)−πy(b2k+3). Taking m = 2k+4 and n = 2k+6 in Equation
6, and using the fact that cos is an even function, we get

(−1)kg(x, y) = − cos(2kx+2ky)+cos((2k+2)x+2ky)−cos(2kx+(2k−2)y)
(24)

Figure 4.3 highlights the relevant 3 points on the 2-spine profile for the cases
k = 3, 4.
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Figure 4.3

Lemma 4.4 g(x, y) > 0 when (x, y) ∈ ψk, the upper edge of Ψk.

Proof: For ease of exposition we take k even. We can parameterize ψk as

x =
π

6
+ t(2k − 1); y =

π

3
− t(2k + 1); t ∈ [0,

1

8(k + 2)2
]. (25)

We compute that
g(x, y) = cos(2t) − cos(4kt) > 0 (26)

For t as in Equation 25. ♠

Lemma 4.5 ∂yg(x, y) < 0 for all (x, y) ∈ Ψk.

Proof: Again we take k even for ease of exposition. We have

∂yg(x, y) = 2k sin(α) − 2k sin(β) + (2k − 2) sin(γ), (27)

where
α = 2k(x+ y); β = α + 2x; γ = α− 2y. (28)
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The conditions (x, y) ∈ Ψk force the bounds

x+y ∈ (
π

2
− 1

4(k + 2)2
,
π

2
); x ∈ (

π

6
,
π

6
+

2k − 1

8(k + 2)2
); y ∈ (

π

3
− 2k − 1

8(k + 2)2
,
π

3
).

(29)
This easily leads to the bounds

α ∈ (− 1

16
, 0); 2x ∈ (

π

3
,
π

2
); 2y ∈ (

π

2
,
4π

3
).

Hence
sin(α) < 0; sin(β) > 0; sin(γ) < 0

and all three terms in Equation 27 are negative. ♠

Lemmas 4.4 and 4.5 immediately imply that g > 0 on Ψk. This completes
Step 3. With a view towards Lemma 4.1 we switch tracks and take k = 1 for
a moment.

Lemma 4.6 g(x, y) > 0 if (x, y) ∈ ∂∆ and x < (0, π/6) and ∂yg(x, y) < 0
for all (x, y) ∈ S−.

Proof: For (x, y) ∈ ∂∆ we have y = π/2 − x. Equation 24 simplifies to
g(x, y) = 2 cos(2x) − 1 > 0. The positivity comes from x ∈ (0, π/6). We
have ∂yg(x, y) = 4 sin(x) cos(3x+ 2y). This expression has the same sign as
cos(3x+ 2y). But

3x+ 2y = 2(x+ y) + x ∈ (π − π

2
, π +

π

2
)

for (x, y) ∈ S−. Hence cos(3x+ 2y) < 0. ♠

4.5 Step 4

We define g(x, y) = f2,2k+3 = πy(b2k+3)−πy(a3). Figure 4.4 shows the relevant
points (in white) on the 2-spine profiles, in the cases k = 3, 4. Notice that
there is a symmetry to the white points which is only broken in the last row.
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We have g = g1 + g2 where

g1 =
k∑

j=1

cos((−2j − 2)x− 2jy))− cos((−2j + 2)x− 2jy);

g2 = cos((−2k + 2)x− 2ky) − cos(−2kx− 2ky) (30)

When y = π/2−x each summand in the equation for g1 is zero and hence
g1 = 0. On the other hand g2 = −2 sin2(x). Hence

g|∂∆ = −2 sin2(x). (31)

Equation 8 gives us

|∂gy| ≤ 2
k+1∑

j=1

2j = 2(k + 1)(k + 2). (32)

Let y0 be such that (x, y0) ∈ ∂∆. Integrating Equation 32, and using Equa-
tion 20 we have

g(x, y) < −2 sin2(x) + 2(k + 1)(k + 2) × 1

4(k + 2)2
< −1

2
+

1

2
= 0. (33)

Here we are using the fact that x ∈ (π
6
, π

2
) so that −2 sin2(x) < −1/2.

4.6 Step 5

In this section we will show that b2k+3 ↑ b6k−1 throughout Ψk. This eliminates
b6k−1. Define g(x, y) = f2k+4,4k+3 = πy(b6k−1) − πy(b2k+3). Essentially the
same proof as in Step 4 shows that g(x, y) = −2 sin2(x) for (x, y) ∈ ∂∆.
Equation 32 remains true for our function g here. Actually, we get the
stronger bound: |∂yg| ≤ 2k(k + 1). The rest of the proof is as in Step 4.
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4.7 Step 6

a1 a4 a7 a10 a13 a16

a18 a20 a22 a24

b1 b3 b5 b7 b9

b12 b15 b18 b21 b24

Figure 3.4

We will do this step for k = 4. The general case is the same. Let I
denote rotation by π through the point b11. If T is an obtuse triangle then
the polygonal path b9b11a18 bends down. Hence I(a18) ↑ b9. We already know
that a18 ↑ b11 throughout Ψ4. Hence b11 ↑ I(a18). Hence b11 ↑ I(a18) ↑ b9.
This eliminates b9 from consideration.

4.8 Proof of Lemma 4.1

The proof of Lemma 4.1 follows the same steps as the proof of the Contain-
ment lemma. Steps 1,2,6 go through word for word. Step 3 goes through
word for word, with Lemma 4.6 replacing Lemma 4.4.

For Step 4 let (x, y) ∈ S−. Then let (x, y0) be the corresponding point in
∂∆. We have

g(x, y0) ≤ −2 sin2(
π

15
) < − 1

12
. (34)

On the other hand throughout ∆ we have

|∂yg| ≤ 2(1 + 1)(1 + 2) = 12. (35)

Finally,

|y − y0| <
1

144
(36)

Hence

g(x, y) < g(x, y0) + 12 × 1

144
<

−1

12
+

1

12
= 0.

In short, g(x, y) < 0. Step 5 works the same way as Step 4. This completes
the proof of Lemma 4.1.
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5 Some Technical Estimates

Here we prove some technical estimates which help us analyze how the Y
tiles and Z tiles interact.

Let vk = (xk,
π
2
− xk) = p∞ + (θk,−θk) where

−sin(5xk)

sin(7xk)
=

cos(5θk) −
√

3 sin(5θk)

cos(7θ) +
√

3 sin(7θ)
=

k

k + 1
; k ∈ N (37)

Here θk is the least positive solution and xk = π
6
+θk. It turns out ∂∆∩O(Zk)

is a segment bounded by the points vk and vk+1.

Lemma 5.1 θk < 1/(20k) for k = 1, 2, .... Also θ1 > θ2 > θ3...

Proof: Let φ(θ) denote the middle expression of Equation 37. We compute
that φ(0) = 1 and φ(π/30) = 0. Let I = [0, π/30]. We compute that
φ′′(θ) = 4P (θ)/(Q(θ)3), where Q(θ) = cos(7θ) +

√
3 sin(7θ) > 0 and

P (θ) = 61[cos(5θ) −
√

3 sin(5θ)] + 72 cos(9θ) − cos(19θ) −
√

3 sin(19θ).

We have 5θ ∈ [0, π/6], which makes the bracketed term non-negative. Since
9θ ∈ [0, π/3], the rest of the sum for P (θ) is positive. Hence φ′′ > 0 on I.

We compute that φ′(π/30) < 0. Since φ′′ > 0 on I we conclude that φ′ < 0
on I. Hence φ decreases monotonically from 1 to 0 on I. In particular, a
least positive solution θk ∈ I exists to Equation 37 for k = 1, 2, 3.... Since
the k/(k + 1) is increasing, the sequence {θk} is monotone decreasing.

We compute that φ′(1/800) < −20. Hence φ′(t) < −20 for t ∈ [0, 1/800].
We compute that φ(1/800) < 40/41. Hence θk ∈ [0, 1/800] for k ≥ 40. So

1

k
>

1

k + 1
= 1 − k

k + 1
= φ(0) − φ(θk) =

∫ θk

0
(−φ′(s))ds > 20θk.

Rearranging this equation gives us our estimate for k ≥ 40. We then show
by direct computation in Mathematica that

φ(
1

20k
) <

k

k + 1
; k = 1, ..., 40.

This result, and monotonicity, takes care of the first few cases. ♠

Let Λk denote the line of slope −1 − 4
k

through vk. It turns out that Λk

is an estimator for the edge of O(Zk) emanating from vk. Recall that ψk is
the top edge of Ψk.
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Lemma 5.2 For k ≥ 8 the point Xk = ψk ∩ Λk lies to the left of the point

ζk = ψk ∩ Ψk+1.

Proof: We compute that

ζk = p∞ + (
2k − 1

8(k + 3)2
,
−2k − 1

8(k + 3)2
). (38)

We can simplify our problem by subtracting off p∞ from all our quantities.
Looking at Equation 18 we see that it suffices to prove that the line of slope
−1 − 4

k
through (θk,−θk) intersects the segment σ whose endpoints are

(0, 0); (
2k − 1

8(3 + k)2
,
−2k − 1

8(k + 3)2
).

Since θk < 1/(20k) it suffices to prove that the line Λ′

k of slope −1− 4
k

through
( 1

20k
,− 1

20k
) intersects σ. We compute this intersection point to be

A′

k = (
2k − 1

10k(3k − 2)
,

−2k − 1

10k(3k − 2)
) (39)

We see easily that 10k(3k− 2) > 8(k+ 3)2 for k ≥ 8. Hence our intersection
point lies on σ for such values of k. ♠

Let Rk be the region bounded by ψk, by ∂∆, and by the line of slope 1
through Xk = ψk ∩ Λk. Then Rk is the shaded region shown on the right
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hand side of Figure 5.1. It turns out that we shall not need the whole tile
O(Zk) but only the intersection Ωk = O(Zk) ∩ Rk.

Recall that Sǫ denotes the set of obtuse triangles T such that the jth
angle of T is within ǫ radians of jπ/6 for j = 1, 2, 3.

Lemma 5.3 Let k ≥ 8 and let p2 ∈ Rk. The point p1 ∈ ∂∆ closest to p2 lies

within 1/(18k2) of p2. Furthermore Rk ⊂ S1/(12k).

Proof: The line Λ′

k discussed above is parallel to Λk and lies to the right of
Λk. The intersection X ′

k = Λ′

k ∩ ψk = p∞ + A′

k lies to the right of Xk. Here
A′

k is as in Equation 39, namely:

A′

k = (
2k − 1

10k(3k − 2)
,

−2k − 1

10k(3k − 2)
)

We have Rk ⊂ R′

k, where R′

k is the triangle bounded by ∂∆, by ψk, and by
the line of slope 1 through X ′

k. The vertices of R′

k are

1. p∞; 2. p∞ + A′

k; 3. p∞ + A′

k −B′

k,

B′

k = (
1

10k(3k − 2)
,

1

10k(3k − 2)
).

We remind the reader that p∞ = (π
6
, π

3
).

Vertex 3 is the point of ∂∆ closest to Vertex 2, and this distance is

2√
2(10k(3k − 2))

<
1

18k2

Moreover Vertex 2 is the point of R′

k farthest from ∂∆. This proves our first
claim.

Let Vij denote the jth coordinate of Vertex i. Let Vi3 = π − Vi1 − Vi2.
For our second claim we need to verify

∣∣∣∣Vij −
jπ

6

∣∣∣∣ ≤
1

12k
; i = 2, 3; j = 1, 2, 3.

All these bounds are easily checked and come down to the fact that

2k + 1

10k(3k − 2)
<

1

12k

as long as k ≥ 8. ♠
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6 Proof of Theorem 1.2

6.1 Proof Outline

Let Rk be as in Lemma 5.3. The sets

Ωk = O(Zk) ∩Rk k = 8, 9, 10... (40)

are the key to proving Theorem 1.2. These sets are approximately the same
as the dark regions shown in Figure 1. We will show that

• Ωk is an embedded piecewise analytic quadrilateral.

• The top edge of Ωk is the line segment bounded by vk and vk+1.

• The bottom edge of Ωk is a line segment on ψk which lies to left of Ak.

• The left and right edges of Ωk intersect ψk and ψk+1 once each.

• Below their common vertex vk+1, the right edge of Ωk+1 lies to the right
of the left edge of Ωk.

• The left edge of Ωk+1 is disjoint from the left edge of Ωk.

The left hand side of Figure 6.0 shows a topologically accurate picture of the
situation.

1

kv

v
400v
1

>
kA 175

(π/6,π/3)

8
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k+2
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k

k+1

Ψ

Ψ

Ω

k+1

k+1

Ψ8
Ω8

Figure 6.0
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Given Lemma 5.2 and the intersection properties just discussed, we see
that the union

∞⋃

k=8

(Ωk ∪ Ψk) (41)

is topologically conjugate to the picture suggested by the right hand side of
Figure 6.0 and therefore covers the parallelogram P ⊂ ∆ bounded by the
vertical lines through p∞ and v8, by ∂∆, and by the bottom edge of Ψ8.

The width and height of P are respectively at least 1/(21 × 8) = 1/168
and 1/(4 × 102) = 1/400. Since P is covered by the set in Equation 41,
which is in turn covered by orbit tiles, P is covered by orbit tiles. This
result, together with Lemma 4.1, establishes Theorem 1.2. To complete our
proof, we just have to establish the 6 claims above. Here is an overview of
how we will do this.

1. We will show that ai ↑ bj for all (i, j) with 9 exceptions:

i ∈ {5, 2k + 6, 3k + 7}; j ∈ {1, k + 5, 3k + 8}.

2. We will show that a2k+6 ↑ bk+5. This pair is responsible for the top
edge of Ωk, the edge in ∂∆. Likewise we will show that a5 ↑ b1. This
pair is responsible for an edge of O(Zk) which does not intersect Rk.

3. We analyze the defining function gk0 for the pair (b1, a2k+6). We will
verify that ∇gk0 6= 0, that gk0(vk) = 0 and that the slope of the zero
set ρk lies everywhere in (−∞,−1 − 4

k
). It turns out that ρk is the

right edge of Ωk. Our slope estimate guarantees that ρk intersects ψk

and ψk+1 exactly once. Our slope estimate combines with Lemma 5.2
to show that ρk ∩ ψk lies to the left of Ak.

4. We analyze the defining function gk1 for the pair (a5, bk+5). We will
verify all the same claims as in the previous step, with k + 1 in place
of k. The zero set λk turns out to be the left edge of Ωk.

5. By considering gk+1,0 − gk1 we show that ρk+1 lies to the right of λk.

6. By considering gk0 − gk1 we show that λk and ρk do not cross. Let Ω′

k

denote the piecewise analytic quadrilateral bounded by ∂∆ and ρk and
λk and ψk.

7. We show that bk+5 ↑ b3k+8 and that a2k+6 ↑ a3k+7 throughout Ω′

k. This
step eliminates the last two vertex pairs, and shows that Ω′

k = Ωk.
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6.2 Step 1

We write (x, y) = p∞ + (δx, δy). Let Rk be as in Lemma 5.3. For (x, y) ∈ Rk

we have three conditions

1. δx ∈ (0,
1

12k
); 2.

−δx
δy

∈ (
k

k + 2
, 1); 3. δx + δy < 0 (42)

Condition 1 is from Lemma 5.3 and Condition 2 is from Equation 19.
We will illustrate Step 1 for k = 5. This step only uses Equation 42.2

and thus works for k ≥ 5. (Actually, it works for all k.)

Lemma 6.1 All the near-vertical lines on the left hand side of U(Zk, T ),
except the 1st, have positive slope when T corresponds to a point in Rk.

Proof: Figure 6.1 shows the tilt profile for Z5, and its relation to the vector
(δx, δy). The white ray L is parallel to (−δy, δx) and perpendicular to (δx, δy).
The grey cone is bounded by lines of slope k/(k + 3) and 1.
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13
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14

11

5

10

6

8

7 9

L
Figure 6.1

From Equation 42.2 we see that L lies in the interior of this grey cone
and hence separates (M ′

1, N
′

1) = (−2,−2) from (N ′

j,M
′

j) for j = 2, ..., 15.
We compute mod π that θ′1 = −π − 2(δx + δy) ∈ (0, π/2). Hence the first
near-vertical has negative slope. We compute θ′14 = −4x+ 2y = −4δx + 2δy.
It follows from Equation 42 that | − 4δx + 2δy| < π

3
. We know that θ′14 < 0

because (M ′

14, N
′

14) lies to the left of the white line. Hence θ′14 ∈ (−π/3, 0).
By convexity, (M ′

14, N
′

14) lies furthest from the white line. Hence, the same
estimate holds for θ′j for all j = 2, ..., 15. ♠
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Figure 3.10.

Now we are ready to make a tilting argument like the one we made in
Step 1 of §3. We write ai|aj if ai lies to the left of aj and ai and aj are
swapped by reflection in a near-vertical which is not the first near-vertical.
In this case we have ai ↑ aj . Working greedily from the left we have:

a1|a9|a13|a17|a19|a21|a23|a25 a2|a8|a10|a12|a14|a16

a3|a7|a11|a15 a4|a6|a8 a5 a18|a20|a22

We have eliminated everything but a5, a15, a16, a22, a24, a25. Note that a15 lies
above the line a14a16. This eliminates a15. Since x > π/6 the line a24a25

has negative slope. Hence a24 ↑ a25. This eliminates a24. For (x, y) ∈ S1/12k

and k moderately large−the condition k ≥ 5 works easily−we have a25 ↑ a22.
We omit the routine calculation, noting that the result becomes increasingly
obvious as k increases. We have now eliminated everything but a5, a16, a22.

For the B vertices we have

b1|b5|b7|b9|b13|b17|b21|b25 b2|b4|b6|b8; b3

b10|b12|b14|b16|b18|b20|b22|b24 b11|b15|b19 b13|b17|b21|b25; b23

This eliminates everything but b1, b2, b3, b10, b11, b13, b23. Given that the angles
of our triangle are within 1/12k = 1/60 radians of the angles of T∞, the points
b2, b3, b4 lie below the line b1b5. We omit the details of this routine but tedious
computation. Again, we remark that this statement becomes more obvious
as k increases. Since b1 ↑ b5 we also have b1 ↑ b2, b3. This eliminates b2 and
b3. By convexity, b11 lies below the line b10b12. This eliminates b11. Likewise
b13 lies below the line b12b14. This eliminates b13. We have now eliminated
everything but b1, b10, b23.

6.3 Step 2

Throughout R5: b1|a5 and the 1st near vertical has negative slope. Hence
a5 ↑ b1. Likewise a16|b10 and the 8th near vertical has positive slope. Hence
a16 ↑ b10. The proof here only depends on the sign of two of the slopes on
the tilt profile and works the same for general k.
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6.4 Step 3
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Figure 6.2

We illustrate our equations with the case k = 5 but take k ≥ 8 when
it comes time to make estimates. When k = 5 our defining function is
g = πy(a16) − πy(b1). Taking m = 1 and n = 15 in Equation 6 we get the
following formula for g = g50:

cos(0x−1y) −cos(−2x−3y) + cos(−2x−y) −cos(−4x−3y)
+ cos(−4x+ y) −cos(−6x−y) + cos(−6x+ y) −cos(−8x−y)
+ cos(−8x−3y) −cos(−10x−5y) + cos(−10x−3y) −cos(−12x−5y)
+ cos(−12x−7y) −cos(−14x−9y) + cos(−14x−7y)

(43)
Equation 43 can be read off from the 1-spine profile for Z5, shown in

Figure 6.2. We just find the coordinates of the white dots.
We first figure out where g vanishes along ∂∆. When we set y = π/2− x

Equation 43 massively simplifies, because the only possibilities for Mj − Nj

are {1,−1,−5,−7}. Keeping track of the number of each kind of term, we
get

γ(x) := g(x,
π

2
− x) = 6 sin(5x) + 5 sin(7x). (44)

Setting γ(x) = 0 and writing x = π/6 + θ we get precisely Equation 37.
Hence g(v5) = 0. The general case works exactly the same way, with k in
place of 5 and k + 1 in place of 6.
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Now we study the gradient along the boundary. We define

Gx(x) = ∂xg((x,
π

2
− x)); Gy(x) = ∂xg((x,

π

2
− x)); (45)

Lemma 6.2

Gx

cos(x)
= (2k2 + 10k) cos(6x) + 8 cos(4x) − 8 cos(2x) − 4 (46)

Gy

cos(x)
= (2k2−4k) cos(6x)+(4k−2) cos(4x)−(4k−2) cos(2x)+(2k−9) (47)

Proof: We will proceed by induction. We check explicitly that the formula
holds for k = 5, 6. We set

hk(x) = gk,0(x,
π

2
− x) − gk−2,0(x,

π

2
− x).

Looking at our spine profiles, or else at the pattern implied by Equation 43,
we see that

hk(x) =
− cos((2k + 2)x+ (2k − 5)y) + cos((2k + 2)x+ (2k − 3)y)
+ cos((2k + 4)x+ (2k − 3)y) − cos((2k + 4)x+ (2k − 1)y).

After some simplification we get

∂xhk

cos(x)
= (8k + 12) cos(6x).

∂yhk

cos(x)
= (8k − 16) cos(6x) + 8 cos(4x) − 8 cos(2x) + 4

Equation 46 and 47 for general k now follow from induction. ♠

Lemma 6.3 For (x, y) ∈ ∂∆ ∩ Rk we have

Gx(x)

cos(x)
< (2k2 + 10k) cos(6x) < 0 (48)

Proof: Given that

x ∈ (
π

6
,
π

6
+

1

12k
) (49)

All the individual terms in Equation 46 are negative. ♠
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Lemma 6.4 For (x, y) ∈ ∂∆ ∩ Rk we have

0 >
Gy

cos(x)
> (2k2 − 2k + 8) cos(6x) (50)

as long as k ≥ 8.

Proof: After some trial and error we found that Equation 47 yields:

Gy

cos(x)
= (2k2 − 2k + 8) cos(6x) + A+B + C; (51)

A = (4k − 2)(− cos(6x) + cos(4x) − cos(2x));

B = 2k(1 + cos(6x)); C = −10 cos(6x) − 9

Considering A as a function of x we have

• A(π/6) = 0.

• A′(π/6) = −(4k − 2)
√

3.

• |A′′(x)| ≤ 54(4k − 2) for all x.

If follows from Taylor’s theorem with remainder that

|A| ≤
√

3(4k − 2)

12k
+

1

2
×

(
1

12k

)2

× 54(4k − 2) <

√
3

3
+

1

100
<

3

5
.

This certainly holds when k ≥ 8. Also, B > 0 and C > 3
5

when x is as in
Equation 49 and k ≥ 8. Therefore A + B + C > 0. Also, the first term on
the right hand side of Equation 51 is much more negative than A+B +C is
positive. This gives us Equation 50. ♠

Lemma 6.5 Let p2 ∈ Rk be any point. Let p1 ∈ ∂∆∩Rk be the point closest

to p2. Then |∂ug(p1) − ∂ug(p2)| ≤ k as long as k ≥ 8. Here u = x, y.

Proof: The pattern in Equation 43 generalizes in an obvious way and we
get from Equation 8 that

|∂2g| ≤ 2
2k+4∑

j=1

j2 < 2
∫ 2k+5

0
t2 dt =

2

3
(2k + 5)3 < 9

√
2k3 (52)
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The distance between p1 and p2 is at most 1/(18k2) by Lemma 5.3. Since ∂∆
(we mean the boundary of ∆) has slope −1 we can apply the Pythagorean
theorem to conclude that each coordinate of p1 is within 1/(18

√
2k2). Inte-

grating Equation 52, first in the x direction and then in the y direction, we
get

|∂ug(p1) − ∂ug(p2)| ≤ 2 × 9
√

2k3 × 1

18
√

2k2
= k ♠

For x in Equation 49 and k ≥ 8 we have

cos(x) cos(6x) < cos(
π

6
+

1

96
) cos(π +

1

16
) < −5

6
. (53)

Equations 48 and 50 now give

Gx < −λ(x)(2k2 + 10k); Gy > −λ(x)(2k2 − 2k + 8); λ(x) >
5

6
. (54)

Here x is the first coordinate of the point p1 in Lemma 6.5.
Equation 54 combines with Lemma 6.5 to show that

∂xg(p2) < −λ(x)(2k2 + 10k) + k = −λ(x)(2k2 + 10k − k

λ(x)
) <

−λ(x)(2k2 + 10k − 6

5
k) = −λ(x)(2k2 +

44k

5
) (55)

Similarly

0 > ∂yg(p2) > −λ(x)(2k2 − 2k + 8) + k = −λ(x)(2k2 − 2k +
k

λ(x)
) >

−λ(x)(2k2 − 2k +
6

5
k + 8) = −λ(x)(2k2 − 4k

5
+ 8). (56)

Therefore

−∂xg(p2)

∂yg(p2)
< − 2k2 + 44k

5

2k2 − 4k
5

+ 8
< −1 − 4

k
. (57)

The last inequality holds for k ≥ 8, and is established using a bit of calculus.
The quantity on the left in Equation 57 is the slope of the level set through
p2. In particular ∇g 6= 0 in Rk.. This finishes our analysis of the defining
function gk0. We have established all our claims.
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6.5 Step 4

In this section we deal with gk1. When k = 5 we have g = πy(a5) − πy(b10).
Taking m = 5 and n = 17 in Equation 6 we get the

+ cos(−4x + y) −cos(−6x−y) + cos(−6x + y) −cos(−8x−y)
+ cos(−8x−3y) −cos(−10x−5y) + cos(−10x−3y) −cos(−12x−5y)
+ cos(−12x−7y) −cos(−14x−9y) + cos(−14x−7y) − cos(−16x−9y)
+ cos(−16x−11y)

We compute

gk1 − gk+1,0 = − cos(y) − cos(2x+ y) + cos(2x+ 3y) + cos(4x+ 3y). (58)

This holds independent of k for the following reason: As k increases, the
same terms are added on to both functions. When we set y = π/2 − x the
expression in Equation 58 vanishes. Hence our two functions agree on ∂∆.
In particular gk1(vk+1) = 0.

Differentiating Equation 58 we find that

∂gk1(x,
π
2
− x)

cos(x)
=
∂gk+1,0(x,

π
2
− x)

cos(x)
+ 8; (59)

The answer is the same for both partial derivatives. The same steps as those
taken (for k + 1) in Step 3 yield

−∂xg(p2)

∂yg(p2)
< − 2(k + 1)2 + 44(k+1)

5
+ 8

2(k + 1)2 − 4(k+1)
5

+ 16
< −1 − 4

k + 1
. (60)

The last inequality holds as long as k ≥ 8.

6.6 Step 5

Let’s reconsider hk = gk+1,0 − gk1. We already know that h ≡ 0 on ∂∆. The
right hand side of Equation 58 is the same as −8 cos(x) cos(x+y) sin2(x+y).
Given that (x, y) ∈ S1/12k we have cos(x + y) < 0 and cos(x) > 0. Hence
h(x, y) > 0 for all (x, y) ∈ Rk. Thus the level set ρk+1 of gk+1,0 cannot cross
level set λk of gk1 in the interior of Rk. (In step 4 we saw that these level
sets have the common vertex vk+1 ∈ ∂∆.)

Note that both gk+1,0 and gk1 are positive at p∞. As we move along Rk

parallel to ∂∆, but slightly below ∂∆, both functions eventually decrease to
0. Since h > 0 it must happen that gk1 becomes 0 before gk+1,0 does. Hence
ρk+1 lies to the right of λk.
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6.7 Step 6

Let h = gk0 − gk1. We compute

h(x, y) = cos(y) + cos(2x+ y) − cos(2x+ 3y) − cos(4x+ 3y)

+ cos((2k + 6)x+ (2k − 1)y)− cos((2k + 8)x+ (2k + 1)y). (61)

To show that λk lies to the left of ρk it suffices to show that h > 0 in Rk.
Setting y = π/2 − x gives h = − sin(7x) − sin(5x) independent of k. For

x as in Equation 49 we have h > 0. To finish our proof, it suffices to show
that ∂y(h) > 0 in Rk. We will make the same kind of analysis we made in
§6.4. Let Hy = ∂yh(x, π/2 − x). We find that

Hy

2 cos(x)
= −(2k − 1) cos(6x) − 2 cos(4x) + 2 cos(2x) − 5. (62)

The first three terms on the right hand side are positive. Hence, from Equa-
tion 53 we get

Hy >
5

3
(2k − 1) − 10. (63)

From Equation 8 we get

|∂2h| ≤ 1 + 22 + 32 + 42 + (2k + 6)2 + (2k + 8)2 = 130 + 56k + 8k2. (64)

Using p1 and p2 as in §6.4 and proceeding as in Equation 6.5 we get

|∂y(p1) − ∂y(p2)| <
130 + 56k + 8k2

9
√

2k2
<∗

5

3
(2k − 1) − 10 < Hy (65)

The starred inequality holds for k ≥ 8. All in all, ∂yh(p2) > 0 for k ≥ 8.

6.8 Step 7

First we show that bk+5 ↑ b3k+8 throughout Ω′

k. Define

g52 = πy(bk+5) − πy(b3k+8); h = g52 − g50. (66)

We will show that h > 0 in Rk, which means that g52 > 0 whenever g50 > 0,
which means that g52 > 0 on Ω′

k. For k = 5 we have this formula for g52:

− cos(−14x − 9y)
+cos(−14x−7y) − cos(−12x− 5y) +cos(−12x−7y) − cos(−10x − 5y)
+cos(−10x−3y) − cos(−8x − y) +cos(−8x−3y) − cos(−6x− y)
+cos(−6x+1y) − cos(−4x + 3y) +cos(−4x+1y) − cos(−2x+ 3y)
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We compute that

h(x, y) = cos(2x− 3y) + cos(4x− 3y) − 2 cos(4x− y) − 2 cos(6x− y)

− cos(y) − cos(2x+ y) + cos(2x+ 3y) + cos(4x+ 3y). (67)

This holds independent of k, for the same reason as above.
We compute that

h(p∞) = 0; ∇h(p∞) = (17
√

3,−
√

3). (68)

Equations 67 and 8 gives us the absolute bound: |∂2h| < 102. Using the fact
that Rk ∈ S1/(12k) ⊂ S1/96 our two bounds imply throughout Rk that

∂xh > 25; ∂yh > −4. (69)

This means that ∇h(p) has positive dot product with any unit vector em-
anating from p∞ and pointing in Rk. (These vectors are all quite close to
(1,−1)/

√
2, on account of Equation 42.2.) Since h(p∞) = 0 the positive dot

product property gives us h > 0 on all of R2.
Now we show that a2k+6 ↑ a3k+7 throughout Ω′

k. We define

g53 = πy(a2k+6) − πy(a3k+7); h = g53 − g51. (70)

It suffices to prove that h is positive.
We have this formula for g53:

− cos(−16x − 9y) +cos(−16x− 11y) − cos(−14x − 9y)
+cos(−14x−7y) − cos(−12x− 5y) +cos(−12x−7y) − cos(−10x − 5y)
+cos(−10x−3y) − cos(−8x − y) +cos(−8x−3y) − cos(−6x − y)

We compute that
h(x) = −2 cos(x) cos(5x− y) (71)

independent of k. We just need to see that f(x, y) = cos(5x− y) < 0 on Rk.
We compute

f(p∞) = 0; ∇f(p∞) = (−5, 1). (72)

We have the absolute bound |∂2f | < 25 and hence for x ∈ Rk we get

∂xf < −4; ∂yf < 2. (73)

The rest of the proof is as in the first part of this step.
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7 Proof of Theorem 1.3

7.1 The Limiting Picture

Let {Tn} be as in Theorem 1.3. Let vj denote the vertex whose angle is near
j π

6
. We scale our triangles so that limTn = T∞. The convergence takes place

e.g. in the Hausdorff topology on closed planar subsets. Let T denote the
(2, 3, 6) Euclidean tiling by isometric copies of T∞. We label the edges and
vertices of T as the edges and vertices of T∞ are labelled.

It suffices to consider periodic billiard paths represented by even length
words W . Tautologically, W represents a periodic billiard path in T if and
only if the first and last sides of U(W,T ) are parallel and the interior of
U(W,T ) contains a line segment L, called a centerline, such that L intersects
the first and last sides at corresponding points. The orbit tile O(W ) consists
in those triangles T for which W represents a periodic billiard path. W is
stable iff O(W ) is an open set, and otherwise unstable.

Lemma 7.1 If W is unstable then O(W ) is contained in a line of ∆.

Proof: If W is unstable then there is a nontrivial condition on the angles,
clearly linear, for the parallelism of the first and last sides of U(W,T ). ♠

Lemma 7.2 T∞ does not have a stable periodic billiard path.

Proof: This is a result of Galperin-Stepin-Vorobets [GSV]. See also [H]
which proves that no right triangle has a stable periodic billiard path. ♠

No rational line in parameter space contains infinitely many of the points
representing our sequence {Tn}. Hence, if Theorem 1.3 is false then we can
find a stable word W such that Tn ∈ O(W ) for all n. Since W is fixed we
write Un = U(W,Tn). Let Ûn be the bi-infinite periodic continuation of Un.
Let Ln denote a centerline of Un and let L̂n be the corresponding centerline
for Ûn. We normalize so that L̂n is the x-axis. Then the limit L̂∞, is also the
x-axis. We can take a subsequence so that Ûn converges to an infinite union
Û∞ of triangles in T .

A vertex of L̂∞ is a vertex of T which lies on L̂∞. The boundary of Û∞

consists of two infinite polygonal lines, Û∞(+) and Û∞(−). Each vertex of
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L̂∞ lies either on Û∞(+) or Û∞(−). We say that the sign of the vertex is (+)
or (−) accordingly.

Lemma 7.3 L̂∞ contains an infinite list of vertices of T . Moreover, vertices

with both signs must appear on L̂∞.

Proof: If L̂∞ contains no vertex of T then U(W,T∞) has a centerline,
contradicting Lemma 7.2. Hence L̂∞ contains infinitely many vertices by pe-
riodicity. If only vertices of one sign appear on L̂∞ then we could perturb L̂∞

parallel to itself, producing a line which is contained in the interior of the tri-
angles of Û(W,T∞). But then U∞ would have a centerline, a contradiction. ♠

Here is a more subtle result, which we prove in §8:

Lemma 7.4 Suppose that L̂∞ has vertices of type 2. Then L̂∞ contains

vertices of odd type as well.

We label the vertices of L̂∞ as ...v∞(1), v∞(2), ... from left to right. Let
vn(j) denote the vertex of Ûn that corresponds to v∞(j). Note that vn(j)
need not lie on L̂n. However, the distance from vn(j) to L̂n converges to 0 as
n → ∞. We let Ẑn denote the polygonal path whose vertices are vn(j). We
label the vertices of Ẑn in the same way that the vertices of L̂∞ are labelled.
A vertex of Ẑn is (+) iff it has positive y coordinate.

θ
θ<0θ

θ>0

Figure
7.1

Note that Ẑ∞ is a straight line and Ẑn is nearly a straight line. Let θn(j)
denote the exterior angle at vn(j), measured according to the sign conventions
of Figure 7.1. We are going to get our contradiction by analyzing the way
Ẑ∞ bends and interacts with L̂∞. Given Lemma 7.4 there are two cases,
depending on whether or not L̂∞ has any type 2 vertices. When L̂∞ does
have some type 2 vertices the situation is much more difficult.

40



7.2 Case 1: Some Type 2 Vertices

Figure 7.2 (suitably rotated) shows an example of interest to us. Lemma 7.4
says that L̂∞ has vertices of both even and odd type. But then the lattice
structure of T forces a precise structure.

Figure
7.2

Lemma 7.5 On L̂∞ the pattern of vertex types is ...2, 1, 2, 3, 2, 1, 2, 3.... The

union of triangles encountered by L̂∞ between vertices has rotational symme-

try about every odd vertex. The distance between successive vertices of type

1 and 2 is twice the distance between successive vertices of type 2 and 3.

Proof: L̂∞ encounters an infinite succession of type 2 vertices, each con-
tained in a white or grey triangle. These colors alternate. For, otherwise,
L̂∞ would encounter (say) 2 white centers in a row. But then there would
be a translation symmetry of L̂∞ taking one white triangle to the next, and
there would be no grey centers at all. But, since L̂∞ encounters some odd
vertex, there is a 180 degree rotational symmetry of L̂∞, and this symmetry
interchanges grey and white. So, the colors alternate. An odd vertex resides
halfway between the centers of successive triangle centers of different colors.
The odd vertex types alternate because there is not 180 degree rotational
symmetry about the type 2 vertices. The lengths of successive segments on
L̂∞ is now forced by the symmetry of T . ♠
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We label the vertices of Ẑn so that vn(0) has type 2 and vn(1) has type
1. There is some number L so that the asymptotic length of the segments
connecting type 1 vertices to type 2 vertices is 2L while the asymptotic length
of the segments connecting type 2 vertices to type 3 vertices has length L.

The rotational symmetry detailed in Lemma 7.5 implies that the angles
about odd vertices are:

θn(4j + 1) = ±6ǫn; θn(4j + 3) = ±2ιn. (74)

To analyze θn(2j) we look carefully at Figure 7.3, which shows a picture of
what Ẑn would look like in a neighborhood of vn(0) if two of the triangles
at this spot were removed and the resulting object was bent so that the
two external angles (labelled β) coincide. In this position there might be a
nonzero bending angle ±δ between the two segments S1 and S2.

Hence
θn(2j) = (−1)jδn ∓ 3ǫn ∓ 3ιn. (75)

The signs in front of 3ǫn and 3ιn are the opposite of the label of the vertex,
as in Case 3. The reason for the alternation of signs in front of δn is that
Ẑn encounters the centers of the white and grey triangles in T in alternating
fashion. If L̂∞ is actually an edge of T then we would have δn = 0.

β
β S2

S1 δ

Figure 7.3

Lemma 7.6 There is a constant C, depending only on the combinatorics,

such that |δn| < Cǫn.

Proof: This follows from the fact that ιn < ǫn and that φn(j) is a smooth
function of ǫn and ιn which vanishes at (0, 0). ♠

In light of Lemma 7.6 we can pass to a subsequence so that

lim
δn
ǫn

= D. (76)
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We introduce the notation X ∼ Y to denote that X = Y , up to an error
which vanishes faster than ǫ does. To save words we will say that such an
error is negligible. For instance, ιn = 0 up to a negligible error. In light of
Lemma 7.6 we can pass to a subsequence so that

θn(4j+1) = ±6ǫn; θn(2j) = ((−1)jD∓3)ǫn; θn(4j+3) ∼ 0. (77)

The sign choices are as above.
Say that the rotation angle of a vector is the counterclockwise angle in

[0, π) by which the positive x axis must be rotated to produce a ray pointing
in the same direction as the vector. For j ≡ 1 mod 4 let λn(j) denote the
angle bisector to Ẑn at vn(j). We think of λn as a ray pointing upwards. Let
φn(j) be such that the rotation angle of λn(j) is π

2
+φn(j). Lemma 7.6 holds

for φn(j) and so we can pass to a subsequence so that

Kj = lim
n→∞

φn(j)

ǫn
; j = ..., 1, 5, 9, ... (78)

exists. (Actually, we don’t really need to pass to a subsequence; the limit
exists because ιn is negligible.)

We normalize our pictures so that vn(1) lies on the y-axis. If necessary
we can apply the map (x, y) → (x,−y) to our pictures, to guarantee that
the first vertex vn(1) is (+). Let a1 be the rotation angle of the vector which
points from vn(1) to vn(2). Next, for indices j = 2, 3, 4 let aj = θn(j). We
have a3 ∼ 0. Figure 7.4 shows a schematic picture of the situation. The
actual placement of the vertices and directions of the bends depends on the
geometry of the given situation.

λ1
ϕ1

a4

a1

a2 42

L L

2L

3

2L

1 5 Figure
7.4

Define

b1 = a1; b2 = a1 + a2; b4 = a1 + a2 + a4.
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Then bj is the rotation angle of the segment pointing from vn(j) to vn(j+1).
Define

c4 = b1 + b2 + b4 = 3a1 + 2a2 + a4 (79)

As n→ ∞ all our numbers tend to 0 at least as quickly as ǫn tends to 0.
Hence sin(bj) ∼ bj . Let yj be the y coordinate of the point vn(j). It follows
from trigonometry that

y5 − y1 = 2L(sin(b1) + sin(b2) + sin(b4)) ∼ 2L(b1 + b2 + b4) = 2Lc4. (80)

Since θn(1) ∼ 6ǫn we have

a1 ∼ (3 +K1)ǫn; a2 ∼ (−D − 3s2)ǫn; a4 ∼ (D − 3s4)ǫn. (81)

s2, s4 ∈ {−1, 1} are the signs of vn(2) and vn(4). We compute that

c4 = 3a1 + 2a2 + a4 ∼ (9 − 6s2 − 3s4 + 3K1 −D)ǫn ≥ (3K1 −D)ǫn (82)

If 3K1 > D then c4 > 0 for n sufficiently large. Regardless of the values of
K1 and D we compute

b4 ∼ b1 + (−3s2 − 3s4)ǫn; (83)

When c4 > 0 the point vn(5) is (+) and

b5 = b4 + 6ǫn ∼ b1 + (6 − 3s2 − 3s4)ǫn ≥ b1. (84)

Equation 84 tells us that φ5 ≥ φ1,up to a negligible error. Hence K5 ≥ K1.
Also, note that c4 > 0 which makes y5 > y1. We can now shift indices by
5 and repeat our argument. Iterating, we get {yj} to grow without bound,
contradicting periodicity.

Suppose that 3K1 < D. We can apply the map (x, y) → (−x, y) to
the picture. This has the effect of negating both K1 and D, and leads to
3K1 > D. Again we have a contradiction.

We must have 3K1 = D. This analysis works for j = 1, 5, 9... and so we
must have 3Kj = D for all such j. We normalize so that vn(1) is (+) and
D ≥ 0. Hence K ≥ 0. Hence, vn(2) is (+). Hence, in Equation 83, we have
s2 = 1. If vn(5) is (−) we have

b5 ∼ b1 + (−6 − 3 − 3s4)ǫn. (85)

But b5 ∼ b1 because K5 = K1. Equation 85 is impossible for s4 = ±1. Hence
vn(5) is (+). But then Equation 84 implies that s4 = 1. Hence vn(j) is (+)
for j = 1, 2, 3, 4, 5. Iterating, we see that all vertices are (+). This situation
contradicts Lemma 7.3
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7.3 Case 2: No Type 2 Vertices

Figure 7.5, suitably rotated, shows an example of a case of interest to us. We
make the same set-up as in Case 1. Ẑn consists of segments all having the
same length and has rotational symmetry about every vertex.

Figure
7.5

If there are some Type 3 vertices, then there must also be some Type 1
vertices. We label the vertices by odd integers, so that vertices of Type 1 are
congruent to 1 mod 4 and vertices of Type 3 are congruent to 3 mod 4. This
is just as in Case 1, except that there are no even vertices. Equation 74 is
the same.

We can normalize so that vn(1) is labelled by a (+). Suppose first that
K1 ≥ 0. (We are deliberately including the case K1 = 0.) Then a1 > 0 and
the segment pointing from vn(1) to vn(3) has positive rotation angle. Hence,
the segment pointing from vn(3) to vn(5) also has positive rotation angle
once n is sufficiently large. Hence vn(5) is (+). Moreover, K5 ∼ K1 + 6ǫn.
Iterating we get that K9 ∼ K1+12ǫn and K13 ∼ K1+18ǫn, etc. This growing
sequence of K values contradicts the periodicity. If K1 ≤ 0 we can apply the
map (x, y) → (−x, y) to return to the case K1 ≥ 0. Every case leads to a
contradiction.

If there are no Type 3 vertices then there are only Type 1 vertices. In
this case we can make the same argument, using 2ιn in place of 6ǫn.

This completes our proof of Theorem 1.3, modulo the proof of Lemma
7.4.

45



8 Proof of Lemma 7.4

We begin with a well known stability criterion. Compare [H] and [HH].

Lemma 8.1 Let W = w1, ..., w2n. Let ndj denote the number of solutions to

the equation wi = d with i congruent to j mod 2. Let nd = nd0 − nd1. Then

W is stable iff nd(W ) = 0 for d = 1, 2, 3.

Proof: Let T be a triangle. We can find numbers α1, α2, α3 to that the jth
interior angle of T is αj−1 +αj+1. Indices are taken mod 3. Let {Tk} denote
the bi-infinite continuation of the unfolding U(W,T ). Then T2n+k is obtained
from Tk by translating some amount and then rotating by

∑3
d=1 2ndαd. In

order for this sum to vanish for every choice of T we must have n1, n2, n3 = 0.
Conversely, if n1, n2, n3 = 0 then the sum always vanishes. In the vanishing
case the triangles T2n+k and Tk are always translates of each other, and then
the existence of a centerline is an open condition. ♠

We will suppose that L̂∞ has no vertices of odd type and then get a
contradiction. We color T as in Figures 7.2 and 7.5. We can assume that
L̂∞ contains the barycenter of a white triangle. Note that the midpoint of
a segment in T which joins a white barycenter to a grey barycenter also
contains a vertex of odd type. Hence L̂∞ contains an infinite list of white
barycenters, and no grey ones. We let F∞ denote the portion of L∞ which
connects one white barycenter to the next. The line segment L∞ consists of
k consecutive copies of F∞ for some positive integer k.

Recall that Ln is a centerline of U(W,Tn), and that L∞ is the limit of
Ln. We cannot unambiguously determine the word W from L∞ (or L̂∞)
because we don’t know what Ln does near the vertices. However, away from
the vertices we know what Ln must do. Let w denote the word consisting of
edges crossed by the interior of F∞. Let ǫj stand for either the word 131 or
313. Then W must have the form (wǫ1)(wǫ2)...(wǫk).

Let |w| be the length of w. Let’s move F∞ parallel to itself by a small
amount. The resulting segment intersects |w| + 3 edges, and has endpoints
in two triangles which are translation equivalent, so |w| + 3 is even. Hence
|w| is odd. Since |ǫj | is also odd, |w| + |ǫj | is even. Hence

n2(W ) =
k∑

j=1

n2(wǫj) = kn2(w). (86)
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Here n2 is the same quantity as in Lemma 8.1. Since W is stable we have
n2(W ) = 0 by Lemma 8.1. Hence n2(w) = 0. To get a contradiction, we just
have to show that n2(w) 6= 0.

Say that a line of T is thick if it contains no vertices of type 3. Since F∞

starts and ends in a white triangle, F∞ crosses the thick edges an even total
number of times. There are three families of parallel thick edges and we can
ask about how many times F∞ crosses each of the families.

Lemma 8.2 F∞ crosses two of the families an odd number of times.

Proof: Applying an affine automorphism we can identify the centers of the
white triangles with Z × Z. We can think of F∞ as connecting the point
(0, 0) to the point (m,n) with m and n relatively prime. Hence, not both
m and n can be even. But m and n represent two of the three numbers of
interest to us. Hence, at least one of the numbers of interest to us is odd.
Since the sum of the three numbers is even, exactly two of them are odd. ♠

The translation symmetry group G of T acts on R
2 so that the quotient is

a torus. The union of two triangles, white and grey, serves as a fundamental
domain. Let X denote the square torus. Let L ⊂ X be the image of L̂∞

under the following map

R
2 π→ R

2/G
A→ X. (87)

Here π is the quotient map and A is a locally affine map. Compare the proof
of Lemma 8.2.

The triangulation of T induces a triangulation ofX: FirstX is subdivided
into two triangles and then these triangles are barycentrically subdivided.
Figure 8.1 shows the picture, with the little triangles alternately colored black
and white. L contains one of the barycenters of X, but no other vertices of
the triangulation.

The thick edges are the ones present before the barycentric subdivision.
Each time L intersects a thick edge we can say whether L crosses from black
to white or from white to black. We define n2(L) as the number of black-to-
white crosses minus the number of white-to-black crosses. We have n2(L) = 2
for the example shown in the right hand side of Figure 8.1. By construction
we have n2(L) = n2(w). We just need to show that n2(L) 6= 0 in general.
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x

(0,1) (1,1)

(1,0)(0,0)

Figure 8.1

Let V denote the left vertical edge of X and let H denote the top hor-
izontal edge. Let D denote the diagonal edge. From Lemma 8.2 we know
that L intersects two of H, V,D an odd number of times, and the remaining
edge an even number of times. There is an affine automorphism of X which
preserves x and cycles H, V,D. Thus, we can assume that L intersects H
and V an odd number of times, and D an even number of times. The points
of L ∩ D are evenly spaced on D and so half of them occur on the left of
the center point and the other half occur on the right. Hence n2(L) can be
determined just from the intersections of L with H and V .

Let {Lt| t ∈ [0, 1]} denote the continuous family of loops parallel to
L = L0. Let s be a parameter such that Ls contains the midpoint of H . The
points of Ls ∩H are odd in number and evenly spaced about Ls ∩H . Hence
H ∩ V 6∈ Ls. By symmetry the points of L ∩ V are evenly spaced about the
midpoint of V . Since H ∩ V 6∈ Ls the midpoint of V is contained in Ls. In
short, Ls contains the midpoints of both H and V , and neither endpoint.

By symmetry n2(Ls) = 0. (Here we ignore the crossings at the midpoints.)
From the pattern of the colorings we see that n2(Lt) = ±2 if t is sufficiently
close to s. However, we can choose s so that Lt crosses no vertices of ∂X for
t ∈ [0, s). Hence n2(L0) = ±2.

We have shown that n2(w) 6= 0. This contradiction completes our proof
of Lemma 7.4.
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