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1 Introduction

Let ∆ be a Euclidean n-simplex and let {∆j} denote a finite union of sim-
plices which partition ∆. We assume that the partition is invariant under
the affine symmetry group of ∆. A classical example of such a partition is
the one obtained from barycentric subdivision, but there are plenty of other
possibilities. (See §4.1, or else [Sp, p. 123], for a definition of barycentric
subdivision.) Our partition gives rise to an affine subdivision rule for ∆,
which may be iterated. To subdivide each ∆j , we choose an affine map Aj

with ∆j = Aj(∆), and then partition ∆j into the collection {Aj(∆i)}. The
affine invariance of the partition translates into the fact that our partition of
∆j is independent of the (n + 1)! different choices for Aj . Now we iterate.

A basic question one can ask is Does the iteration of the subdivision rule
produce a dense set of shapes of simplices? By shape of a simplex, we mean a
simplex considered mod similarities. In [BBC] this question was raised and
answered affirmatively for the case of 2-dimensional barycentric subdivision.
In [S] we got the same result in 3 dimensions.

In general, a first step for the kind of density results just mentioned is as
follows: Let Cn be the collection of all n-dimensional simplices obtained by
iteratively applying the subdivision rule. Let Ωn be the collection of matrices
of the form

± L

| det(L)|1/n
,
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where L is the linear part of an affine map from ∆ to a member of Cn. Here,
and always below, the sign is chosen to make the determinant positive. Ωn

is a semigroup of SLn(R), the group of n× n matrices of determinant 1. To
show that Cn consists of a dense set of shapes it suffices to show that Ωn is
a dense semigroup in SLn(R).

The setup we have just described works for any subdivision rule of the
type we have been considering, but henceforth we will concentrate on barycen-
tric subdivision. Thus, Ωn henceforth refers specifically to this case. Let Ω̂n

denote the group generated by Ωn. In §5 we will show easily that

Lemma 1.1 Ω̂n is dense in SLn(R) for any n.

So, we are left with the task of showing that Ωn is dense in Ω̂n. Here is
one easy result:

Lemma 1.2 If Ωn has an infinite order elliptic then Ωn is dense in Ω̂n.

Proof: Up to signs, Ωn is generated by a single element T1 and the group
of affine permutations of the initial simplex. If Ωn contains an infinite order
elliptic element then this element must involve T1. But then we can find
an unbounded sequence {T1wk} of words in Ωn converging to the identity.
Evidently {wk} converges to T−1

1 . Hence T−1
1 lies in the closure of Ωn. But

Ω̂n is generated by T1, T−1
1 and the permutations. ♠

Thus, to prove that Ωn is dense in SLn(R) all we need is an infinite order
elliptic element. In [BBC] and [S] some infinite order elliptic elements were
found in Ω2 and Ω3 respectively and these were used as the basis for a density
proof. However, the proofs there did not use Lemmas 1.1 or 1.2. For the
interested reader, we will give 2 and 3 dimensional examples of infinite order
elliptics in §4.2. Thus we get a different proof that Ωn is dense in SLn(R)
for n = 2, 3.

In the 3 dimensional case the infinite order elliptics seem quite rare, and
we needed a computer search to find some. After a moderate amount of
computer searching we haven’t found any infinite order elliptics in Ωn for
n ≥ 4; and we conjecture that there are none. Here we will develop a more
robust method for showing that a semigroup S is dense in the group Ŝ it
generates, and we will use the method to show that Ω4 is dense in Ω̂4. Hence
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Theorem 1.3 Ω4 is dense in SL4(R) and so the iteration of 4-dimensional
barycentric subdivision produces a dense set of shapes.

Our method could probably be adapted to work in a very broad setting of
semigroups acting isometrically on unique geodesic metric spaces. However,
we find that a lot of the apparatus for the method is already built into the case
that our semigroup is a subset of a Lie group G acting on a symmetric space
X of nonpositive curvature. In the case of affine subdivision, G = SLn(R)
and X = SLn(R)/SO(n). We will develop some of the theory for general
pairs (G, X) but will specialize to the choices above when appropriate.

We choose an origin O ∈ X. We say that S is steerable if the orbit S(O)
contains a finite subset, which we call a steering wheel . A steering wheel has
the property that any horoball containing O in its boundary also contains a
point of the steering wheel in its interior. See §2.1 for details. In §2.2 we will
prove 1

Theorem 1.4 Let S be a steerable semigroup of the isometry group of a
nonpositively curved symmetric space. Then S is dense in Ŝ.

To complete our proof of Theorem 1.3 we will prove

Lemma 1.5 Ω4 is steerable in SL4(R). Hence Ω4 is dense in Ω̂4.

We find our steering wheel using a computer search. After we find it, the
problem of verifying the basic property in variable curvature is tricky. To
help our cause, we will transplant the problem into hyperbolic space using
the Hadamard map−i.e. geodesic polar coordinates. This is done in §2.3.
We will prove a general comparison result which says that the set in X is
a steering wheel provided that the transplanted set in hyperbolic space is a
steering wheel. In §2.4 we see that the problem we come to in hyperbolic
space boils down to showing that a certain finite collection of balls covers
the unit sphere in R

dim(X). Hence the title of the paper. (In our example,
dim(X) = 9.) Finally, we convert the sphere covering problem into an easily
computable problem involving convex hulls of polytopes.

In §3.1 we give a formula for the metric in X. In §3.2 we provide the
formula for the Hadamard map. The formula for the Hadamard map requires

1I’m pretty sure it follows from the simplicity of SLn(R) and the arguments in §2.2
that a steerable semigroup of SLn(R) is either dense or a cocompact lattice. I leave the
details of this finer result to the interested reader.
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us to find the eigenvalues and eigenvectors of matrices. We would prefer to do
calculations which are more straightforward than this, so in §3.3 we give some
Taylor series approximations to the Hadamard map. These approximations
make our calculations transparant and allow us to work entirely with rational
quantities or their square-roots. In §3.4 we include some Mathematica [W]
code, which will let the interested reader play around with the Hadamard
map and its approximations.

In §4 we will construct the steering wheel for Ω4. The steering wheel has
120 elements, each of which is the image of O under an element of Ω4. Each
of the 120 elements of Ω4 we use is the product of 36 generators! We found
our steering wheel using a computer search, as we discuss in §4.3. One could
think of the our search algorithm as a semigroup analogue of taking iterated
commutators. Thus, in the end, our method is akin to the method used to
prove the Margulis Lemma.

We prove Lemma 1.1 in §5 using explicit formulas for some commutator
elements in Ω̂n. The formulas are rather beautiful and hint at some of the
hidden algebraic structure of barycentric subdivision. The matrix calcula-
tions needed to justify the two main formulas are routine but tedious, and
in the interest of space we will omit them. For smallish values of n, say
n ≤ 10, one can just perform the calculations explicitly. To this end, we
have included a short Mathematica program which the reader can feed into
a computer and operate easily. We really only care about the case n = 4 in
this paper.

In theory we could use our methods to prove Theorem 1.3 for larger values
of n. However, the computational complexity of the problem rises quickly
with the dimension. Maybe we could get up to n = 7 without bringing in a
supercomputer. An easier target for our methods would be other subdivision
schemes in low dimensions. We might take this up in a future paper.

One major drawback of our method is that it only works one example at a
time. However, if a semigroup is dense then it is also steerable and this can be
detected by a finite amount of computation. Thus, any given example can be
reduced to a problem about subgroups with our method, given a sufficiently
powerful computer. As is usual with computer-aided mathematics, this state
of affairs is not exactly ideal, but still is better than nothing.

I’d like to thank Sinai Robins for interesting conversations about poly-
topes, and also for his encouragement. I’d also like to thank Pat Hooper for
discussions about convex hull algorithms.
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2 Steerable Semigroups

2.1 Basic Definitions

Let X be a symmetric space of non-positive curvature. For convenience we
assume that there is some pre-chosen “origin” of X, which we call O. In the
cases of interest to us, there will be an obvious choice. Let G = Is(X), the
isometry group of X. 2 Let S ⊂ G be a semigroup. We assume that S is
finitely generated, with generating set s1, ...sm. For any w ∈ S let |w| denote
the minimum number of generators needed to express w as a word.

We are interested mainly in the orbit S(O) = {s(O)|s ∈ S} ⊂ X. We
make our multiplication correspond to the group action, so that

s1s2(x) = s1(s2(x)) ∀x ∈ X. (1)

A horoball in X is the geometric limit of unboundedly large metric balls
in X, provided that this limit is neither empty nor all of X. We say that a
special horoball is one which contains O in its boundary. Note that the set
of special horoballs is compact. Here are our basic definitions.

Definition 1: Let W ⊂ X be a finite subset. W is a steering wheel if
every special horoball contains at least one point of W in its interior.

Definition 2: S is steerable if S(O) contains a steering wheel.

Lemma 2.1 Suppose W is a steering wheel. Then there is some R with the
following property. If B ⊂ X is a metric ball having radius at least R and
containing O in its boundary then B contains some point of W which is at
least 1/R from ∂B.

Proof: This is really just compactness. If this lemma is false then we can
find a sequence {Bn} of counter-examples with the radius Rn tending to in-
finity. Passing to a subsequence, we can let B∞ = lim Bn be a horoball.
(This limit cannot be all of X because 0 ∈ ∂B∞.) By construction B∞ is a
special horoball which does not contain any point of W in its interior. ♠

2Technically, we are interested in subgroups of SLn(R), which is a slightly different
group than G, when X = SLn(R)/SO(n). However, the small discrepancy between the
two groups never comes up and we will follow the common practice of just ignoring it.
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We define R(W ) as the smallest R which satisfies the conclusions of
Lemma 2.1. The following result says that essentially we can move near
any point in X following the orbit of a steerable semigroup. Let d denote
the distance function on X.

Lemma 2.2 Suppose S is steerable, with steering wheel W . Let R = R(W ).
Let x ∈ X be any point and let w1 ∈ S be any element. Then there is an
element w2 ∈ S such that d(w1w2(O), x) ≤ R. Moreover, there is a universal
constant C such that |w2| < Cd(x, w1(O)).

Proof: Let σ1, ..., σh ⊂ S be a collection of elements such that W =
⋃

σj(O).
Let y0 = w1(O). If y0 is within R of x we are done. Otherwise we proceed
to construct points {yi} inductively. Suppose that yi = w1vi(O) has been
constructed and di = d(x, yi) > R. Here vi is a word in σ1, ..., σh. Let Bi

denote the metric ball centered at x and having radius di. Note that yi ∈ ∂Bi.
We now note the following property of the set w1vi(W ), which follows

from Lemma 2.1 and from the fact that w1vi is an isometry of X: Since Bi

has radius at least R and contains w1vi(O) in its boundary, there is some point
yi+1 ∈ w1vi(W ) such that yi+1 is contained in Bi and at least 1/R from ∂Bi.
By definition, there is some index j = ji such that yi+1 = w1viσj(O). Hence
yi+1 = w1vi+1(O). Also, di+1 ≤ di − 1/R. Thus, for some k ≤ Rd0 we must
have dk ≤ R. We set w2 = vk. Note that |vi+1| ≤ |vi|+ supj |σj | = ‖vi‖+ C ′.
Hence |w2| < C ′Rd0 < Cd0. ♠

2.2 Proof of Theorem 1.4

We will prove Theorem 1.4 through a series of smaller lemmas. To highlight
an important fine point in the next lemma we introduce a bit of extra nota-
tion. Let [S] denote the set of abstract words in the generators of S. Thus, an
element of [S] might be nontrivial but act trivially on X. (Think of the case
when S generates a discrete group.) Say that a word w ∈ [S] is K-saturated
if each generator of S appears at least once in each length K “block” of w.
The empty word is K-saturated for every K > 0. Say that w is R-bounded if
d(O, w(O)) ≤ R. Here R is the constant from Lemma 2.2. Let Ω(K) denote
the set of words in [S] which are both R-bounded and K-saturated.

Lemma 2.3 If S is steerable then there is some K such that Ω(K) contains
infinitely many words.
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Proof: Let w = s1...sm be the product of the generators of S. Define
D = d(w(O), O) and K = C(D + R) + m. Here C is the constant from
Lemma 2.2. Let w0 be the empty word. Suppose that wi ∈ Ω(K) has been
constructed. We have d(wiw(O), O) ≤ D + R by the triangle inequality.
Applying Lemma 2.2 in the case when x = O, there is some word w′

i such
that |w′

i| ≤ C(D + R) and wi+1 = wiww′

i is R-bounded. By construction
|w′

i| ≤ K − |w| and w contains each of the generators in order. Each wk

in our infinite sequence consists of k copies of w separated by blocks having
length at most K−|w|. From this it is easy to see that each wi is K-saturated.
Hence wk ∈ Ω(K) for all k. ♠

Lemma 2.4 Ω(K) contains an unbounded sequence {βk} of abstract words
whose action on X converges to the identity in G.

Proof: Note that the set of R-bounded elements is compact in G. Hence we
can find a convergent sequence {wk} ∈ Ω(K). Since S is finitely generated,
there are only finitely many choices for the first n letters of wk, independent of
k. Hence, passing to a subsequence we can assume that there is a sequence of
words {βj} such that wk = β1...βk for all k. Passing to another subsequence,
we can assume that |βk| is unbounded. By construction the words wk and
wk+1 have an action which differs by an arbitratily small amount. Hence
{βk} converges to the identity word. Note that a subword of a K-saturated
word is K-saturated. Hence βk is K-saturated. ♠

Let {βk} be the sequence from the previous lemma. Since |βk| is un-
bounded but always K-saturated, and S is finitely generated, there is some
fixed word w, containing all the generators of S, which appears as the initial
word of βk infinitely often. Let’s label our generators so that s1, ..., si appear
in w before si+1 appears for each i = 1, ..., m.

Let wj ⊂ w denote the longest initial subword of w which does not contain
sj. Let γk = w−1

j βkwj. By construction γk ∈ S and γk starts with sj. We
can write γk = sjδk, with δk ∈ S, infinitely often. Since γk converges to the
identity δk converges to s−1

j . Hence s−1
j lies in the closure of S. Now we know

that the inverses of all the generators of S lie in the closure of S. Now we
know that S is dense in Ŝ.
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2.3 A Comparison Result for Steering Wheels

Let X be an N -dimensional symmetric space normalized so that its sectional
curvature lies in [−K, 0]. Let N = dim(X). Suppose that H

N is hyperbolic
space, normalized so that its curvature is −K. In this section we explain
how to use H

N to verify that a given subset of X is indeed a steering wheel.

Remark: In practice we will not compute the curvatures of X and H
n

but will use a more direct method to show that we have normlized the met-
rics correctly. See §3.3.

We will use the ball model for H
N and let O denote the obvious origin in

this model. Up to rotations about O there is a canonical map H : X → H
N

which we call the Hadamard map. This is map is defined (up to rotations)
by saying that H is an isometry at O and maps the geodesics through O in
X to the geodesics through O in H

N . According to Hadamard’s Theorem,
the exponential map is a diffeomorphism in non-positive curvature, and this
makes H into a diffeomorphism. In the next chapter we will derive Equation
9, which is a fairly explicit formula for H . Even without the formula, however,
we can say:

Lemma 2.5 H is distance non-decreasing.

Proof: This is a well-known comparison theorem in Riemannian geometry.
Here is a sketch: Say that a radial geodesic in either space is a geodesic
through O. By definition H is an isometry when restricted to each radial
geodesic. H maps the spheres about O in X to the spheres about O in H

N

and by the Gauss lemma (or just plain symmetry in the cases of interest to
us) these spheres are orthogonal to the radial geodesics. Finally, the restric-
tion of H to each sphere is distance non-decreasing because the Jacobi fields
diverge faster when the curvature is more negative. Putting these 3 ingre-
dients together we see that dH is distance non-decreasing on each tangent
space of X. ♠

Here is the comparison result:

Lemma 2.6 Let W ⊂ X. Then W is a steering wheel in X provided that
H(W ) is a steering wheel in H

N .
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Proof: Let B∞ ⊂ X be a special horoball. We need to show that B∞

contains a point of W in its interior. Let B′

∞
= H(B∞). If we knew that

B′

∞
contains a special horosphere in H

N then we would conclude that B′

∞

contains a point of H(W ) in its interior. This would complete our proof.
B∞ is the geometric limit of unboundedly metric balls {Bn}. We can

assume that 0 ∈ ∂Bn for all n. It suffices to show that H(Bn) contains an
unboundedly large metric ball B′

n such that 0 ∈ ∂B′

n. Let xn be the center
of B′

n. Let rn be the radius of B′

n. Let x′

n = H(xn). Note that the distance
from x′

n to O is the same as the distance from xn to O, namely rn. Since
H is distance non-decreasing, we see that H(Bn) contains the ball B′

n of hy-
perbolic radius rn about x′

n. by construction 0 ∈ ∂B′

n. This completes our
proof. ♠

2.4 Hyperbolic Steering Wheels

Here we explain how to check the steering wheel condition for a finite subset
W = {x1, ..., xk} ⊂ H

N . Let S1 denote the unit sphere. Define

(W ; j) = {y ∈ S1| ‖y − 2xj‖ < 1}. (2)

Here we are using the Euclidean metric.

Lemma 2.7 W is a steering wheel if and only if S1 ⊂
⋃

(W ; j).

Proof: This is really a tautology. Let S1/2 denote the sphere of radius 1/2
about O. The special horoballs in our model are Euclidean balls having ra-
dius 1/2 and centered on points of S1/2. Let 1

2
y be the center of such a special

horoball B. Then B contains xj in its interior if and only if ‖1
2
y−xj‖ < 1/2,

which is true if and only if ‖y − 2xj‖ < 1. ♠

The spherical ball (W ; j) has a radius which depends only on the Eu-
clidean norm ‖xj‖:

Lemma 2.8 Let uj = xj/‖xj‖. Then (W ; j) = S1 ∩ Bj where Bj is the ball

of Euclidean radius ρj =
√

2 − 2‖xj‖ centered at uj.
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Proof: Everything about this lemma follows from symmetry except the
calculation of the radius R of Bj. To compute R note that ∂(W ; j) is the
intersection of the unit sphere about 2xj with the unit sphere about O.
This intersection has the following description: Let Πj be the hyperplane
perpendicular to Oxj and containing xj . Then ∂(W ; j) = Πj ∩ S1. Let r
denote the radius of ∂(W ; j). From the Pythagorean theorem we get the two
equations:

r2 + (1 − ‖xj‖)2 = R2; r2 + ‖xj‖2 = 1.

Hence R2 = 2 − 2‖xj‖. ♠

At this point we have an entirely Euclidean problem. We have a finite
collection of balls B1, ..., Bk and we want to verify that these balls cover S1.
There are various algoriths one can use to decide this question. Here we will
present a sufficient (but not always necessary) condition based on some crude
properties of the convex hull Hull(U), where U = {u1, ..., uk}.

Let x1, ..., xk be the elements of H(W ). Let |W | = max ‖xj‖. Let
B1, ..., Bk and u1, ..., uk and ρ1, ..., ρk be as in Lemma 2.8.

Lemma 2.9 (Covering Criterion) Suppose the ball of radius |W | centered
at the origin is contained in Hull(U). Then S1 ⊂ B1 ∪ ... ∪ Bn.

Now we sketch how we apply this criterion in practice. At first glance
it appears that we would need to calculate Hull(U), a daunting feat in high
dimensions. We will get around this problem with a trick:

• To show that Hull(U) contains the ball of radius |W | centered at the
origin, it suffices to show that Hull(U) contains the vertices of another
polytope which contains this ball. In our example our auxilliary poly-
tope will be a 9 dimensional cross polytope.

• To show that a particular vertex v of the auxilliary polytope lies in
Hull(U) we will simply exhibit it as a weighted average of the vertices
of U . We find the weights by a rapidly converging iterative algorithm.

In §4.5 we will actually apply this method, so that the reader can see it in
action.
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2.5 Proof of Lemma 2.9

We will first establish some preliminary results about spherical geometry.
Say that the roundout of a set A ⊂ R

N − O is the radial projection of
A to S1. Say that a d-dimensional geodesic spherical polytope in S1 is the
roundout of a d dimensional Euclidean convex polytope whose vertices all
lie in the interior of a hemisphere of S1. A geodesic spherical polytope is
bounded by a finite union of codimension 1 faces, all of which are geodesic
spherical polytopes. A spherical ball on S1 is a metric ball which is contained
in a hemisphere. We define the chordal radius of a spherical ball to be the
Euclidean distance from the boundary to the center of the ball on S1.

Lemma 2.10 Let B be a spherical geodesic ball of chordal radius ρ. Let Π
be a hyperplane through the origin. Let B∗ = Π∩B and let ρ∗ be the chordal
radius of B∗ in S∗

1 = S1 ∩ Π. Then ρ∗ ≤ ρ.

Proof: The chordal radius of B is a monotone function of the Euclidean
radius of ∂B. The function in question is independent of dimension, by sym-
metry. S∗

1 is an N − 1 dimensional unit sphere and so we can compare the
chordal radii of B and B∗ by looking at the Euclidean radii of ∂B and ∂B∗.
Since ∂B∗ = ∂B∩Π the Euclidean radius of ∂B∗ is at most that of B. Hence,
the same comparison holds for the chordal radii. ♠

Lemma 2.11 Suppose P is a top dimensional geodesic spherical polytope
whose vertices are contained in a spherical ball B of radius ρ. Then P ⊂ B.

Proof: P is the roundout of a convex polytope which lies in a hyperplane
whose intersection with S1 is separated from O by the hyperplane containing
∂B. Hence P ⊂ B. ♠

Lemma 2.12 Suppose P is a top dimensional geodesic spherical polytope
whose vertices are contained in a spherical ball B of radius ρ. Then each
point of P is within ρ of some vertex of P .

Proof: The case N = 2 just involves arcs on the unit circle, and is pretty
obvious. Now suppose that N ≥ 3. Let c ∈ S1 be the center of B. Suppose
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that we have some point x ∈ P which is more than ρ from all the vertices
of P . We have P ⊂ B by Lemma 2.11. Let γ be the geodesic in S1 which
joins c to x. The geodesic segment γ ∩ B must intersect ∂P at some point
x∗ such that x lies between c and x∗. Let P ∗ be a codimension 1 face of
P which contains x∗. There is a hyperplane Π through the origin such that
P ∗ = P ∩ Π. Let B∗ = B ∩ Π. Then B∗ contains the vertices of P ∗ and has
chordal radius at most ρ by Lemma 2.10. By induction there is some vertex
v of P ∗ which is at most ρ from x∗. But v is also at most ρ from c.

Let Bv denote the spherical ball of chordal radius ρ centered at v. Since
Bv is contained in a hemisphere, it is a locally convex subset of S1. Hence Bv

contains the shorter of the two geodesic arcs joining x∗ to c. The geodesic
arc of interest to us joins x∗ to c and is a subarc of γ ∩ B, an arc which
is already shorter than a semicircle. Hence the geodesic arc of interest to
us is the shorter of the two geodesic arcs joining x∗ to c. Hence x ∈ Bv, a
contradiction. ♠

Now we turn to the proof of the Covering Lemma. From the hypotheses
in the Covering Criterion, Hull(U) contains O in its interior. But this easily
implies that S1 is partitioned by the geodesic polytopes which are the round-
outs of the faces of Hull(U). Hence, to establish our Covering Criterion it
suffices to prove that every point of the roundout f of a face f ′ is within
ρ = min ρj of some vertex of f ′.

The face f ′ is contained in a hyperplane Π and the vertices of f ′ are
contained in the sphere Π∩S1. Let y ∈ S1 be the center of the spherical ball
B which is the smaller of the two components of S1 −Π. By hypotheses, the
distance from Π to O is at least |W |. But, looking at the algebra done in

Lemma 2.8, we see that the chordal radius of B is at most
√

2 − 2|W | = ρ.
Hence every vertex of f ′ is within ρ of y. Lemma 2.12 now tells us that every
point of f is within ρ of a vertex of f ′. This is what we had wanted to prove.
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3 Some Useful Formulas

3.1 Metric Properties of X

Let X = SLn(R)/SO(n) be the symmetric space associated to SLn(R). We
can identify X with the space of n × n symmetric matrices having positive
eigenvalues and determinant 1. We have dim(X) = N , where

N =
n(n + 1)

2
− 1. (3)

The origin O of X is naturally the identity matrix.
The tangent space V = TO(X) can be identified with the vector space of

trace 0 symmetric matrices. This space has a natural inner product:

〈M1, M2〉 = Tr(
1

2
M1M2). (4)

The factor of 1/2 is a normalizing constant. We will discuss our normalization
below in §3.3.

The action of SLn(R) on X is given by

M(S) = MSM t. (5)

Here M t is the transpose of M . The stabilizer of O is SO(n). If M ∈ SO(n)
we have M t = M−1. Hence SO(n) acts on V by conjugation and the inner
product in Equation 4 is SO(n)-invariant. We get a Riemannian metric on
X by transporting our inner product on V to all of the tangent bundle, using
the action of SLn(R). As usual, the (global) metric on X is defined in terms
of the lengths of the geodesics with respect to the Riemannian metric.

The exponential map exp : V → X is given by:

exp(M) =
∞∑

k=0

Mk

k!
. (6)

For any x ∈ X we can write x = M−1DM Where M ∈ SO(n) and D is
a diagonal matrix with positive entries λ1, ..., λn. Let log D be the diagonal
matrix with entries log(λ1), ..., log(λn). Setting log x = M−1(log D)M we
have exp(log x) = x.. We have the distance formula

d(x, O) = ‖ log x‖ = ‖ log D‖ =

[
n∑

i=1

1

2
log2(λi)

]1/2

(7)

This is all we need to know about the metric on X.
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3.2 A Formula for the Hadamard Map

Here we will consider H
N , where N = dim(X) and X is the symmetric

space considered above. We have already equipped V = TO(X) with an
inner product and so we may isometrically identify V with R

N . Our model
for H

N is the open unit ball in V . If x ∈ H
N is any point we let ‖x‖ < 1

denote the Euclidean norm of x. It turns out that the hyperbolic distance
from O to x is given by

d(O, x) = log
1 + ‖x‖
1 − ‖x‖ . (8)

See [B, p. 38].
Now we give the formula for the Hadamard map. Let x ∈ X − O. We

write x = MDM−1 as above. Then

H(x) = tanh(d/2)u;

u =
log x

‖ log x‖ ; d = ‖ log x‖ =
√

Tr((log x)2/2). (9)

To see why this works, note that u is a unit vector in V which points in the
same direction as log x and d = d(0, x). Hence exp(du) = x. By construction
H(x) is a scalar multiple of log x in V and the hyperbolic distance from O
to H(x) is exactly d because

d′ = tanh
d

2
=⇒ log

1 + d′

1 − d′
= d.

There is a very nice isometric embedding of V into a subspace of R
N+1.

Here R
N+1 is given the standard metric. We simply string out the upper

triangular part of V in a certain order, starting down the main diagonal
and working away from the main diagonal. To get the embedding to be an
isometric one, we need to multiply all the diagonal entries by 1/

√
2. (See the

computer code in §3.4 for the exact recipe.) The image of this embedding is
the subspace R

n
0 ×R

N−n+1 where R
n
0 ⊂ R

n consists of all the vectors whose
coordinates sum to 0. Given this embedding, the norm ‖·‖ refers equally well
to the standard norm on R

N and the one on V which comes from Equation
4.
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3.3 Double Checking the Normalization

In this section we check that the sectional curvature of X is bounded below
by the sectional curvature of H

N . Rather than compute these curvatures
directly we will show, for n = 2, that H : X → H

2 is an isometry, as it
should be. By symmetry, H is an isometry when restricted to certain totally
geodesic copies of H

2 embedded in the general X. This is a sufficient check.
To show that H is an isometry in the case n = 2 it suffices to exhibit a

single triangle, ∆ ⊂ X, with one vertex the origin, such that ∆ and H(∆)
are isometric. We choose the vertices of ∆ to be

x1 =
[
1 0
0 1

]
; x2 =

[
2 0
0 1/2

]
; x3 =

[
5/4 −3/4
−3/4 5/4

]

Note that x3 = Rx2R
t where

R =
[

cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

]
.

R acts on X as a rotation by π/2 so that ∆ is a right-anged isosceles triangle.
First we compute distances in X. For later use we point out that, for

n = 2, we have dX(O, S) = log(λ), where λ is the larger of the two eigen-
values of the symmetric matrix S. Hence dX(x1, x2) = log(2). By symmetry,
dX(x1, x3) = log(2).

To compute dX(x2, x3) we note that x1 = Mx2M
t where

M = x
−1/2
2 =

[√
1/2 0
0

√
2

]
.

Hence
dX(x2, x3) = dX(Mx2M

t, Mx3M
t) = dX(x1, Mx3M

t),

where

Mx3M
t =

[
5/8 −3/4
−3/4 5/2

]
.

This last matrix has eigenvalues

1

16
(25 ± 3

√
41).

Hence,

dX(x2, x3) = log(
1

16
(25 + 3

√
41))).
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Now we compute distances in H
2. Let δ denote the hyperbolic metric.

In the notation from §3.2 (with subscripts added) we have

d2 = ‖ log x2‖ = log(2); u2 =
log x2

d
=

[
1 0
0 −1

]
;

d′

2 = tanh(d2/2) = 1/3; H(x2) = d′

2u2 =
[
1/3 0
0 −1/3

]
;

H(x3) = RH(x2)R
−1 =

[
0 −1/3

−1/3 0

]
.

For the last equation we are using the fact that Rt = R−1.
The identification

M =
[
a b
b −a

]
→ a − bi

is an isometry from TO(X) to C because ‖M‖ =
√

a2 + b2. This identification
yields

H(x1) → 0; H(x2) → 1/3; H(x3) → i/3.

We denote these points respectively by y1, y2, y3. From Equation 8 we get
δ(y1, y2) = δ(y1, y3) = log(2). To compute δ(y2, y3) we introduce the linear
fractional transformation

T (z) =
z − 1/3

1 − z/3
.

Then T is a hyperbolic isometry such that T (1/3) = 0. We have

T (i/3) =
−15

41
+

12

41
i; ‖T (i/3)‖ = 3/

√
41.

We have

δ(y2, y3) = δ(0, T (i/3)) = log
1 + 3/

√
41

1 − 3/
√

41
= log(

1

16
(25+3

√
41)) = dX(x2, x3).

This completes our verification.

Remark: As an extra check, we note that cosh(dX(x2, x3)) = (5/4)2 and
cosh(dX(x1, x2)) = 5/4, so that our distances satisfy the Hyperbolic Pythagorean
Theorem for right-angled hyperbolic triangles. See [B, p 148].
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3.4 Taylor Series Approximation

Here we give some approximations to the Hadamard map. These approxi-
mations output a rational vector given a rational matrix. (Though the final
injection into R

N multiplies some of the coordinates by a factor of
√

2.)
Let x ∈ X. Let m = x − I and λ(x) = sup |mij |. As long as λ < 1 we

have

log x = lim
k→∞

Lk(x); Lk(x) =
k∑

j=1

(−1)j+1mj

j
.

This can be proved by a series argument, as in the case of 1 real variable.
Here are the approximations to the Hadamard map from Equation 9.

Hk(x) =
1

2
Lk(x) = (dk/2)uk;

uk =
Lk(x)

‖Lk(x)‖ ; dk = ‖Lk(x)‖ =
√

Tr(Lk(x)2/2) (10)

Lemma 3.1 Let λ, u, d, uk, dk be as above. Assume that λ < 1. We have

‖u − uk‖ ≤
√

2E

‖Lk(x)‖ ; ‖H(x)‖ ≤ ‖Hk(x)‖ +
E√
8
; E =

Nλk+1

(k + 1)(1 − λ)
;

Proof: The entries in the matrix µ = log x − Lk(x) all have absolute value
at most

λk+1

k + 1
+

λk+2

k + 2
+

λk+3

k + 3
. . . ≤ λk+1

k + 1
(1 + λ + λ2 + . . .) =

λk+1

(k + 1)(1 − λ)
.

But then
‖Lk(x) − log x‖ =

√
|Tr(µ2/2)| ≤ E/

√
2 (11)

There is a unique positive scalar multiple L∗

k(x) of u which has the property
that ‖L∗

k(x)‖ = ‖Lk(x)‖. From elementary geometry we have

‖Lk(x) − L∗

k(x)‖ ≤ 2‖Lk(x) − log x‖ ≤
√

2E. (12)

Scaling Lk(x) and L∗

k(x) by ‖Lk(x)‖−1 we obtain uk and u respectively. Our
first estimate thus follows immediately from Equation 12. Our second esti-
mate follows from Equation 11, from the triangle inequality, and from the
fact that tanh(|t|) ≤ |t|:

tanh
‖ log x‖

2
≤ ‖ log x‖

2
≤ ‖Lk(x)‖

2
+

E√
8
. ♠
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Remark: In §4 we will have

N = 10; k = 3; λ <
1

15
; ‖L3(x)‖ ∈ (

1

20
,

1

11
). (13)

This leads to

‖u − u3‖ ≤ 1

1000
; ‖H(x)‖ < ‖H3(x)‖ +

1

10000
<

1

20
. (14)

3.5 Mathematica Code

Here is a Mathematica version of our Hadamard map, in the case n = 4.
This version computes things numerically starting with 100 digits of accu-
racy. Presumably the final answer is slightly less accurate. The interested
reader can treak the code in an obvious way to change the degree of accuracy.

Hadamard[xx ]:=( x=N[xx,100];

M=Eigenvectors[x]; eig=Eigenvalues[x];

LOGeig=Log[eig];

LOGD={
{LOGeig[[1]],0,0,0}, {0,LOGeig[[2]],0,0},
{0,0,LOGeig[[3]],0}, {0,0,0,LOGeig[[4]]}};
LOGx=Inverse[M].LOGD.M;

v={
LOGx[[1,1]]/Sqrt[2], LOGx[[2,2]]/Sqrt[2],

LOGx[[3,3]]/Sqrt[2], LOGx[[4,4]]/Sqrt[2],

LOGx[[1,2]], LOGx[[2,3]], LOGx[[3,4]],

LOGx[[1,3]], LOGx[[2,4]], LOGx[[1,4]]};
u=v/Sqrt[v.v];

Tanh[Sqrt[v.v]/2] u)

We don’t actually use the above version in our proof. Rather, we use the
k = 3 approximation to the Hadamard map, together with the approxima-
tion results proved above. The reader interested in using the above version
for rigorous purposes should have little difficulty getting it to work in Math-
ematica with interval arithmetic. Mathematica has built-in support for this.

As we just said, we shall work with the k = 3 approximation to the
Hadamard map. The code for this approximation is much simpler, and we
display it for the case of interest to us, n = 4.
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Hadamard3[x ]:=( m=x-IdentityMatrix[4];

L3x= m - m.m/2 + m.m.m/3;

v={
L3x[[1,1]]/Sqrt[2], L3x[[2,2]]/Sqrt[2],

L3x[[3,3]]/Sqrt[2], L3x[[4,4]]/Sqrt[2],

L3x[[1,2]], L3x[[2,3]], L3x[[3,4]],

L3x[[1,3]], L3x[[2,4]], L3x[[1,4]]};
v/2)
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4 Barycentric Subdivision

4.1 Basic Definitions

Here we generalize the setup in [S]. Let Sn+1 denote the permutation group of
the symbols {0, ..., n}. Let ∆ be the convex hull of the n + 1 points v0, ..., vn

in R
n. Given

σ = (i0, ..., in) ∈ Sn+1 (15)

we let ck denote the center of mass of the points vi0 , ..., vik . Concretely,

ck =
1

k + 1

k∑

j=0

vij . (16)

Let ∆σ denote the convex hull of the points c0, ..., cn. The union
⋃

σ ∆σ is
precisely the barycentric subdivision of ∆.

We begin our process by taking our initial simplex to be the convex hull
of the points e0, e1, ..., en. Here e0 = O and e1, ..., en are the standard basis
vectors in R

n.

Remark: It might seem more natural to take the initial simplex to be the
regular simplex. However, our choice leads to much simpler formulas.

Given σ ∈ Sn+1 we let Aσ denote the unique affine map such that
Aσ(ek) = ck for all k. (Here c0, ..., cn depend on σ, as above.) Next, we
define

Tσ = ± Lσ

| det(Lσ)|1/n
, (17)

where Lσ is the linear part of Aσ. As in §1, the sign is chosen to make the
determinant positive. Note that Aσ = Lσ + c0. Hence

Lσ = [ c1 − c0 ... cn − c0 ] (18)

Thus Tσ is quite easy to compute.
We order the elements of Sn+1 lexicographically and let Tj = Tσj

, where
σj is the jth permutation in our ordering. Then Ωn is generated by the
elements T1, ..., T(n+1)! together with the affine symmetries of our initial sim-
plex. (Actually, Ωn is generated by just T1 and the affine symmetries.) In
particular, Ωn contains all the permutation matrices (up to sign). These
permutation matrices will come in quite handy during our proof.
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4.2 Mathematica Version

Here is some Mathematica code which computes the Tj for n = 4. The code
can easily be modified to work for other values of n−e.g. n = 2, 3.

e[0]={0,0,0,0};
e[1]={1,0,0,0};
e[2]={0,1,0,0};
e[3]={0,0,1,0};
e[4]={0,0,0,1};
S5=Permutatations[{0,1,2,3,4}];

T[j ]:=(s=S5[[j]];

c0=(e[s[[1]]])/1;

c1=(e[s[[1]]]+e[s[[2]]])/2;

c2=(e[s[[1]]]+e[s[[2]]]+e[s[[3]]])/3;

c3=(e[s[[1]]]+e[s[[2]]]+e[s[[3]]]+e[s[[4]]])/4;

c4=(e[s[[1]]]+e[s[[2]]]+e[s[[3]]]+e[s[[4]]]+e[s[[5]]])/5;

L=Transpose[c1-c0,c2-c0,c3-c0,c4-c0];

L/Power[Abs[Det[L]],1/4])

Here are the examples of infinite order elliptics promised in the introduc-
tion. We introduce the notation 〈a b c ...〉 = TaTbTc...

In the 2 dimensional case we compute that

〈1 4〉 =
[−1/2 −4/3

1 2/3

]
. (19)

This matrix is easily seen to be infinite order elliptic. In the 3 dimensional
case we compute that

〈16 16 19〉 = −




3/4 5/3 43/24
−9/4 −7/3 −65/24
9/4 5/3 37/24



 (20)

This matrix has eigenvalues

1;
−23 ± 5i

√
71

48
(21)

and hence is infinite order elliptic.
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4.3 The Steering Wheel

For n = 4 the space X has dimension N = 9. Logically speaking, it doesn’t
matter how we found our steering wheel for Ω4. We just have to verify that
it works using the Covering Criterion from §3. However, it certainly seems
worthwhile to explain how we found it.

By construction we have

Ta = ±PaT1; a ∈ [1, 24]. (22)

Here Pa is the ath permutation matrix. These matrices are ordered lexico-
graphically, as the permutations on which they are based.

As in the case k = 1 of Equation 10 we define

d1(A) =
√

Tr((AAt − I)(AAt − I))/2. (23)

Step 1: A1, ..., A40 which minimize the quantity

d1(〈1 a b c〉) a, b, c, d ∈ [1, 120]. (24)

We like these matrices because they have rational entries.

Step 2: We find matrices B1, ..., B40 which minimize the quantity

d1(P1AaPbAcPdAe); a, c, e ∈ [1, 40]; b, d ∈ [1, 24] (25)

Step 3: We find the matrices C1, C2, C3, C4, C5 which minimize the quantity

d1(P1BaPbBcPdBe); a, c, e ∈ [1, 40]; b, d ∈ [1, 24] (26)

Remark: Step 2 is really the induction step for an iterative algorithm which
presumably would produce a sequence of elements in Ω4 converging to the
identity. However, the whole point of this paper is that we can stop after
a finite amount of computation and prove our density result. Incidentally,
there is nothing magic about the number 40. We just found that it worked
well for us in Steps 1 and 2.

Our steering wheel W is made from the 120 elements:

±PaCb; a ∈ [1, 24]; b ∈ [1, 5]. (27)
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Here are the equations for the C matrices:

C1 =

〈 1 19 108 63 12 52 96 57 16 52 49 95
6 54 70 87 19 25 84 87 2 99 60 64
18 82 108 64 3 43 108 57 11 82 108 64

〉

(28)

C2 =

〈 1 54 70 87 18 108 46 64 4 58 78 89
9 52 49 95 7 52 49 95 22 79 60 64
13 53 84 63 18 43 108 63 17 52 49 95

〉

(29)

C3 =

〈 1 54 70 87 18 108 46 64 4 58 78 89
3 8 108 63 12 19 108 63 11 58 78 89
3 30 70 87 9 53 84 63 23 108 46 64

〉

(30)

C3 =

〈 1 6 58 63 22 53 60 64 11 8 108 57
20 19 108 63 12 52 96 57 16 52 49 95
8 58 78 89 20 111 60 64 4 108 46 64

〉

(31)

C3 =

〈 1 13 108 63 23 8 108 63 11 43 108 57
9 54 70 87 18 108 46 64 4 58 78 89
15 80 108 64 6 53 84 63 9 54 70 87

〉

(32)

These arrays are meant to be read like a page of text: left to right and then
down.

4.4 The Approximate Hadamard Image

Our steering wheel W consists of the 120 symmetric 4 × 4 matrices of the
form MM t where M is one of the 120 matrices PaCb listed above. To find the
image H(W ) ⊂ R

10 we would simply apply the Hadamard map to each of the
5 matrices CjC

t
j and then use the symmetry coming from the permutation

matrices. To understand the action of the matrix Pa on R
10 we write

R
10 = R

(
4
1

)

× R

(
4
2

)

The coordinates in the first factor are indexed by the 1-element subsets of
{1, 2, 3, 4} and the coordinates in the second factor are indexed by 2 element
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subsets of {1, 2, 3, 4}. A permutation then permutes the first 4 coordinates
and also permutes the 2-element subsets indexing the second coordinates.
This is the action. The image of the Hadamard map is contained in the
subspace V = R

4
0 × R

6 where R
4
0 = {x1 + x2 + x3 + x4 = 0}.

To make our calculation more transparent we use the approximation H3

from §3.3, rather than the Hadamard map H , and then estimate the differ-
ence. Here we list the first 6 decimal places of the vectors

H3(CjC
t
j)/‖H3(CjC

t
j)‖; j = 1, 2, 3, 4, 5





0.395038
0.102796
0.0115207
−0.509306
−0.23079
−0.158615
−0.404498
−0.335099
0.263012
−0.387744









0.343731
0.0323703
−0.209797
−0.166216
0.36621
0.485628
0.582669
0.287643
−0.12911
0.0174091









−0.127014
0.136948
0.48439

−0.494167
−0.569276
0.230596
0.145616

0.000420745
0.291821

−0.0516275









0.193941
−0.157682
0.123853
−0.160004
0.199935
−0.662376
−0.45887
−0.129582
−0.435437
0.0301193









0.401339
−0.259734
0.295396
−0.436882
−0.517536
0.263641
0.14662
0.178276

−0.233664,
−0.219345





We record the norms ‖H3(CjC
t
j)‖ as

.027255... .03185... .044356... .033822... .0388857...

We record the vales λ(CjC
t
j) as

.0379474... .0364044... .062955... .0443729... .046559

From here we see that Equation 13 holds for C1, ..., C5. Hence ‖H(x)‖ < 1/20
by Equation 14. Hence H(W ) is contained in the ball of Euclidean radius
1/20 about O.

4.5 Estimating the Convex Hull

To show that H(W ) is a steering wheel, it suffices to show that Hull(U)
contains the ball of radius 1/20 about O. Let U3 denote the approximation
to U obtained when we use H3 instead of H . From Equation 14, each point
of U is within 1

1000
of a point of U3 and vice versa. So, any point in Hull(U) is
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within 1
1000

of a point of Hull(U3), and vice versa. Hence, it suffices to show
that Hull(U3) contains the ball of radius 3/40 > 1/20 + 1/1000 about O.

Let Z be the convex hull of the union of the 24 × 3 points Pa(zb) where

z1 = .3(0, ..., 0, 1); z2 = −z1; z3 = .15(1, 1,−1,−1, 0, ..., 0). (33)

Then Z is centrally symmetric and each pair of antipodal vertices is or-
thogonal to every other pair. Hence Z is isometric to the 9 dimensional
cross-polytope whose vertices are 3/10 from the O. From here it is easy to
see that Z contains the ball of radius 1/10 about O in R

4
0 ×R

6. We will try
to show that Z ⊂ Hull(U3). By symmetry, it suffices to show zj ∈ Hull(U3)
for j = 1, 2, 3. We perform the following iterative algorithm for each z = zj :

1. Let ζ0 = O. Then ζ0 ∈ Hull(U3) by symmetry.

2. Assuming that ζ0, ..., ζk have been constructed let δk = ‖z − ζk‖.

3. Let ζk+1 be the point which minimizes the distance from z to

(1 − λδk)ζk + λδkuj; j = 1, ..., 120.

Here uj ∈ U3. (Geometrically, we move ζk a little bit of the way towards
each of the points in U3 and see which perturbation brings us closer to
z.) As long as λ < 1/2 we have ζk ∈ Hull(U3) for all k.

Along the way our algorithm produces weights {ωkj} such that

ζk =
∑

ωkjuj;
∑

ωkj ≤ 1; ωkj ≥ 0.

Remarks:
(i) The value of λ affects the convergence of the algorithm. We use λ = 1/8.
(ii) If U3 were a general collection of points in S1 then we would have to
exhibit the equation zj =

∑
ωiui where

∑
ωi = 1 to show that zj ∈ Hull(U3).

Here {ωj} are the non-negative weights. However, in our case we know that
O ∈ Hull(U3) and so it is enough to take

∑
ωj ≤ 1.

We run our algorithm in C. We first run our algorithm for about 1000
iterations to get a rough sense of the weights. Then, to get a cleaner final
answer, we eliminate any vertex whose weight is less than .0001 and run the
algorithm again for 2000 iterations. (In the second iteration we really only
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perform Step 3 above for a small fraction of the 120 points. This is why
most of the weights in our final answer are 0.) When we are done we have
our list of weights. When we take the weighted average of our vectors, with
the generated weights, we get a point z′j which is within 10−12 of the point
zj . This calculation, which is accurate up to about 16 decimal places, shows
that there is a polytope Z ′ is contained within Hull(U ′

3) where each point
of Z ′ is easily within 10−12 of Z and each point of U ′

3 is easily within 10−12

of U3. This is enough information to see that, say, .999Z ⊂ Hull(U3), and
.999Z contains the ball of radius 3/40 centered at the origin. This completes
our proof that W is a steering wheel for Ω4.

For the record, we list the nonzero weights we get from our algorithm,
up to 6 decimal places. In our listings, the coefficient (a, b) stands for
Pa(H3(CbC

t
b)). Here are the listings for z1, z2, z3 respectively:

(12, 1) : 0.000834 (18, 1) : 0.002802 (8, 2) : 0.006935 (9, 2) : 0.081499
(10, 2) : 0.096916 (11, 2) : 0.022494 (14, 2) : 0.006094 (15, 2) : 0.079902
(16, 2) : 0.080828 (17, 2) : 0.019432 (8, 3) : 0.022283 (11, 3) : 0.007182
(14, 3) : 0.007834 (17, 3) : 0.007487 (5, 4) : 0.045395 (6, 4) : 0.065154
(19, 4) : 0.038470 (20, 4) : 0.039940 (2, 5) : 0.029845 (4, 5) : 0.057037
(21, 5) : 0.028191 (23, 5) : 0.034357

(5, 1) : 0.001296 (6, 1) : 0.012831 (9, 1) : 0.012822 (10, 1) : 0.017746
(15, 1) : 0.004652 (16, 1) : 0.010315 (19, 1) : 0.010096 (20, 1) : 0.024886
(5, 3) : 0.074393 (6, 3) : 0.103529 (9, 3) : 0.008950 (10, 3) : 0.006996
(15, 3) : 0.018158 (16, 3) : 0.003028 (19, 3) : 0.092300 (20, 3) : 0.055322
(8, 4) : 0.037383 (11, 4) : 0.030937 (14, 4) : 0.025673 (17, 4) : 0.042379

(1, 1) : 0.008859 (2, 1) : 0.013550 (5, 1) : 0.017547 (8, 1) : 0.002958
(4, 2) : 0.013268 (6, 2) : 0.033421 (7, 2) : 0.020130 (10, 2) : 0.037629
(12, 2) : 0.027642 (1, 3) : 0.000898 (2, 3) : 0.002497 (7, 3) : 0.010825
(8, 3) : 0.005351 (13, 3) : 0.000294 (15, 3) : 0.008496 (19, 3) : 0.010535
(1, 5) : 0.010874 (2, 5) : 0.038034 (3, 5) : 0.104569 (5, 5) : 0.052545
(7, 5) : 0.034533 (8, 5) : 0.011312 (9, 5) : 0.108714 (11, 5) : 0.060276
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5 Proof of Lemma 1.1

5.1 The Key Formulas

Define the commutator [R, S] = RSR−1S−1 as usual. Using the notation
from §4.1 we define

A = [T1, T2]
2; B = [[T1, T2], [T1, T7]]. (34)

Note that [Ti, Tj ] = [Li, Lj]. We have

L1 =





1
2

1
3

1
4

... 1
n+1

0 1
3

1
4

... 1
n+1

0 0 1
4

... 1
n+1

. . .
0 0 0 ... 1

n+1




; L−1

1 =





2 −2 0 0 ... 0
0 3 −3 0 ... 0
0 0 4 −4 ... 0
. . .
0 0 0 ... n −n
0 0 0 ... 0 n + 1





(35)
Also

• L2 is obtained from L1 by switching rows n − 1 and n.

• L−1
2 is obtained from L−1

1 by switching columns n − 1 and n.

• L7 is obtained from L1 by switching rows n − 4 and n − 3.

• L−1
7 is obtained from L−1

1 by switching columns n − 4 and n − 3.

Using these formulas one can work out, in general, that

A =





a 0
a 0

In−2 . . . . . .
a 0
a 0

0 0 . . . 0 0 b 1
0 0 . . . 0 0 −1 0





; a =
3n + 1

n2
; b =

1 + 2n − n2

n2
. (36)

In the case n = 4 we just compute this explicitly. For the general case, we
note that both L1 and L2 have the same action on R

n−2 and both preserve
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this subspace. Hence the first n−2 columns of [L1, L2]
2 are e1, ..., en−2. Only

the last two columns of [L1, L2]
2 need to be computed.

For B one can compute that

B = B(0,
n + 1

n(n − 2)
; 2 − n);

B(u, v; k) =





u v
u v

In−2 . . . . . .
u v
ku kv

0 0 . . . 0 0 1 0
0 0 . . . 0 0 0 1





. (37)

Again this can be computed explicitly in the case n = 4.

5.2 The Proof

The Lie algebra to SLn(R) is the vector space of traceless n × n matrices.
We say that Ω̂n scrapes a Lie algebra element M if the closure of Ω̂n contains
the subgroup exp(tM) generated by M . The set of scraped elements forms
a vector space. This follows from the formula [FH, Exercise 8.38]:

exp(M1 + M2) = lim
k→∞

(exp(M1/k) · exp(M2/k))k

To save words, we call the above fact the vector space property .
Let A and B be as above.

Lemma 5.1 A is an infinite order elliptic element for all n.

Proof: The bottom right 2 × 2 minor A′ of A has trace nb ∈ (−2, 2) and
hence is elliptic for all n. Hence A is elliptic for all n. The only finite order
elliptic elements in SL2(R) with rational trace have order at most 4. The
only possible traces for these elements are −1, 0, 1. None of these equals b.
Hence A′ has infinite order. Hence A has infinite order. ♠

Lemma 5.2 For any (u1, v1; k) there is some (u2, v2; k) (with the same k)
such that AB1A

−1 = B2. Here we have set Bj = B(uj, vj; k). Moreover,
the pairs (u1, v1) and (u2, v2) are linearly independent as long as they are
nonzero.
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Proof: We will give the proof in the case n = 4. The general case is more
tedious but similar. In the case n = 4 we have:

AB1A
−1 =





1 0 a 0
0 1 a 0
0 0 b 1
0 0 −1 0









1 0 u1 v1

0 1 ku1 kv1

0 0 1 0
0 0 0 1









1 0 0 a
0 1 0 a
0 0 0 −1
0 0 1 b



 =





1 0 v1 bv1 − u1

0 1 kv1 k(bv1 − u1)
0 0 1 0
0 0 0 1



 (38)

Thus we see that [
u2

v2

]
=

[
v1

bv1 − u2

]
. (39)

Therefore

det
[
u1 u2

v1 v2

]
= −(u2

1 + v2
2 − bu1v2) < 0. (40)

The last inequality comes from the fact that |b| < 2. ♠

Let k = 2 − n. Let

Br = ArBA−r = B(ur, vr; k) (41)

Here ur and vr also depend on n, but we suppress this from our notation. A
straightforward calculuation, just like the preceding lemma, shows that

BrB
−1
s = B(ur − us, vr − vs; k). (42)

Since A is an infinite order elliptic element we can choose r and s so that
ur − us and vr − vs are as close as we like to 0. This means that Ω̂n, which
contains all the elements we are discussing, scrapes two elements:





uj vj

uj vj

O . . . . . .
uj vj

kuj kvj

0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0





; j = 1, 2. (43)
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Here (u1, v1) and (u2, v2) are linearly independent. The second element is
obtained from the first by conjugating by A and looking at the action in
Equation 38. Using these elements and the vector space property, we see
that Ω̂n scrapes the element





0 1
0 1

O . . . . . .
0 1
0 k

0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0





. (44)

Since Ω̂ contains all the permutation matrices, Ω̂ scrapes the n − 2 ele-
ments obtained by permuting the top n − 2 rows of the preceding element.
Using these elements and the vector space property, we see that Ω̂n scrapes





0 1
0 0

O . . . . . .
0 0
0 0

0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0





. (45)

Using the fact that Ω̂n contains all the permutation matrices we see that
Ω̂n scrapes any element which has all zeros along the main diagonal and one
nonzero element. Using the vector space property we now see that Ω̂n scrapes
any element with all zeros on the main diagonal. Call these elements type 1 .

The density of Ω̂n follows from the fact that it scrapes all type 1 elements,
but we will give a more explicit proof. Looking at our element A we see that
Ω̂n scrapes an element whose diagonal has the form (0, ..., 0, 1,−1). Since Ω̂n

contains all the permutation matrices, and scrapes all type 1 elements, we
see that Ω̂n scrapes any element which has 2 nonzero entries on the diagonal.
Such elements generate the vector space of traceless matrices. Hence Ω̂n

scrapes every element of the Lie algebra. Hence Ω̂n is dense in SLn(R). This
completes our proof.
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