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Abstract

Let Sol be the 3-dimensional solvable Lie group whose underlying
space is R3 and whose left-invariant Riemannian metric is given by

e−2zdx2 + e2zdy2 + dz2.

We prove that the sphere of radius r in Sol has surface area at most
20πer provided that r is sufficiently large. This estimate is sharp up
to a factor of 10.

1 Introduction

Sol is one of the 8 Thurston geometries [Th], the one which uniformizes torus
bundles which fiber over the circle with Anosov monodromy. Sol has been
studied in various contexts: coarse geometry [EFW], [B]; minimal surfaces
[LM] (etc.); its geodesics [G], [T], [K], [BS]; connections to Hamiltonian
systems [A], [BT]; and finally virtual reality [CMST]. Our paper [CS] has
a more extensive discussion of these many references.

In [CS], Matei Coiculescu and I give an exact characterization of which
geodesic segments in Sol are length minimizers, thereby giving a precise de-
scription of the cut locus of the identity in Sol. As a consequence, we proved
that the metric spheres in Sol are topological spheres, smooth away from 4
singular arcs. We will summarize the characterization in §2 and explain the
main ideas in the proof in §4.
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Ian Agol recently pointed out to me that our exact characterization of
the cut locus in Sol might help us determine the growth rate in balls in Sol.
Eryk Kopczyński pointed out a rather easy calculation that Vr ≤ Cr2er for
some constant C, and this implies that Sol has volume entropy 1. See §2.8.
Marc Troyanov recently showed me a preprint with the estimate Vr < 8rer.
We will get finer information.

To state our main result, we normalize the metric in Sol so that it is:

e−2zdx2 + e2zdy2 + dz2. (1)

In this metric the planes X = 0 and Y = 0 have sectional curvature −1. Let
Sr denote any metric sphere of radius r in Sol. Let Ar denote the area of Sr
with respect to the Riemannian metric in Sol.

Theorem 1.1 Ar < 20πer provided that r is sufficiently large.

Remarks:
(i) Given the 2-to-1 locally-area-decreasing projection from Sr onto the hy-
perbolic disk of radius r, we have Ar > 4π(cosh(r) − 1) ≈ 2πer. Thus, our
estimate is sharp up to a factor of 10.
(ii) Our analysis does not give an effective estimate on what “sufficiently
large” means. However, we notice that all the relevant quantities seem to
stabilize pretty quickly: one sees all the phenonena already when looking at
a sphere of radius 8 in Sol.

The basic idea of the proof is to bound the projections of the sphere into
the coordinate planes. Let ΠX denote the coordinate plane X = 0. Let ηX
denote the projection of Sol into ΠX . Let AX,r denote the area of ηX(Sr).
Let NX,r denote the smallest integer such that the map ηX : Sr → ΠX is at
most NX,r-to-1. We make all the same definitions with Y and Z in place of
X. We also make a more refined definition for Z. Let Sr,k denote the subset
where ηZ is k-to-1, We let AZ,r,k denote the area of ηZ(Sr,k). In §2.7 we prove
the following result.

Lemma 1.2 (Projection) For any ε > 0 and any θ ∈ (0, 1) we may take r
sufficiently large so that

Ar <
(NX,rAX,r +NY,rAY,r)

θ − ε
+

1√
1− θ2 − ε

∞∑
k=1

kAZ,k,r.
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Remark: A similar result would be true for any surface in Sol which is al-
most everywhere smooth, but the formula in general would not be quite as
good. We use special properties of Sr to get the formula above.

We then establish the following projection estimates:

1. AX,r = AY,r = 2π(cosh(r)− 1) < πer.

2. NX,r = NY,r = 2.

3. AZ,r < 16∗er for sufficiently large r.

4. NZ,r = 4 for sufficiently large r.

5. AZ,k,r < 0∗er for k = 3, 4.

The number ζ∗ is a number we can make as close as we like to ζ by taking
r sufficiently large. Estimates 4 and 5 together combine to say that the
projection ηZ is essentially 2-to-1, because the set where it is either 3-to-1 or
4-to-1 has negligible area in comparison to er. When we apply the result in
Lemma 1.2 we see that, for r large,

Ar < min
θ∈(0,1)

(
4∗π

θ
+

32∗√
1− θ2

)
er < 20πer. (2)

The minimizer is quite close to θ = 3/5 and the minimum is about 60.93er.
Projection Estimates 1 and 2 are straightforward given our description

of the Sol spheres. Projection Estimate 3 relies on an analysis of an ODE
studied in [CS] and some easy asymptotic results about elliptic functions.
After giving our upper bound we will explain, a bit sketchily, why

AZ,r > (2/1∗)er

once r is sufficiently large. We do this to point out that our upper bound
is fairly tight. When we plug in this smaller estimate into the Projection
formula above, we get a bound of about 7πer. Ths represents a kind of
absolute limit to the strength of our method.

The hard work in the paper involves dealing with Projection Estimate 4,
even though the result is clear from the computer plots such as Figure 5.4,
involves a careful asymptotic study of the ODE just mentioned. Projection
Estimate 5 comes out as a byproduct of our analysis.

This paper is organized as follows.
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• In §2 we introduce some preliminary material and in particular recall
the Main Theorem from [CS]. We use this result to prove the Projection
Lemma, though we also point out that one can prove the Projection
Lemma knowing a much softer result about the Sol spheres.

• In §3, we prove Projection Estimates 1 and 2.

• In §4, we give details about the proof of the Main Theorem in [CS].
These details are needed for the proof of Projection Estimates 3 – 5.

• In §5 we give more information about the central ordinary differential
equations which arise in [CS].

• In §6 we prove Projection Estimates 3 – 5 modulo the detail that a
certain curve in the plane is smooth and regular except at a single
cusp. See Figure 5.3. Proving this result, which we call the Embedding
Theorem, turns out to be a fight with the OEDs introduced in §5.

• In §7 we prove the Embedding Theorem modulo a detail which we call
the Monotonicity Lemma, a statement about the ODE from §4.3.

• in §8-9 we prove the Monotonicity Lemma. This is where all the ODE
calculations come in.

I would like to thank Ian Agol, Matei Coiculescu, Justin Holmer, An-
ton Izosimov, Boris Khesin, Eryk Kopczyński, Mark Levi, Benoit Pausader,
Pierre Pansu, and Marc Troyanov for helpful discussions concerning this pa-
per. I would also like to acknowledge the support of the Simons Foundation,
in the form of a 2020-21 Simons Sabbatical Fellowship, and also the support
of the Institute for Advanced Study, in the form of a 2020-21 membership
funded by a grant from the Ambrose Monell Foundation.
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2 Preliminaries

2.1 Basic Properties of Sol

The underlying space for Sol is R3. The metric is:

e−2zdx2 + e2zdy2 + dz2. (3)

The group law on Sol is

(x, y, z) ∗ (a, b, c) = (eza+ x, e−zb+ y, c+ z). (4)

Left multiplication is an isometry. We identify R3 with the Lie algebra of
Sol in the obvious way. (See [CS, §2.1] if this does not seem obvious.)

Sol has 3 interesting foliations.

• The XY foliation is by (non-geodesically-embedded) Euclidean planes.

• The XZ foliation is by geodesically embedded hyperbolic planes.

• The YZ foliation is by geodesically embedded hyperbolic planes.

The complement of the union of the two planes X = 0 and Y = 0 is a
union of 4 sectors . One of the sectors, the positive sector , consists of vectors
of the form (x, y, z) with x, y > 0. The sectors are permuted by the Klein-4
group generated by isometric reflections in the planes X = 0 and Y = 0. The
Riemannian exponential map E preserves the sectors. Usually, this symme-
try will allow us to confine our attention to the positive sector.

Notation: For each W ∈ {X, Y, Z}, the plane ΠW is given by W = 0 and
the map ηW : Sol→ ΠW is the projection onto ΠX obtained by just dropping
the W coordinate. We also let πZ denote projection onto the Z-axis. Thus,
πZ(x, y, z) = z.

2.2 Properties of the Hyperbolic Slices

We discuss our results for ΠY . There are analogous results for ΠX . Here is
a basic property of the hyperbolic slices in Sol. The map F (x, 0, z) = (x, ez)
converts the metric in ΠY to the standard hyperbolic metric in the upper
half plane, namely

(dx2 + dy2)/y2.
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Lemma 2.1 In ΠY , the points (0, 0, 0) and (dr, 0, 0) are connected by a
geodesic segment of length r when dr = er/2 − e−r/2.

Proof: Here dr = 2 sinh(r/2). Let F be the transformation from ΠY

to the standard upper half plane model. We have F (0, 0, 0) = (0, 1) and
F (dr, 0, 0) = (dr, 1). As is well known, the distance between these points in
the standard hyperbolic metric is 2 sinh−1(dr/2) = 2(r/2) = r. ♠

Lemma 2.2 In ΠY , the point (x, 0, z) lies in the disk of radius r centered at
(0, 0, 0) only if |x| ≤ (er − e−r)/2.

Proof: We use the transformation F again. Looking in the standard upper
half plane model, the disk we are interested in, Dr, is centered at (0, 1) and
has radius r. The two points (0, e−r) and (0, er) lie in the boundary of Dr.
Hence Dr has Euclidean radius (er − e−r)/2. ♠

2.3 The Disk Lemma

Here we recall a result from topology. This result will be useful, in §5, when
we prove Projection Estimate 4.

Lemma 2.3 (Disk) Let ∆ ⊂ R2 be a disk. Let h : ∆ → R2 be a map
which is a local diffeomorphism on the interior such that h(∂∆) is a piecewise
smooth curve having finitely many self-intersections. Given p ∈ R2 − h(∆),
the number of preimages h−1(p) equals the unsigned number of times h(∂∆)
winds around p.

Proof: This is a well-known result. Here we sketch the proof. Without loss
of generality, we can assume that ∆ is the unit disk in R2 and h(0, 0) 6= p.
Let ∆s denote the disk of radius r centered at (0, 0). Also, we can assume
that h is orientation preserving in the interior of ∆. Let f(s) denote the
number of times h(∆s) winds around p. For s near 0, we have f(s) = 0. The
function f changes by ±1 each time ∆s crosses a point of f−1(p). The sign
is always the same because h is orientation preserving. Hence the number of
points in f−1(p) equals f(1), up to sign. ♠
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2.4 Elliptic Functions

Many of the quantities associated to Sol are expressed in terms of elliptic
integrals. The complete elliptic functions of the first and second kind are
given by

K(m) =

∫ π/2

0

dθ√
1−m sin2 θ

, E(m) =

∫ π/2

0

√
1−m sin2(θ) dθ. (5)

The first integral is defined for m ∈ [0, 1) and the second one is defined for
m ∈ [0, 1]. These functions satisfy the following differential equations. For a
proof see any textbook on elliptic functions.

dK
dm

=
(m− 1)K + E

2m− 2m2
,

dE
dm

=
−K + E

2m
. (6)

We will use the following classic identity.

K(m) =
π/2

AGM(
√

1−m, 1)
, m ∈ (0, 1). (7)

See [BB] for a proof. We also have

E(1) = 1, lim
m→1

K(m)

| log(1−m)|
= 2. (8)

The second equation is much more than we need for the proof of Lemma 8.1
below. We just need to know that K(m) grows more slowly than 1/(1−m).

2.5 The Hamiltonian Flow

Let G = Sol. Let S1 ⊂ R3 denote the unit sphere. at the origin in G. Given
a unit speed geodesic γ, the tangent vector γ′(t) is part of a left invariant
vector field on G, and we let γ∗(t) ∈ S1 be the restriction of this vector field
to (0, 0, 0). In terms of left multiplication on G, we have the formula

γ∗(t) = dLγ(t)−1(γ′(t)). (9)

It turns out that γ∗ satisfies the following differential equation.

dγ∗(t)

dt
= Σ(γ∗(t)), Σ(x, y, z) = (+xz,−yz,−x2 + y2). (10)
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This is explained one way in [G] and another way in [CS, §5.1]. (Our formula
has a different sign than Grayson’s, because our group law correspondingly
differs by a sign.) This system in Equation 10 is really just geodesic flow on
the unit tangent bundle of Sol, viewed in a left-invariant reference frame.

Let F (x, y, z) = xy. The flow lines of Σ lie in the level sets of F , and
indeed Σ is the Hamiltonian flow generated by F . Most of the level sets
of F are closed loops. We call these loop level sets . With the exception of
the points in the planes X = 0 and Y = 0, and the points (x, y, 0) with
|x| = |y| =

√
2, the remaining points lie in loop level sets.

Each loop level set Θ has an associated period L = LΘ, which is the time
it takes a flowline – i.e., an integral curve – in Θ to flow exactly once around.
Equation 11 below gives a formula. We can compare L to the length T of
a geodesic segment γ associated to a flowline that starts at some point of Θ
and flows for time T . We call γ small , perfect , or large according as T < L,
or T = L, or T > L. In [CS, §5] we prove the following result:

Theorem 2.4 Suppose (x, y, z) ∈ S2 lies in a loop level set. Let α =
√
|xy|.

Then the period of the loop level set containing (x, y, z) is

Lα =
π

AGM(α, 1
2

√
1 + 2α2)

=
4√

1 + 2α2
×K

(
1− 2α2

1 + 2α2

)
. (11)

The second expression follows from the first, and from Equation 7.
Each vector V = (x, y, z) simultaneously corresponds to two objects:

• The flowline φV which starts at V/‖V ‖ and goes for time ‖V ‖.

• The geodesic segment γV = {E(tV )| t ∈ [0, 1]}.
Given a vector V = (x, y, z) we define

µ(V ) = AGM(
√
xy,

1

2

√
(|x|+ |y|)2 + z2). (12)

We call V small , perfect , or large according as µ(V ) is less than, equal to, or
greater than π. In view of Equation 11 here is what this means:

• If γV lies in the plane X = 0 or Y = 0 then V is small because µ(V ) = 0.

• If V = (x, y, 0) where |x| = |y| then V is small, perfect, or large
according as |x| < π, |x| = π or |x| ≥ π.

• In all other cases, V/‖V ‖ lies in a loop level set, and V is small, perfect,
or large according as µ(V ) < π, µ(V ) = π, or µ(V ) > π.
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2.6 The Main Result

Now we recall the main result from [CS].

Theorem 2.5 Given any vector V , the geodesic segment γV is a distance
minimizing geodesic if and only if µ(V ) ≤ π. That is, γV is distance mini-
mizing if and only if V is small or perfect. Moreover, if V and W are perfect
vectors then E(V ) = E(W ) if and only if V = (x, y, z) and W = (x, y,±z).

Theorem 1.1 identifies the cut locus of the identity in Sol with the set of
perfect vectors. The Riemannian exponential map E is a global diffeomor-
phism on the set of small vectors. Also, E is generically 2-to-1 on the set of
perfect vectors. We will explain this last fact below.

Theorem 1.1 leads to a good description of the Sol metric sphere Sr of
radius r. Let Sr denote the Euclidean sphere of radius r centered at the
origin of R3. Let

S ′r = µ−1[0, π] ∩ Sr. (13)

The space S ′r is a 4-holed sphere. The boundary ∂S ′r, a union of 4 loops, is
precisely the set of perfect vectors contained in Sr. Each of these loops is
homothetic to one of the loop level sets on the unit sphere S2. The Klein-4
symmetry explains why there are 4 such loops.

It follows from the Main Theorem that Sr = E(S ′r) and that E is a diffeo-
morphism when restricted to S ′r−∂S ′r. On ∂S ′r, the map E is a 2-to-1 folding
map which identifies partner points within each component. Thus, we see
that Sr is obtained from a 4-holed sphere by gluing together each boundary
component (to itself) in a 2-to-1 fashion. This reveals Sr to be a topological
sphere which is smooth away from the set E(∂S ′r). We also prove that the
singular set E(∂S ′r) consists of 4 arcs of hyperbolas, all contained in ΠZ .

The Lunar Principle: Given a unit normal vector V to Sr at a smooth
point, we let V∗ denote the left translate of V to the origin. Let Nr denote
the set of all such vectors Vr. Given the nature of the loop level sets, we have
the following corollary of Theorem 2.5. For any ε > 0 there is some R such
that Nr is contained in the ε-tubular neighborhood of ΠX ∪ΠY provided that
r > R. We call this the Lunar Principle because ΠX ∪ΠY intersects the unit
sphere in a union of 4 spherical lunes. One does not really need the full force
of Theorem 2.5 to deduce the Lunar Principle: A long geodesic tangent to a
unit vector that is far from ΠX ∪ ΠY makes a corkscrew-like pattern and is
quite far from distance minimizing.
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2.7 Proof of the Projection Lemma

We call a map η between surfaces θ-good if

area(η(S))

area(S)
≥ δ

for any measurable subset S in the domain. Mostly we are interested in the
case when the domain is a smooth surface in Sol and the range is one of the
coordinate planes in Sol. However, in the first result, we will consider planar
surfaces in R3. The same projections ηX , ηY , ηZ make sense as projections
in R3.

Lemma 2.6 Let ΘX ,ΘY ,ΘZ be positive numbers with Θ2
X + Θ2

Y + Θ2
Z = 1.

Let Π be any plane in R3. Then there is an I ∈ {X, Y, Z} such that the ηI
is ΘI-good.

Proof: It follows from the familiar fact that ‖V ×W‖ computes the area of
the parallelogram spanned by two vectors V,W ⊂ Π, and from the Pythagorean
Theorem, that there are 3 non-negative numbers rX , rY , rZ ≥ 0 so that
r2
X + r2

Y + r2
Z = 1, and

AΠ(S) = rXAX(S) + rYAY (S) + rZAZ(S). (14)

Here S ⊂ Π is any measurable set and AX(S) is the area of ΠX(S), etc. If
our claim is false then ΘI < rI for all I ∈ {X, Y, Z}. But then

1 = Θ2
X + Θ2

Y + Θ2
Z < r2

X + r2
Y + r2

Z = 1,

and we have a contradiction. ♠

Now we move the discussion to Sol.

Lemma 2.7 Let ΘX ,ΘY ,ΘZ be positive numbers with Θ2
X + Θ2

Y + Θ2
Z = 1.

Let Σ be a smooth surface in Sol. Let p ∈ Σ be any point. Then for any
ε > 0 there is a sufficiently small neighborhood U about p and some index
I ∈ {X, Y, Z} such that ηI is ΘI-good on U .

Proof: Given that Sol is homogeneous, and that the projections between
parallel planes within the same coordinate foliation are area preserving, it
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suffices to prove our result when p is the origin in Sol. But, in this case, the
metric on Sol agrees with the Euclidean metric up to any given ε we like. So,
this special case follows from Lemma 2.6 and the differentiability of Σ. ♠

Now let us apply the Lunar Principle to the sphere Sr. Given a smooth
point p ∈ Sr, the corresponding vector Np,0 lies quite near ΠX ∪ ΠY . The
reason is that Np,0 either lies in ΠX ∪ΠY or else in a loop level set of period
greater than r, and such loop level sets lie near ΠX ∪ ΠY . Therefore, given
any ε > 0 we can take r large enough so that there is a partition of the
smooth points of Sr into 3 measurable (or indeed piecewise smooth) regions

Sr(I), I ∈ {X, Y, Z}

with the following properties:

• The projection ηX : Sr(X)→ ΠX is (θ − ε) good.

• The projection ηY : Sr(Y )→ ΠY is (θ − ε) good.

• The projection ηZ : Sr(Z)→ ΠZ is (
√

1− θ2 − ε)-good.

Since the non-smooth subset of Sr has area 0, the formula in the Projection
Lemma follows immediately.

2.8 A Weaker Bound on Volume

This section is independent from the rest of the paper. Here we present,
with minor modifications, Eryk Kopczyński’s derivation of a weaker volume
growth bound that is still sufficient to establish that Sol has volume entropy
1. I did not try for optimal constants.

Lemma 2.8 Suppose γ is a geodesic in Sol having length r. Let r1 be the
length of γ that lies above the plane Z = 0 and let r2 be the length of γ that
lies below or in the plane Z = 0. Then the endpoint (x, y, z) of γ satisfies
the bound |x| ≤ er1 + r2 and |y| < er2 + r1.

Proof: We first consider two special cases. If γ stays above the plane ΠZ

then the endpoint (x, y, z) satisfies the bounds |x| ≤ er and |y| ≤ r. Like-
wise, if γ stays below the plane ΠZ then the endpoint (x, y, z) satisfies the
bounds |y| ≤ er and |x| ≤ r. In general, one can break γ into intervals
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γ1, ..., γk, for some k, such that each γj satisfies one of the two special cases
just considered. Adding up the bounds from the special cases, we get the
result advertised in the lemma. ♠

Set u = er. Note that r < u. Every point (x, y, z) in the ball of radius r
satisfies

|x|, |y| ≤ u+ r, |z| ≤ r, (|x| − r)(|y| − r) ≤ u.

Let Ωr be the set of points satisfying these inequalities. For convenience we
take r ≥ 1 The volume of the part of Ωr where |x| ≤ r + 1 is bounded by

8r × (r + 1)× (u+ r) < 32r2u.

Likewise, the volume of the part of Ωr where |y| ≤ r+1 is bounded by 32r2u.
The volume of the part of the Ωr where |x| > r + 1 and |y| > r + 1 is

8r

∫ u

1

u

x
dx ≤ 8ru log(u) = 8r2u.

Therefore Ωr has volume at most 72r2er. But the ball of radius r is contained
in Ωr.
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3 The Hyperbolic Projections

3.1 A Picture

Recall that ηX : Sol→ ΠX is the orthogonal projection onto the plane X = 0.
Figure 3.1 shows the projection of (part of) the positive sector of the sphere
S5 into the plane ΠX . The smooth part of this sphere has a foliation by
the images of the loop level sets under the Riemannian exponential map E.
The grey curves are the projections of this foliation into ΠX . The black line
segment is the projection of the set of singular points.

Figure 3.1: Projection into the plane ΠX .

It appears from the picture that the restriction of ηX to this sector is
a homeomorphism onto its image. We will prove this result below. For
convenience we take r > π

√
2.

3.2 Area Bound

In this section we prove Projection Estimate 1. By symmetry, it suffices to
prove the result for the projection ηX into the plane ΠX . Let S+

r denote the
subset of Sr consisting of points (x, y, z) with x ≥ 0. Let Hr denote the
hyperbolic disk of radius r contained in the plane ΠX and centered at the
origin. All the points in the interior of S+

r lie in the open positive sector.
Because ΠX is a totally geodesic plane in Sol, we have ∂S+

r = ∂Hr. The
following result immediately implies that AX,t < πer.
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Lemma 3.1 ηX maps the interior of S+
r into the interior of Hr.

Proof: If this is false, then there is a geodesic segment γ of length r, con-
necting (0, 0, 0) to some point p ∈ S+

r which remains entirely in the positive
sector except for its initial point, (0, 0, 0). The projection map ηX is distance
non-increasing, and locally distance decreasing on any curve whose tangent
vector is not in a plane of the form X = const.. This means that ηX(γ) is
shorter than γ. But then ηX(γ) cannot reach the point ηX(p) ∈ ∂Hr. ♠

3.3 Multiplicity Bound

In this section we prove Projection Estimate 2. As above, it suffices to prove
this result for the projection ηX into the plane ΠX . To prove that NX,r = 2
it suffices, by symmetry, to show that ηX is an injective map from S+

r to ΠX .
The basic strategy is to show that ηX is locally injective. We also know that
ηX is the identity on the boundary of S+

r , which already lies in the plane
X = 0. (It is the boundary of the hyperbolic disk on ΠX of radius r centered
at the origin.) Our injectivity result then follows from the Disk Lemma in
§2.

For convenience we take r > π
√

2 in the next result, so that we don’t
have to discuss several cases. (The sphere Sr is smooth for r < π

√
2 and has

4 singular arcs for r > π
√

2.) The set of smooth points of Sr is a union of 4
open “punctured” disks. In each case, we are removing an analytic arc from
an open topological disk and what remains is smooth. Figure 4.1 shows (a
portion of) the ηX-projections of the smooth points of Sr.

Lemma 3.2 The differential dηX is injective at all the smooth points in the
interior of S+

r

Proof: Let Sr denote the subset of the sphere of radius r centered at the
origin in the Lie algebra. As in the previous chapter, let S ′r denote the
subset of Sr consisting of vectors which are either small or perfect. Let
p ∈ S ′r be some point. We think of p as a vector, so that E(p) ∈ S+

r . Let
Tp be the tangent plane to S ′r at p. Let Np be the unit normal to Tp. Since
the perfect geodesic segments are minimizers, the small geodesic segments
are unique minimizers without conjugate points. So, at the corresponding
points of S ′r, the differential dEp is an isomorphism. We just have to show
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that (1, 0, 0) 6∈ dEp(Tp). We will suppose that (1, 0, 0) ∈ dEp(Tp) and derive
a contradiction.

If (1, 0, 0) ∈ dEp(Tp), then the first component of dEp(Np) is 0, because
dEp(Np) and dEp(Tp) are perpendicular. Let γp be the geodesic segment cor-
responding to p. The vector dEp(Np) is the unit vector tangent to γp at its
far endpoint – i.e., the endpoint not at the origin. This vector lies in the same
left invariant vector field as the endpoint Up of the flowline corresponding to
p. If the first coordinate of Up is 0, then the entire flowline lies in the plane
X = 0. But then E(p) ∈ ∂S+

r . This is a contradiction. ♠

Lemma 3.3 The map ηX is locally injective at each singular point of S+
r .

Proof: As we showed in [CS], the singular set in Sr consists of 4 arcs of
hyperbolas, each contained in the plane ΠZ . Each of these arcs lies in the in-
terior of a different sector and is an arc of a hyperbola. These hyperbolas are
all graphs of functions. The restriction of ηX to each hyperbola is therefore
injective. We still need to see, however, that ηX is injective in neighborhoods
of these singular sets, and not just on the singular sets. There are two cases.

Case 1: Consider a point p in the interior of the singular set in S+
r . By

symmetry it suffices to consider the case when p is in the positive sector.
The point p lies in the plane ΠZ and has its first two coordinates positive.
There are exactly 2 points p+, p− ∈ S ′r such that E(p+) = E(p−) = p. These
points have the form p1 = (x, y, z) and p− = (x, y,−z). We called such points
partners . In [CS, Lemma 2.8] we showed that dEp± is non-singular. This
crucially uses the fact that p± is a perfect vector whose third coordinate is
nonzero. The same argument as in the previous lemma now shows that the
linear map ηX ◦ dEp± is an isomorphism from the tangent plane Tp+ to R2.
But then ηX◦E is a diffeomorphism when restricted to an open neighborhood
U± of p± in S ′r.

E

Figure 3.2: The neighborhoods U+ and U−.
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The sets U± are disks with some of their boundary included. The portion
of the included boundary consists of the perfect vectors in ∂S ′r near p±. See
Figure 3.2.

Let C be the component of ∂S ′r which contains p+ and p−. The image
E(U+−C) lies entirely below the plane ΠZ because the flowlines correspond-
ing to vectors in U+ −C nearly wind the entirely around their loop level set
but omit a small arc near p+. Likewise, the image E(U− − C) lies entirely
above the plane ΠZ . Hence ηX ◦E(U+−C) and ηx ◦E(U−−C) are disjoint.
Combining this what we know, we see that ηX is a homeomorphism in a
neighborhood of p ∈ Sr.

Case 2: Suppose that p is one of the endpoints of the singular set. This
case is rather tricky to check directly. Suppose that there is some other point
q ∈ Sn such that ηX(p) = ηX(q). By Lemma 3.1, the point ηX(p) is disjoint
from the the hyperbolic circle S+

r ∩ ΠX . Hence q lies in the interior of S+
r .

Since ηX is injective on the singular set, q must be a smooth point.
Since ηX(q) = ηX(p) and p ∈ ΠZ , we have q ∈ ΠZ . This means that q

corresponds to some small symmetric flowline. The point q is contained in a
maximal connected arc A ⊂ S+

r consisting entirely of points corresponding
to small symmetric flowlines. One endpoint of A is p. The other endpoint
lies in the plane X = 0. The point q lies somewhere in the interior of A.
The map ηX sends A into the line X = Z = 0 and from Lemma 3.3, the
restriction of ηX to A is locally injective. But a locally injective map from
an arc into a line is injective. This contradicts the fact that ηX(p) = ηX(q). ♠

Let D denote the quotient S+
r / ∼ where the equivalence relation ∼ glues

together partner points on the set of perfect vectors in S+
r . The space D is

a topological disk, and h = ηX ◦ E gives a map from D to ΠX . Combining
Lemmas 3.2 and 3.3 we see that h is locally injective at each interior point of
D. Moreover, h(∂D) is an embedded loop, just the boundary of a hyperbolic
disk in ΠX . By the Disk Lemma, h : D → ηX is injective. But E is a
bijection from D to S+

r . Hence ηX : S+
r → ΠX is injective, as desired.

This completes the proof that NX,r = 2.
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4 Details about the Cut Locus Theorem

4.1 Concatenation

In the next several sections, we outline the proof of Theorem 2.5. Our expo-
sition here is an abbreviated version of what appears in [CS].

Given a (finite) flowline g we write g = a|b if g is the concatenation of
flowlines a and b. That is, a is the initial part of g and b is the final part. We
call g symmetric if the endpoints of g have the form (x, y, z) and (x, y,−z).

Let Λg denote the endpoint of the geodesic segment associated to g, when
this geodesic segment starts at the origin. It follows from left-invariance of
the metric that

Λg = Λa ∗ Λb. (15)

Since the third coordinates of elements of Sol commute, we have

πZ(Λg) = πZ(Λa) + πZ(Λb). (16)

Here πZ(x, y, z) = z. More formally, πZ is the quotient map from Sol to the
quotient Sol/ΠZ . Here ΠZ is not just a Euclidean plane in Sol but also a
maximal normal subroup. The integral form of Equation 16 is

πZ(Λg) =

∫ T

0

z(t) dt. (17)

Here we have set g = (x, y, z), and T is the total time that g takes to get
from start to finish.

These equations have a variety of consequences, which we work out in
detail in [CS, §2].

1. If g is a small flowline then g is symmetric if and only if πZ(Λg) = 0.
Moreover, the geodesic segment corresponding to a small symmetric
flowline only intersects ΠZ at its endpoints.

2. If g is a perfect flowline then πZ(Λg) = 0. This follows from the fact
that g = a|b where a and b are both small symmetric.

3. If V± = (x, y,±z), then V+ is perfect if and only if V− is perfect. Fur-
thermore E(V+) = E(V−). This is because the corresponding flowlines
g+ and g− can be written as g+ = a|b and g− = b|a where a and b are
both small symmetric. But then Λa and Λb are horizontal translations
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in Sol and hence commute. Hence Λg+ = Λg− . We call V+ and V−
partners .

4. Suppose V1 and V2 are perfect vectors such that V1/‖V1‖ and V2/‖V2‖
lie in the same loop level set. Let E(Vi) = (ai, bi, 0). We call

√
aibi the

holonomy of Vi. Letting g1 and g2 be the corresponding flowlines, we
can write g1 = a|b and g2 = b|a where a and b are both small. But then
Λg1 = (a1, b1, 0) and Λg2 = (a2, b2, 0) are conjugate in Sol. This gives
a1b1 = a2b2. Hence V1 and V2 have the same holonomy.

5. Given V = (x, y, z) we define σ(V ) = y/x. We prove that if V is a
perfect vector, then σ(E(V )) = 1/σ(V ). We call this the Reciprocity
Lemma. The proof is a more subtle working out of the consequences
of the conjugacy idea discussed in Item 4.

4.2 Outline of the Proof

With these preliminaries out of the way, we turn directly to the proof of
Theorem 2.5. Item 3 in §4.1 shows that the perfect geodesic segments corre-
sponding to vectors of the form (x, y, z) where z 6= 0 are not unique distance
minimizers. It also follows from Item 3 that perfect geodesics segments corre-
sponding to vectors of the form (x, y, 0) have conjugate points. Hence, large
geodesic segments cannot be distance minimizers. This essentially proves
half of Theorem 2.5.

The second half of Theorem 2.5, the converse, says that a small or perfect
geodesic segment is a distance minimizer. Since every small geodesic segment
is contained in a perfect geodesic segment, it suffices to prove that perfect
geodesic segments are distance minimizers.

We first prove [CS, Corollary 2.10]: The map E is injective on the set
of perfect vectors with positive coordinates. This step has 2 ideas. We first
show (following [G]) that the holonomy is a monotone function of the loop
level set. So, if E(V1) = E(V2) then V1/‖V1‖ and V2/‖V2‖ lie in the same
loop level set. We also have σ(V1) = σ(V2), by Item 5 above. This forces
V1 = V2.

We finish the proof by showing that if V is perfect and W is small then
it is impossible for E(V ) = E(W ). This is really the heart of [CS]. The
argument involves the system of nonlinear ODEs we introduce in §4.3. It
will turn out that the argument in this paper involves a deeper study of
these same ODEs.
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Let us go back to the argument. By symmetry, we can restrict ourselves
to the case when V and W both lie in the positive sector. Let M and
∂M respectively denote the set of small and perfect vectors. We show that
E(∂M) is contained in a subset ∂N ⊂ ΠZ . The boundary of ∂N , which we
denote by ∂0N , is the graph of a smooth function in polar coordinates. The
yellow region in Figure 3.1 shows part of the portion of ∂N that lies in the
positive sector. See Figure 5.1 for an expanded view. There 3 symmetrically
placed components in the other sectors which we are not showing.

Figure 3.1: ∂0N+ (black), ∂N+ (yellow), ΛL (blue), and ∆L (red).

If we suppose that W is small and E(W ) = E(V ) then the flowline
corresponding to W must be small symmetric. We can arrange all the small
symmetric flowlines in a given loop level set into two curves. One of the
curves corresponds to small symmetric flowlines whose initial endpoint has
positive Z-coordinate. Given the loop level set of period L in the positive
sector, we let ΛL denote the image, under E, of the corresponding vectors.
The blue curves in Figure 3.1 show ΛL for various choices of L.

On the right side of Figure 3.1 we focus on Λ5. We also draw the right
triangle ∆5 whose endpoints are the endpoints of Λ5. We define the triangle
∆L for other values of L in the same way. In [CS, §3] we prove that ΛL ⊂ ∆L

and that the interior of ΛL lies in the interior of ∆L. Finally, we show that
∂0N intersects ∆L only at the top vertex. These ingredients combine to show
that ΛL ∩ ∂N = ∅, and this shows that E(V ) and E(W ) cannot be equal.

19



4.3 The Differential Equation

We will now go into more detail about how the Bounding Triangle Theorem
is proved. Let ` = L/2. We consider the backwards flow along the structure
field Σ, namely

x′ = −xz, y′ = +yz, z′ = x2 − y2, (18)

with initial conditions x(0) > y(0) > 0 and z(0) = 0 chosen so that the point
is in the loop level set of period L. (We will often denote these functions
as xL, etc.) We let gt be the small symmetric flowline whose endpoints are
(x(t), y(t), z(t)) and (x(t), y(t),−z(t)). Then

ΛL(t) = (a(t), b(t), 0) = Λgt .

Taking the derivative, we have

(a′, b′, 0) = Λ′L(t) = lim
ε→0

ΛL(t+ ε)− Λ(t)

ε
,

ΛL(t+ ε) ≈ (εx, εy, εz) ∗ (a, b, 0) ∗ (εx, εy,−εz).

The approximation is true up to order ε2 and (∗) denotes multiplication in
Sol. A direct calculation gives

a′ = 2x+ az, b′ = 2y − bz. (19)

The initial conditions are a(0) = b(0) = 0. (We will often denote these
functions as aL and bL.

Lemma 4.1 For any r ≥ 0 we have

a(r)x(r) =

∫ r

0

2x2dt, b(r)y(r) =

∫ r

0

2y2dt.

Proof: We have (ax)′ = 2x2 and (by)′ = 2y2. Also a(0) = b(0) = 0. Now we
simply integrate. ♠

Lemma 4.2
b(0)

a(0)
=
b(`)

a(`)
. (20)
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Proof: This comes from L’hopital’s rule and the Reciprocity Lemma. Let
us take the opportunity to give a swift proof here. (This is another proof
of the Reciprocity Lemma in a special case.) By two applications of Lemma
4.1, we have

a(`)x(`) =

∫ `

0

2x2 dt, b(`)y(`) =

∫ `

0

2y2 dt.

But these two integrals are equal, by symmetry. Hence a(`)x(`) = b(`)y(`).
Finally, we have x(0) = y(`) and y(0) = x(`) by symmetry. Combining these
equations gives the result. ♠

The function b(t)/a(t) has the same value at t = 0 and t = `. To finish
the proof, we just have to show that b(t)/a(t) cannot have a local maximum.
This boils down to the fact that ab′′ − ba′′ = 2ab(y2 − x2), a quantity which
is negative for t < `/2 and positive for t > `/2. These properties, together
with the fact that a′ > 0, force ΛL ⊂ ∆L. See [CS, §3] for more details.
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5 More Information about the ODE

In this chapter we further explore the ODE we introduced in the previous
chapter. The results here do not appear in [CS]. However, they are rather
similar in spirit to some of the results there. Lemma 4.1 above has a lot
of juice in it, and we want to squeeze some more out. The estimates here
will be useful when we consider the projections of the Sol spheres into the
Euclidean plane ΠZ .

5.1 Bounding the Coordinates

In the next lemma, 2∗ refers to a number which we can make as close as we
like to 2 by taking L sufficiently large. This result says that the boundary of
the yellow region in Figure 3.1 asymptotes to the lines X = 2 and Y = 2.

Lemma 5.1 b(`) < 2∗.

Proof: From Lemma 4.1 and symmetry we have

y(`)b(`) =

∫ `

0

y2 =

∫ `/2

0

(x2 + y2)dt.

The last equality follows from the fact that the function t→ x2(t) + y2(t) is
periodic with period `/2. Since b(`) ∼ 1 for large L, it suffices to prove that
the integral on the right approaches 1 as L→∞.

We have ∫ `/2

0

(x2 + y2)dt =

∫ `/2

0

(x2 − y2)dt+ 2

∫ `/2

0

y2dt. (21)

Now observe that∫ `/2

0

(x2 − y2)dt =

∫ `/2

0

z′ dt = z(`/2)− z(0) = z(`/2) ∼ 1. (22)

To finish the proof, it suffices to show that∫ `/2

0

y2dt ∼ 0. (23)
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Let α be such that (x(0), y(0), 0) lies in the same loop level set as

(α, α,
√

1− 2α2).

Then y ≤ α on [0, `/2] because y is monotone increasing on this interval.
Hence, by Equation 11 and some algebraic manipulation,∫ `/2

0

y2dt ≤ Lα × α2 = 2α

√
4α2

1 + 2α2
×K

(
1− 2α2

1 + 2α2

)
.

Setting m = 1−2α2

1+2α2 , we see that∫ `/2

0

y2dt ≤ 2α
√

1−m×K(m). (24)

As L→∞ we have α→ 0 and m→ 1 and K(m) ∼ − log(1−m)/2. Hence,
the right hand side of Equation 24 tends to 0 as L→∞. ♠

Remark: We also have a(`)b(`) ∼ e`, as discussed in [CS, §3.7] and also on
[G, p 75].

Lemma 5.2 a(L) = 2b(`).

Proof: We have

a(L)x(L) =

∫ L

0

2x2dt =

∫ `

0

2x2dt+

∫ L

`

2x2dt = 2

∫ `

0

2y2dt = 2b(`)y(`).

Hence
a(L)x(L) = 2b(`)y(`).

But x(L) = y(`), so we can cancel these terms to get the desired equality. ♠

5.2 The Doubling Lemma

It will be useful for us to consider flowlines which end on the plane Z = 0.
These are the initial halves of symmetric flowlines. Here doubling refers to
comparing the first half of a symmetric flowline with the whole thing.
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Let g
t
denote the first half of the flowline gt; it connects the initial point of

gt to the midpoint of gt. Say that the coordinates of Λg
t

are (a(t), b(t), c(t)).

The coordinate c(t) is typically nonzero, but we do not care about it. Define

ΛL(t) = (aL(t), bL(t)) ⊂ R2. (25)

In the next lemma we identity ΠZ with R2.

Lemma 5.3 (Doubling) Λ(t) = 1
2
ΛL(t).

Proof: We have

(a′, b′, c′) = lim
ε→0

ΛL(t+ ε)− Λ(t)

ε
, ΛL(t+ ε) ≈ (εx, εy, εz) ∗ (a, b, c).

Taking the limit, we find that

a′ = z + ax, b′ = z − bx. (26)

(Also c′ = z. We have the same initial conditions a(0) = b(0) as above. Now
notice that this solution to this equation is given by a = a/2 and b = b/2. ♠

Corollary 5.4 b(`) = a(L).

Proof: We combine the Doubling Lemma and Lemma 5.2 to get the equa-
tion b(`) = a(L)/2 = a(L). ♠

Now we give some applications, which show how the Doubling Lemma
and our asymptotics above give us some specific information about some
geodesic segments in Sol. Let f(r, L) denote the flowline of length r on the
loop level set of period L which ends at the point (x, y, 0) with x > y. Let

Υr(L) = Λf(r,L).

This is the endpoint of the corresponding geodesic segment. The isochronal
curve L→ Υr(L), for L ∈ [r,∞) will be a central object later in the paper.

1. We have Υr(r) ∼ (2, er/2/2, 0) by Lemma 5.1 and the remark after
Lemma 5.1 and symmetry.
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2. We have Υr(2r) ∼ (er/4, 1, ∗) by Case 1, and symmetry, and the Dou-
bling Lemma.

3. We have Υr(4r) ∼ (er/2, ∗, ∗).

We do not need Item 3 for any purpose, so we will be a bit sketchy with
the proof. The small symmetric flowline of which f(r, 4r) is the first half
starts at (0, 0, z) and ends at (0, 0,−z) for the appropriate choice of z. The
corresponding geodesic segment γ of length 2r connects the origin to a point
in ΠZ and remains nearly tangent to ΠY . Also, γ starts and ends nearly
vertically. In fact, γ is asymptotic to the geodesic segment considered in
Lemma 2.1. Thus, the first coordinate of the far endpoint of γ is asymptotic
to er. By the Doubling Lemma, the first coordinate of Υr(4r) is asymptotic
to er/2.

For what it is worth, the second coordinate tends to 0 as r →∞. To see
this, note that the product of the first two coordinates of γ is, by Lemma
4.1,

4

x(r)y(r)

∫ r

0

x2dt

∫ r

0

y2dt ∼ 4

x(r)y(r)

∫ r

0

y2dt <
4ry(r)2

x(r)y(r)
= 4r.

The asymptotic estimate ∼ is Equations 22 – 23. The last inequality comes
from the monotone increasing nature of y(t) for t ∈ [0, r]. The equality comes
from the fact that x(r) = y(r).
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6 The Euclidean Projection

6.1 Notation

We introduce some notation that we use through out the chapter. We will
consider some quantity F that depends on the variable r or the variable L.
The statement F < ζ∗ means that, for any ζ∗ > ζ we can make F < ζ∗

provided that we take r or L sufficiently large.

6.2 The Cut Locus Image

Figure 6.1 shows a more of the yellow region in Figure 3.1. In this section we
will prove a result which is equivalent to the statement that the horizontal
asymptote of the boundary curve is the line y = 2. Similarly, the vertical
asymptote is the line x = 2.

Figure 6.1: ∂N in the positive quadrant.

Say that a vector is positive if all its coordinates are positive. Say that
a vector is distinguished if its corresponding flowline is contained in a small
symmetric flowline with the same initial point. That is, the flowline cor-
responding to the distinguished vector can be prolonged until it is a small
symmetric flowline. In particular, distinguished vectors are small.

Theorem 6.1 (Asymptotic) If V is a distinguished positive vector whose
corresponding flowline is contained in a loop level set of period L, then
E(V ) = (a, b, 0) has the property that b ∈ (0, 2∗).
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Proof: First consider the special case when V corresponds to a small sym-
metric flowline. Then b = bL(t) for some t ≤ `. By the Bounding Triangle
Theorem and Lemma 5.1, bL(t) ≤ bL(`) < 2∗.

Now consider the case when V is an arbitrary distinguished positive vec-
tor. There is some λ ≥ 1 so that λV corresponds to a small symmetric
flowline. The X and Y coordinates of the curve t → E(tV ) are increasing
functions because it is impossible for the geodesic associated to V to be tan-
gent to the hyperbolic foliations of Sol. (Otherwise this geodesic would be
trapped inside a leaf of the foliation for all time.) In particular, the second
coordinate of E(V ) is less or equal to the second coordinate of E(λV ), which
is in turn less than 2∗ by the special case. ♠

6.3 The Area Bound

Our main goal is to show that AZ(Sr) < 16∗er. Lemma 6.2 below is the main
ingredient in the proof. This result says that when (a, b) ∈ ηZ(Sr) we have
min(a2b, ab2) < 2∗er. Figure 6.2 indicates the plausibility of this estimate.
Figure 6.2 shows the projection of (part of the positive sector of) S5 into
the plane ΠZ . The small black arc of a hyperbola is the projection of the
singular set. The outer black curve is min(xy2, x2y) = e5.

Figure 6.2: Projection into the plane ηZ .

Lemma 6.2 Let (a, b, c) = E(V ), where V is a small or perfect vector of
length r. Then min(ab2, a2b) < 2∗er and max(a, b) < (1/2)∗er.
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Proof: Note that as r → ∞, the period of the loop level set containing V
also tends to ∞. This makes the Asymptotic Lemma available to us.

Let γ be the geodesic segment corresponding to V . Let g be the flowline
corresponding to V . We can write g = g1|g2 where one of two things is true:

• g1 is distinguished and g2 is empty.

• g1 is small symmetric and g2 is distinguished.

After interchanging the roles of X and Y if necessary, we reduce to 2 cases.

Case 1: Let γ1 be the geodesic segment corresponding to g1, having end-
point (a, b, c). By the hyperbolic estimates, we know that ηY (γ1) lies in the
hyperbolic disk Dr in ΠY centered at the origin. By Lemma 2.2, we have
a < (1/2)∗er. We also have b < 2∗by the Asymptotic Theorem. Hence
ab2 < 2∗er. We also see that max(a, b) < (1/2)∗er.

Case 2: Let γ1 and γ2 repectively be the geodesic segments correspond-
ing to g1 and g2. Let rj be the length of γj. Let (aj, bj) be the projection to
ηZ of the far endpoint of γj.

Let γ′1 be the geodesic segment which is the first half of γ1, in terms of
length. So, γ′1 and γ1 have the same initial endpoint (the origin) but γ′1 has
length r1/2. Let (a′1, b

′
1) be the far endpoint of ηZ(γ′1). Once r is large enough

we have the following:

• By Lemma 2.1, a1 ≤ er1/2 − e−r1/2.

• By the Asymptotic Theorem, b1 < 2∗.

• By Lemma 2.2 and symmetry, b2 ≤ (er2 − e−r2)/2.

• By symmetry and the Asymptotic Theorem, a2 < 2∗.

Combining these observations, we have

a ≤ 2∗ + er1/2 − e−r1/2, b ≤ 2∗ + (er2 − e−r2)/2. (27)

We have r1 + r2 = r. We get right away that max(a, b) < (1/2)∗er.
Now we consider a2b. Suppose first that both r1 and r2 tend to ∞. In

this case a < 1∗er1/2 and b < (1/2)∗er2 . But then a2b < (1/2)∗er.
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When r1 is bounded and r2 →∞,

a2b < (1/2)∗a2er2 = er ×
(

1

2
+
e−2r1

2
− 2e−3r1/2 + e−r1 + 2e−r1/2

)
< 2∗er.

The last inequality follows from a bit of calculus.
When r2 is bounded and r1 →∞ we have a < 1∗e(r−r2)/2. This gives

a2b < 1∗er ×
(

1− e−2r2 + 2e2r2

)
< 2∗er.

This completes the proof. ♠

Once r is sufficiently large, the sphere S ′r consists entirely of small and
perfect vectors either contained in the planes ΠX and ΠY or else lying in loop
level sets whose period is so large that Lemma 6.2 holds for them. Lemma
6.2 shows that the projection of the positive sector of Sr lies in the region
Ωr defined by the following inequalities.

X, Y ∈ [0, (1/2)∗er], min(xy2, yx2) = 2∗er. (28)

We set x0 = y0 = (2∗er)1/3. The region Ωr is the union of the square
[0, x0]× [0, y0], whose area is 0∗er, and two other regions which are swapped
by reflection in the main diagonal x = y. One region lies underneath the
graph y = (2∗er/x)1/2 starting at x = x0 and ending at x = (1/2)∗er. This
region has area

√
2∗er/2

∫ (1/2)∗er

x0

dx√
x
<
√

2∗er/2 × 2×
√

(1/2)∗er < 2∗er, (29)

once r is large. Hence Ωr has area at most 4∗er. Recalling that Ωr contains
the projection of the positive sector of Sr, which is 1/4 of the whole sphere,
we see that AX(Sr) < 16∗er.

Remark: The set ηX(Sr) contains the region Gr above the X-axis, un-
derneath the arc Υr[2r, 4r] discussed in §5.2, and to the right of the line
x = e2 × er/2. Given our Embedding Theorem below, and the estimates
in §5.2, we see that the upper boundary of Gr is the graph of a decreasing
function whose domain has length er/4∗ and whose minimum is asymptotic
to 1. Thus Gr contains a rectangle of area e4/4∗. Hence AX(Sr) > (2/1∗)er.
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6.4 The Yin Yang Curve

Given r, we define the yin-yang curve Yr to be the set of points in S ′r where
the differential d(ηZ ◦ E) is singular. For r ≤ π

√
2 the the curve Yr is

connected. For r > π
√

2, the curve has 2 disjoint components interchanged
by the map (x, y, z)→ (y, x,−z).

Figure 6.3: The yinyang curves for r = π
√

2 and r = 5.

Figure 6.3 shows the yin-yang curves for r = π
√

2 and for r = 5. In
Figure 6.3, we are projecting the unit sphere in R3 onto the plane through
the origin perpendicular to the vector (1,−1, 0). The loop level sets all
project to ellipses having aspect ratio

√
2. On the right side of Figure 6.3,

the ellipse labeled P is the set of perfect vectors on S ′5. The ellipse labeled
Q is the intersection of the positive sector of the unit sphere with the planes
X = 0 and Y = 0. Notice that Pr∪Yr∪Qr divides S ′r into a union of 2 disks.
The map ηZ ◦Π is nonsingular on the interior of these disks and hence a local
diffeomorphism. This is what is important for our Projection Estimate 4.

Referring to Figure 6.3, the union Yr ∪ Pr ∪ Qr separates the positive
sector of S ′r into 2 components. The map (x, y, z)→ (x, y,−z) interchanges
these components. Let Dr be either of these disks. Below, we will describe
more clearly which of the two choices we take to be Dr. Figure 6.4 shows
ηZ ◦ E(D5). Essentially this is “half” of Figure 6.2.

30



Figure 6.4: The image ηZ ◦ E(D5).

The region labeled Y in Figure 6.3 is the image ηZ ◦ E(Yr). We define
Υr = ηZ ◦ E(Y ∗r ), where Y ∗ is the component of Yr whose endpoint in ΠX

is a point of the form (xr, yr, 0) with xr > yr. We have drawn Υr in blue in
Figure 6.4.

The map L→ Υr(L) is a smooth, and indeed real analytic, map. We say
that a cusp of this map is a point where the map is not regular. So, away
from the cusps, Υr is a smooth regular curve. Figure 6.3 suggests that Υ5

just has a single cusp. We prove the following result in the next chapter.

Theorem 6.3 (Embedding) For r sufficiently large, the curve Υr has a
single cusp, and negative slope away from a single cusp. The cusp κr =
(ar, br, cr) satisfies the bounds ar < 2∗ and br < (e2/2)∗er/2.

6.5 The Multiplicity Bound

The image ηZ ◦ E(∂Dr) is a piecewise analytic loop. We will show that this
loop winds at most twice around any point in the plane that it does not
contain. Referring to §2.3, we apply the Disk Lemma to h = ηZ ◦ E and
∆ = Dr. This tells us that ηZ ◦E is at most 2-to-1 on Dr. But then ηZ ◦E is
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at most 4-to-1 on the positive sector of S ′r. Hence ηZ is at most 4-to-1 on the
positive sector of Sr. Since the different sectors project into ηZ disjointly,
we see that ηZ is at most 4-to-1 on all of Sr. This establishes our estimate
NZ(Sr) = 4.

Now we turn to the analysis of the image ηZ ◦ E(∂Dr). Define

Φr = E ◦ ηZ(Pr). (30)

Also, let R(x, y, z) = (y, x,−z). The image ηZ ◦ E(∂Dr) is invariant under
R. It is the union of 5 analytic arcs:

• An arc of the X-axis connecting the origin to the endpoint of Υr.

• Υr.

• Φr.

• R(Υr).

• An arc of the Y -axis connecting an endpoint of R(Υr) to the origin.

Note that Υr∪Φr∪R(Υr) is a piecewise analytic arc that has its endpoints
in the coordinate axes and otherwise lies in the positive quadrant. The
Embedding Theorem says that Υr has negative slope, and is smooth and
regular away from a single cusp. By symmetry, the Embedding Theorem
also applies to R(Υr).

The cusps serve as natural vertices for our loop, so we make some new
definitions which take the cusps into account. Let Φ∗r denote the portion of
Υr ∪ Φr ∪ R(Υr) that lies between the two cusps. Let Υ∗r = Υr − Φ∗r. The
loop ηZ ◦E(∂Dr) has the same 5-part description as above, with Υ∗r and Φ∗r
used in place of Υr and Φr.

We will prove below that Υ∗r∪Φ∗r is embedded. By symmetry, Φ∗r∪R(Υ∗r)
is also embedded. We will also prove that Υ∗r crosses the main diagonal – the
fixed point set of R – exactly once. This information forces the schematic
picture of ηZ ◦ E(∂Dr) shown in Figure 6.5.
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or or

Figure 6.5: Schematic picture of ηZ ◦ E(D5).

Numerically, it seems that the first option occurs, and that the two curves
Υ∗r and R(Υ∗r) intersect exactly once. We did not want to take the trouble to
establish this fact, given the already lengthy nature of the paper. In any case,
the information above establishes the fact that ηZ ◦ E(∂Dr) winds at most
twice around any point in the plane that does not lie in its image. Applying
the Disk Lemma to the map h = ηZ ◦ E and the disk Dr we see that h is at
most 2-to-1 on Dr. But then h is at most 4-to-1 on Dr ∪ I(Rr) = S++

r . This
completes the proof of Projection Estimate 4, modulo the properties of Υ∗r
and Φ∗r. We now turn to the task of establishing the properties about the
topology of this planar loop.

Now we turn to the proof of Projection Estimate 5. It follows from the
negative slope of Υr and R(Υr) that any intersection between these two
curves lies in the square whose opposite corners are the two cusps. What we
mean is that all the “tangles” shown in Figure 6.5 lie inside the lightly shaded
square. Hence, h is injective on the portion of Dr which maps outside this
square. Referring to the Embedding Theorem, the shaded square is bounded
by the lines x = br and y = br, where we know that br < (e2/2)er/2. The
same analysis as done in connection with Equation 29 shows that

Ar,3 + Ar,4 < K1e
2r/3 + 2Ir,

where

Ir =
√

2∗er/2
∫ (e2/2)∗er/2

x0

dx√
x
< K2e

3r/4. (31)

These bounds show that Ar,3 + Ar,4 = 0∗er. This is Projection Estimate 5.
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6.6 The Topology of the Boundary

Lemma 6.4 For r sufficiently large, the curve Υ∗r ∪ Φ∗r is embedded.

Proof: Our argument refers to Figure 6.6. Let γ be the portion of Υ∗r ∪ Φ∗r
that lies above the (red) horizontal line L1 through the cusp of R(Υ∗r). This
point is the endpoint of Φ∗L.

Figure 6.6: Projections of the relevant sets.

By the Embedding Theorem, γ has a single cusp, namely the cusp of Υr.
Let γ1 and γ2 be the two arcs of γ on either side of this arc. These two arcs
have negative slope and no cusps on them. Hence all of γ lies between the
horizontal line L0 through the cusp of Υr and the horizontal line through the
cusp of R(Υr). These are the red and yellow horizontal lines on the left side
of Figure 6.6.

Since γ1 and γ2 have negative slope and no cusps, they are each embedded.
We just have to see that γ1 cannot intersect γ2. We will suppose that there
is an intersection and derive a contradiction.

The portion of the Sol sphere Sr lying in the positive sector is the union
of two disks, Dr and R(Dr), where R is the isometry extending our reflection
in the main diagonal of ΠZ , namely I(x, y, z) = (y, x,−z). The common
boundary of these disks contains a curve γ̂ which projects to γ. We have
γ̂ = γ̂1 ∪ γ̂2. On the right side of Figure 6.6, one of these arcs connects the
blue vertex to the black vertex, and the other one connects the blue vertex
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to the red vertex. The right side of Figure 6.6 shows the projection into the
Y Z plane.

Because no plane tangent to Sr at an interior point of γ̂ is vertical, each
plane of the form Y = const. intersects each of γ̂1 and γ̂2 exactly once. In
particular, this is true to the planes L̂0 and L̂1 which respectively project to
L0 and L1 on the left side of Figure 6.6.

One of the two disks Dr or R(Dr) has the property that it lies locally

One of the two disks – say Dr – lies between L̂0 and L̂1 in a neighborhood
of γ̂. We are taking about the yellow highlighted region on the right side of
Figure 6.6. The interior of Dr is transverse to the plane L̂1 because ηZ is
a local diffeomorphism on the interior of Dr. But this means that Dr ∩ L̂1

contains a smooth arc β̂ which connects the endpoint of γ1 to the endpoint
of γ2. Let β = ηZ(β̂). We note the following

• β is contained in the line L1.

• The endpoints of β coincide.

• The interior of β is a regular curve.

These properties are contradictory, because β would have to turn around in
L1 at an interior point, violating the regularity. This contradiction establishes
the result that γ is embedded.

It remains to consider the portion of Υr ∪ Φr ∪ R(Υ∗r) that lies be-
low the horizontal line L1 through the cusp of R(Υ∗r). We label so that
Φr ∪ R(Υ∗r) ⊂ γ2. Given that γ2 has negative slope we see that Φr ∪ R(Υ∗r)
lies entirely above L1. But this means that the portion of γ1 below L1 is dis-
joint from γ2. Finally, the portion of γ1 below L1 is disjoint from the portion
of γ1 above L1 because γ1 is regular and has negative slope. ♠

Define
Υ∗∗r = Υr[r, 2r]−Υ∗r. (32)

This is the subset of Υr[r, 2r] that occurs after the cusp. Given our result
above, the only self-intersections on the curve ηZ ◦D(∂Dr) occur where Υ∗∗r
and R(Υ∗∗r ). These are analytic arcs of negative slope, and they are permuted
by the map R. Hence, the can only intersect finitely many times, and their
intersection pattern must be as in Figure 6.6. This completes the proof of
Projection Estimate 4, and hence the Volume Entropy Theorem, modulo the
proof of the Embedding Theorem.

The rest of the paper is devoted to proving the Embedding Theorem.
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7 The Embedding Theorem

7.1 The Isochronal Curves

Let ΛL = (aL, bL), as in §4.3. Let E be the Riemannian exponential map
and let ηZ be projection into the plane ΠZ . We have Υr = ηZ ◦E(Y ∗r ), where
Y ∗r is the relevant component of Yr.

Lemma 7.1 Υr(L) = ΛL(r).

Proof: Recall that S ′r is the set of perfect vectors of length r contained in
the positive sector of R3. Define the positive side of S ′r ∩ ΠZ to be those
vectors of the form (x, y, 0) with x > y > 0. By definition,

Υr(L) = ηZ ◦ E(Y ∗r ), (33)

where Y ∗r is the component of the yin yang curve Yr which ends in the
positive side. The vectors V ∈ Yr are characterized by the property that the
differential d(ηZ ◦ E) is singular at points of Yr.

The kernel of the projection map ηZ is spanned by the vector (0, 0, 1).
So, the differential d(ηZ ◦ E) is singular at V if and only if dE maps the
tangent plane to S ′r at V to a plane which contains the vector (1, 0, 0). But
then dE(NV ) is orthogonal to (0, 0, 1). Here NV is normal to S ′r at V . But
this means that the third coordinate of dE(NV ) is 0. Given the connection
between the Haniltonian flow on S ′r and the geodesics, this situation happens
if and only if the flowline associated to V ends in the plane ΠZ .

In short, Yr consists of those small or perfect vectors of length r whose
corresponding flowlines end in ΠZ . But these flowlines are then the initial
halves of symmetric flowlines which wind at most twice around their loop
level sets. The points in Y ∗r are the initial halves of symmetric flowlines
whose midpoints lie on the positive side of S ′r. Moreover, these symmetric
flowlines wind at most twice around their loop level sets and every amount of
winding, so to speak, from 0 times to 2 times, is achieved. So, by definition
Υr = Λ(r). ♠

We call Υr an isochronal curve because it computes all the solutions to
the differential equation at the fixed time r. Figure 7.1 shows part of Υ5.
The blue curves are the various curves ΛL[0, L].
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Figure 7.1: The ΛL curves and the initial part of Υ5.

7.2 The Tail End

Lemma 7.2 The curve Υr(2r,∞) is smooth, regular, and embedded.

Proof: The flowline corresponding to the point Υr(L) lies on the loop level
set of period L and flows for time r. If L > 2r then the flowline travels less
than halfway around the loop level set. Thus, the flowline is the initial half of
a small symmetric arc. Let S ⊂ R3 denote the set of vectors corresponding
to small symmetric flowlines. The map E is a diffeomorphism on S, because
S consists entirely of small vectors. This is part of the Cut Locus Theorem
from [CS]. By the Doubling Lemma,

Υr(2r,∞) =
1

2
E(Cr),

where Cr ⊂ S is a smooth regular curve, obtained by dilating a suitably cho-
sen arc of the yin yang curve by a factor of 2. Since E is a diffeomorphism
on S, we see that 1

2
E(Cr), is embedded. ♠
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7.3 The Slope

Let xL, etc. be the functions described at the end of §4.3. These functions
satisfy the ODE

x′ = −xz, y′ = yz, z′ = x2 − y2, a′ = x+ az, b′ = y − bz, (34)

with initial conditions

xL(0) > yL(0) > zL(0) = aL(0) = bL(0) = 0, (xL(0), yL(0), 0) ∈ ΘL. (35)

Here ΘL is the loop level set, in the positive sector, having period L. I am
grateful to Matei Coiculescu for help with the following derivation.

Lemma 7.3 Υr has negative slope away from the cusps.

Proof: This proof is a calculation with the ODE. For any relevant function
f , the notation ḟ means ∂f/∂L. We compute

(ȧ)′ =
∂

∂L

∂a

∂t
=

∂

∂L
(x+ za) = ẋ+ ȧz + ża.

By the product rule

(xȧ)′ = x′ȧ+ x(ȧ)′ = −zxȧ+ xż + xzȧ+ axż = xẋ+ axż.

This calculation, and a similar one, show that

(xȧ)′ = xẋ+ axż, (yḃ)′ = yẏ − byż (36)

Since x2 + y2 + z2 ≡ 1 we have xẋ + yẏ + zż = 0. Adding the Equations in
Equation 7.3 and using this relation, we find that.

(xȧ+ yḃ)′ = xẋ+ yẏ + (ax− by)ż = xẋ+ yẏ + zż = 0.

Hence xȧ+ yḃ is a constant function. Since a(0) = b(0) = 0 for all L we have
ȧ(0) = 0 and ḃ(0) = 0. So, the constant in question is 0. Therefore

xȧ+ yḃ = 0 (37)

Because Υr(L) = ΛL(r), the velocity of Υr at L is

(ȧL(r), ḃL(r)).

This equals −xL(r)/yL(r) by Equation 37. Since x, y are everywhere posi-
tive, the slope of Υr is negative whenever the velocity is nonzero. ♠
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7.4 The End of Proof

In the next chapter we prove the following result.

Lemma 7.4 (Monotonicity) If L is sufficiently large then there is some
tL ∈ (L− 1, L) such that the function ḃL is negative on [L/2, tL) and positive
on (tL, L]. Moreover, the function L→ tL is monotone increasing.

Corollary 7.5 Υr[r, 2r] has exactly one cusp.

Proof: The curve Υr has a cusp at L if and only if its velocity

(ȧL(r), ḃL(r))

vanishes. By Lemma 37, one coordinate of the velocity vanishes if and only if
the other one does. So, Υr has a cusp at L if and only if ḃL(r) = 0. Suppose
then that Υr[r, 2r] has more than one cusp. Then there are at least two pairs
(r, L1) and (r, L2) such that ḃL1

(r) = 0 and ḃL2
(r) = 0. This means that

r = tL1 = tL2 . But this contradicts the Monotonicity Lemma. Hence Υr has
at most one cusp.

Since the map L → tL is unbounded, each sufficiently large r lies in its
image. But this means that for sufficiently large r there is some L ∈ (r, r+1)
such that r = tL. This means that Υr has a cusp at L. Hence, once r is
sufficiently large, Υr has exactly one cusp. ♠

This completes the proof of the Embedding Theorem, but there is one
more remark we want to make. The cusp of Υr occurs at some L ∈ (r, r+1).
This explains why, in Figure 7.1, the cusp appears all the way to the left,
near the end of Υ5.

The next two chapters are devoted to the proof of the Monotonicity
Lemma.
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8 The Vanishing Point

8.1 Auxiliary Functions

In this chapter we will prove the first half of the Monotonicity Lemma. That
is, we will show that once L is sufficiently large there is a point tL ∈ [L−1, L]
such ḃL vanishes at t0, and this is the only vanishing point. We sometimes

set ḟ = ∂f/∂L and f ′ = ∂f/∂t. We introduce the following functions.

Z = ż, X = ẋ/x, Y = ẏ/y, B = ḃ/b, (38)

Since a, b, x, y > 0 these functions respectively have the same signs as ż, ẋ, ẏ, ḃ.

Figure 8.1: Numerical plots

The top half of Figure 8.1 shows numerical plots of these functions at
L = 8. The bounding box in the picture is [0, 8]× [−1, 1]. The bottom half
shows the plot of the functions at the value L = 16. This time we are just
showing the right half of the plot. Notice that in the interval [L − 1, L] the
plots line up very nicely. The black dot in both cases is the point (tL, 0).
One half of the Monotonicity Lemma establishes that tL is uniquely defined.
The second half shows that tL increases monotonically. The intuition behind
the second half of the result is that the pictures in [L−1, L] stabilize, so that
tL = L− sL where ∂sL/∂L is approximately 0 for large L.
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8.2 Differentiation Formulas

In this section we derive the following formulas.

1. X ′ = −Z

2. Y ′ = +Z

3. Z ′ = −4y2Y − 2zZ.

4. B′ = y
b
(Y −B)− Z.

5. Z ′′ = (−2 + 6z2)Z.

(1) From the relation x′ = −xz we get (ẋ)′ = −ẋz − żx. Then we get:

X ′ =

(
ẋ

x

)′
=
−ẋz − żx

x
− ẋx′

x2
= −ż − ẋz

x
+
ẋz

x
= −ż = −Z

(2) From the relation y′ = yz we get (ẏ)′ = ẏz + ży. Then we get:

Y ′ =

(
ẏ

y

)′
=
ẏz + ży

y
− ẏy′

y2
= ż +

ẏz

y
− ẏz

y
= ż = Z

(3) From the relations z′ = x2 − y2 and x2 = 1− y2 − z2 we get

Z ′ = 2xẋ+ 2yẏ = 2x2X − 2y2Y, 2x2X = −2y2Y − 2zZ.

Substitute the second relation into the first to get the formula above.

(4) Note that ḃ/b = ḃ/b because b = b/2. So, we work with b for ease of
notation. From the relation b′ = 2y − bz we get (ḃ)′ = 2ẏ − żb− żb. Then:

B′ =

(
ḃ

b

)′
=

2ẏ − żb− ḃz
b

− ḃb′

b2
=

2ẏ − żb− ḃz
b

− 2ḃy − ḃbz
b2

=

2ẏ

b
− 2ḃy

b2
− ż =

2y

b
(Y −B)− Z =

y

b
(Y −B)− Z.

(5) We first work out that

z′′ = −2z + 2z3. (39)

We then compute

Z ′′ =
∂z′′

∂L
=
∂(−2z + 2z3)

∂L
= (−2 + 6z2)Z.
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8.3 The Formula for B

Here is a formula for B in terms of the other quantities. Matei Coiculescu
found this formula and our derivation follows his ideas.

B =
xa

2yb
X − 1

2
Y − 1

2yb
Z. (40)

We will work with a and b rather than a and b until the end. We have

(ax− by)′ = 2x2 − 2y2 = 2z′, a(0) = b(0) = 0.

Integrating, we get
ax− by = 2z. (41)

Given that a = 2a and b = 2b, Equation 37 from the previous chapter is
equivalent to:

xȧ+ yḃ = 0. (42)

Differentiating Equation 41 with respect to L, we have

xȧ+ aẋ− yḃ− bẏ = 2ż. (43)

Subtracting Equation 43 from Equation 42 we get

2yḃ− aẋ+ bẏ = −2ż. (44)

Rearranging this, we get

ḃ =
aẋ− bẏ − 2ż

2y
.

When we make the substitutions

a = a/2, b = b/2, X = ẋ/x, Y = ẏ/y, Z = ż,

we get Equation 40.
There is a similar formula for the function A, but we don’t need it.
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8.4 Elliptic Function Calculations

Now we present the two calculations which we will use in the proofs of Lem-
mas 8.4 and 9.1 below. Define

L(y) = 4f(y)K ◦ g(y), (45)

where

f(y) =
1√

1 + 2y
√

1− y2

g(y) =
1− 2y

√
1− y2

1 + 2y
√

1− y2
. (46)

Next define

YL =
1

y × dL
dy

. (47)

We use the notation fL ∼ gL if limL→∞ fL/gL = 1.

Lemma 8.1 YL ∼ −1/2 and d
dL
YL ∼ 0.

Proof: We compute this in Mathematica, and we get a polynomial expres-
sion terms of

√
y and K = K ◦ g(y) and E = E ◦ g(y). Taking the series

expansions of the coefficients, we find that

YL =
−1− 5y + · · ·

∆
, ∆ = (2 + 12y+ · · · )E + (−4y− 24y2 + · · · )K. (48)

Given that g(y) ∼ 1− 4y, we see from Equations 8 and 48 that YL ∼ −1/2.
Next we compute that

∂

∂y
YL =

(48y + · · · )E + (−48y + · · · )K
∆2

. (49)

We see from Equations 8 and 49 that ∂
∂y
YL ∼ 0. ♠

8.5 Asymptotics

If f and g are functions of L, we write f ∼ g if f/g → 1 as L→∞. In this
section we prove the following results.

(XL(L/2), YL(L/2), ZL(L/2), BL(L/2)) ∼ (−1/2, 0, 1/2,−1/2),
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(XL(L), YL(L), ZL(L), BL(L)) ∼ (0,−1/2,−1, 1/2). (50)

These various features are already apparent in Figure 8.1. Here we have
written e.g. XL in place of X to explicitly indicate how the quantity depends
on L.

Lemma 8.2 YL(0) = YL(L).

Proof: The limits we take for YL(0) and YL(L) respectively are

YL(0) = lim
ε→0

yL+ε(0)− yL(0)

εyL(0)
, YL(L) = lim

ε→0

yL+ε(L)− yL(L)

εyL(L)
. (51)

Note also that yL(L) = yL(0) and yL+ε(L) = yL+ε(ε). Hence

YL(L) = lim
ε→0

yL+ε(ε)− yL(0)

εyL(0)
. (52)

But the map t → YL+ε(t) has a local minimum at t = 0 and so yL+ε(ε) =
yL+ε(0) +O(ε2). Hence, the limit in Equation 52 equals YL(0). ♠

Lemma 8.3 XL(L/2) = YL(0).

Proof: We have the relations

xL(L/2) = yL(0), xL+ε(L/2) = yL+ε(ε/2) = yL+ε(0) +O(ε2).

The last equality comes from the fact that the function t → yL+ε(t) has its
local minimum at 0. From these relations we have

ẋL(L/2) = lim
ε→0

xL+ε(L/2)− xL(L/2)

ε
= lim

ε→0

yL+ε(0) +O(ε2)− yL(0)

ε
= ẏL(0).

The lemma follows from this last equation and from xL(L/2) = yL(0). ♠

Lemma 8.4 YL(0) ∼ −1/2
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Proof: We set y = yL(0). Using Equation 11 we get an explicit formula
for L in terms of y. It is given by Equation 45. By the Inverse Function
Theorem we have

YL(0) =
1

y × ∂L
∂y

(y)
. (53)

By Lemma 8.1, we get YL(0) ∼ −1/2. ♠

Lemma 8.5 XL(0) ∼ 0.

Proof: We differentiate x2 + y2 + z2 = 1 and use zL(0) = 0 to get

x2
L(0)XL(0) + y2

L(0)YL(0) = 0. (54)

We see that XL(0) ∼ 0 because xL(0) ∼ 1 and yL(0) ∼ 0 and YL(0) ∼ −1/2
(a finite number). ♠

Lemma 8.6 ZL(L) ∼ −1 and ZL(L/2) ∼ 1/2.

Proof: We have

zL(L/2) = z(L) = 0, zL+ε(L/2) = zL+ε(ε/2), zL+ε(L) = −zL+ε(ε).

Hence

−ZL(L) = lim
ε→0

zL+ε(ε)

ε
= lim

ε→0

zL+ε(ε)− zL(ε)

ε
+ lim

ε→0

zL(ε)

ε
.

The second limit on the right is just z′L(0). The first limit is 0, because

zL(ε) = z′L(0) +O(ε2), zL+ε(ε) = z′L+ε(0)ε+O(ε)2 = (z′L(0))ε+O(ε)2.

Hence
ZL(L) = −z′L(0) = y2

L(0)− x2
L(0) ∼ −1.

The proof for ZL(L/2) is similar, and indeed ZL(L/2) = −(1/2)ZL(L). ♠

The rest of the relations for XL and YL follow from the ones we have
established above, from Lemmas 8.2 and 8.3, and the fact that XL + YL is a
constant function.
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Lemma 8.7 BL(L) ∼ 1/2 and BL(L/2) ∼ −1/2.

Proof: Note that

(2aL(L/2), 2bL(L/2), xL(L/2), yL(L/2)) = (bL(L), aL(L), yL(L), xL(L)).

Hence, by the Reciprocity Lemma and the Asymptotic Theorem,

2xL(L/2)aL(L/2) = 2yL(L/2)bL(L/2) = xL(L)aL(L) = yL(L)bL(L) ∼ 2.

Equation 40 now gives us

BL(L) =
1

2
XL(L)− 1

2
YL(L)− 1

2yL(L)bL(L)
ZL(L) ∼

1

2
XL(L)− 1

2
YL(L)− 1

4
ZL(L) ∼ 0+(−1/2)(−1/2)+(−1/4)(−1) = 1/2. (55)

The proof for BL(L/2) is similar. This completes the proof. ♠

8.6 Variation of the Z Coordinate

Lemma 8.8 Let π
√

2 < L < M . Then zM = zL at most once on (0, L).

Proof: We already mentioned above that z′′ = −2z + 2z3. Let zL and zM
be two solutions to this differential equation. Consider the ratio φ = zM/zL.
This quantity is positive on (0, L/2]. By L’hopital’s rule we can continuously
extend φ to 0, and we have φ(0) > 1.

We have
dφ

dt
=
W

z2
L

, W = zLz
′
M − zMz′L, (56)

If zL 6= 0 then W and φ′ have the same sign. We compute

W ′ = zLz
′′
M − zMz′′L = 2zLzM(z2

M − z2
L). (57)

Suppose there is some smallest time t ∈ (0, L/2] where zL(t) = zM(t).
Note that W ′ 6= 0 on (0, t). Also, W ′ > 0 on some small interval (0, ε)
because z′M(0) > z′L(0). Hence W ′ > 0 on (0, t). Hence φ is increasing on
(0, t). In particular, φ(t) > 1. Hence zM(t) > zL(t), a contradiction.

46



If there is no time t ∈ (L/2, L) where zM(t) = zL(t), then we are done.
Otherwise, let t0 be the smallest such time. We have zL(t0) = zM(t0) < 0.
Since zL(t0 − ε) < zM(t0 − ε) for small ε > 0, we have z′M(t0) ≤ z′L(t0) <
0. Since these two functions are solutions of a second order ODE, namely
Equation 39, they cannot have the same initial conditions at t0. Hence
z′M(t0) < z′L(t0) < 0.

Let ζL = −zL and ζM = −zM . We consider these functions on the inter-
val (t0, L). These are solutions of the same differential equation, with initial
conditions ζL(t0) = ζM(t0) and 0 < ζ ′L(t0) < ζ ′L(t0). The same argument as
above, applied to ζL and ζM , shows zL(t) > zM(t) for t ∈ (t0, L]. ♠

Lemma 8.9 (Z variation) ZL changes sign at most once on [0, L] and
ZL ≥ 0 on [0, L/2].

Proof: For the first statement, suppose there are 3 points t1, t2, t3 where
ZL(ti) for i = 1, 2, 3 alternates sign. But then for ε sufficiently small, the
difference zL+ε(ti)−zL(ti) also alternates sign for i = 1, 2, 3. This contradicts
Lemma 8.8. So, there at most one t0 ∈ [0, L] where ZL changes sign. The
second statment follows from the analysis in Lemma 8.8, which showed that
zM(t) > zL(t) when L < M and t ∈ (0, L/2). ♠

8.7 Variation of the Y Coordinate

Lemma 8.10 (Y Variation) Let δ0 = 1/7. If L is sufficiently large then:

1. |YL|, |ZL| < 5 on [L− 1, L].

2. YL(L) < −δ0.

3. Y ′L < −δ0 on [L− 1, L].

4. YL(L− 1) > δ0.

5. YL > 0 on (L/2, L− 1].

Proof of Statement 1: Let φL(t) = −ZL(L − 1). This function satisfies
the differential equation

φL(0) = −ZL(L) ∼ 1, φ′L(0) = Z ′L(L) ∼ 0, φ′′L(t) = (−2 + 6z2
L(t))φL(t).
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For the last equality we used the fact that z2
L(L− t) = z2

L(t). The solutions
to this equation converge in the C∞ sense to the solutions of the equation

φ(0) = 1, φ′(0) = 0, φ′′ = (−2 + 6z2)φ. (58)

Here z satisfies z′′ = −2z+2z3 with initial conditions z(0) = 0 and z′(0) = 1.
Since φ′′ ∈ [−2, 4]φ, and since cos(t

√
2) > 0 on (0, 1], we have

cos(t
√

2) ≤ φ(t) ≤ cosh(2t). (59)

Since φL → φ we see that |φL| < 2 once L is large. Hence |ZL| < 4 on
[L− 1, 1]. Since YL(L) ∼ −1/2 we have |YL| < 5 on [L− 1, L]. ♠

Proof of Statement 2: This follows from the fact that YL(L) ∼ −1/2.

Proof of Statement 3: Let φL and φ be the functions from the previ-
ous lemma. For t ∈ [0, 1] we have (because φ is monotone decreasing)

Y ′L(L− t) = ZL(L− t) = −φL(t) < ε− φ(t) ≤
ε− φ(1) ≤ ε− cos(

√
2) < −1/7 (60)

once ε is sufficiently small. We can arrange this by taking L sufficiently large.
♠

Proof Statement 4: To estimate YL(L− 1) we note that

YL(L− 1) = YL(L)−
∫ L

L−1

ZL dt = YL(L) +

∫ 1

0

φL dt >

−ε− 1/2 +

∫ 1

0

φ dt = −ε− 1/2 +
sin(
√

2)√
2

> 1/7, (61)

once ε is sufficiently small. ♠

Proof Statement 5: Suppose this is false. Since YL(L/2) ≥ 0 and Y ′L(L/2) =
ZL(L/2) > 0 we see that YL is somewhere positive on (L/2, L − 1]. Also,
YL(L− 1) > 0 and YL(L) < 0. If YL = 0 somewhere else on (L/2, L− 1] then
YL switches signs at least 3 times. But then ZL = Y ′L switches sign at least
twice. This contradicts the Z Variation Corollary. ♠
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8.8 Variation of the B Coordinate

Lemma 8.11 (B variation) As L → ∞, the function YL + BL converges
to 0 in the C1 sense.

Proof: We sometimes suppress the dependence on L in our notation. By
Equation 50 we have |Y (L) +B(L)| < ε/2 if L is sufficiently large. To finish
the proof, it suffices to show that |B′ + Y ′| < ε/2 on [L − 1, 1] for large L.
Combining our derivative formulas with the preceding two results, we have

|B′ + Y ′| ≤
∣∣∣∣yb
∣∣∣∣( max

[L−1,L]
|Y |+ |B|

)
≤ 10y

b
< 10y.

For the last inequality, we note that b(L/2) > 1 when L is large and b′ > 0
on [L/2, L]. Hence b > 1 on [L− 1, 1]. As L → ∞ the maximum value of y
on [L− 1, L] tends to 0. ♠

8.9 Uniqueness of the Vanishing Point

In this section we prove the first half of the Monotoniticy Theorem. That is,
we show that ḃL vanishes exactly once on (L/2, L). This is the same saying
that BL vanishes exactly once on (L/2, L). Our argument will establish the
stronger statement that ḃL vanishes somewhere for some λ ∈ (L−1, L). This
establishes our assertion we made about the cusp κr just after the statement
of the Embedding Theorem in

Lemma 8.12 BL vanishes exactly once in [L−1, L], at an interior point tL,
and BL(L− 1) < 0.

Proof: Combining the Y Variation Lemma and the B Variation Lemma, we
get that BL(L− 1) < 0 and BL(L) > 0 and ḂL > 0 on [L− 1, L]. ♠

Let t1 ∈ [L/2, L− 1] be the smallest value such that Z ≤ 0 on [t1, L− 1].

Lemma 8.13 BL < 0 on [t1, L− 1].
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Proof: Since ZL(L−1) < 0 we know that t1 ∈ [L/2, L−1). We introduce the
function φ(t) = −BL(L−1− t). We have φ(0) > 0 and φ′(t) = B′L(L−1− t).
Hence

∂φ

∂t
=
yL(L− 1− t)
bL(L− 1− t)

×
(
YL(L− 1− t) + φ(t)

)
− 2ZL(L− 1− t).

By the Y Variation Lemma and the definition of t1 we have φ′ = µ1φ + µ2

where µ1 and µ2 are non-negative functions on [0, L− 1− t1]. Since φ(0) > 0
we have φ > 0 on [0, L− 1− t1]. Hence BL < 0 on [t1, L− 1]. ♠

If t1 = L/2 this next lemma is vacuous.

Lemma 8.14 BL < 0 on (L/2, t1).

Proof: Here is Equation 40 again:

B =
xa

2yb
X − 1

2
Y − 1

2yb
Z.

Our result here follows from Equation 40 and these inequalities on [L/2, t1):

• The quantities xL, yL, aL, aL are all positive.

• Since XL(L/2) ≤ 0 and X ′L = −ZL ≤ 0 on (L/2, t1), we have XL ≤ 0.

• By the Y Variation Lemma, YL > 0.

• Since ZL changes sign only at t1, and ZL(L) < 0, we have ZL ≥ 0.

This completes the proof. ♠

8.10 Bounds on the Cusp

Now we prove the claim in the Monotonicity Theorem concerning the location
of the cusp

κr = (ar, br, cr).

We use the same notation established at the beginning of §5. We treat the
bounds one at a time.
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Lemma 8.15 ar < 2∗.

Proof: Let Υr be the isochronal curve. Let κ′r = (a′r, b
′
r, 0) be the upper

endpoint of the arc P . We know from the Asymptotic Theorem and from
Lemma 2.1 that a′r < 2∗. The portion of Υr connecting κr to κ′r has negative
slope. Hence ar < a′r < 2∗. ♠

Lemma 8.16 br < (e2/2)∗er/2.

Proof: By Lemma 8.12, we have

κr ∈ Υλ(L) (62)

for some λ ∈ (L − 1, L). Let fr,λ be the flowline corresponding to κr. From
what we have just said, the flowline fr,λ corresponding to κr lies in the loop
level set of period λ, winds almost all the way around its loop level set, and
ends in the plane Z = 0.

Consider the following perfect flowlines:

• fλ is the perfect symmetric flowline which has the same ending point
as fr,λ. Let Λf ∈ ΠZ be the point corresponding to fλ.

• gλ is the perfect symmetric flowline which has the same initial point as
fr,λ. Let Λg ∈ ΠZ be the point corresponding to gλ.

By Lemma 2.1 we have

Λf = (αf , βf , 0), βf < (1/2)∗eλ/2. (63)

Given the properties of concatenation, we have some element h ∈ Sol whose
third coordinate lies in (−1, 1), such that

(αg, βg, 0) = Λg = h ∗ Λf ∗ h−1. (64)

Conjugation by an element whose third coordinate lies in (−1, 1) changes the
first and second coordinates by a factor of at most e. Hence

βg < (e/2)∗eλ/2 < (e2/2)∗er/2. (65)

The flowline gλ is the extension of fr,λ by at most 1 unit of flow. Hence the
distance from Λg to κr is less than 1 unit. Moreover, both points lie in the
slab |Z| < 1, where the metric is boundedly close to Euclidean. Hence, we
get the same bound on br as we got on βg. Hence br < (e2/2)∗er/2. The
universally small additive constant is just absorbed into the bound. ♠
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9 Monotonicity of the Vanishing Point

9.1 The Proof Modulo Asymptotics

We know there is a unique tL ∈ (L− 1, L) where ḃL vanishes. In this chapter
we show that tL is monotone increasing. Let

βL(t) = −BL(L− t). (66)

There is a unique sL ∈ (0, 1) such that βL(sL) = 0. In fact, tL = L − sL.
Since ṫL = 1− ṡL, it suffices to show |ṡL| < 1 for large L. We show ṡL ∼ 0.
That is, limL→∞(ṡL) = 0. Define

δ(t) =
y(L− t)
b(L− t)

, φ(t) = Y (L− t), ζ(t) = Z(L− t). (67)

Since β′(t) = B′(L− t), we have

β′ = δ(φ− β)− ζ, (β̇)′ = δ̇(φ− β) + δ(φ̇− β̇)− ζ̇ . (68)

The second equation comes from differentiating the first with respect to L.
Let ‖f‖ denote the sup of f on [0, 1]. We will establish the following

estimates below.
‖δ‖, ‖δ̇‖, ‖φ̇‖, ‖ζ̇‖, β̇(0) ∼ 0. (69)

We also know from the Y Variation Lemma that ‖φ‖, ‖ζ‖ < 5. Hence

(β̇)′ = ε1β̇ + ε2, (70)

where ε1 and ε2 are functions such that ‖ε1‖, ‖ε2‖ ∼ 0. Given our initial
condition β̇(0) ∼ 0, a standard comparison argument now says that ‖β̇‖ ∼ 0.

By definition
βL(sL) = 0. (71)

Using implicit differentiation, we see that

|ṡL| =
∣∣∣∣ β̇(sL)

β′(sL)

∣∣∣∣ < 8|β̇(sL)| ∼ 0. (72)

The last inequality comes from the fact that |β′| > 1/8 on [L− 1, L] once L
is large enough. This proves the Monotonicity Lemma, modulo Equation 69.
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9.2 The Asymptotics

We say that a function f of L is tame if df/dL ∼ 0. If f is analytic (i.e. not
contrived in an artificial way) and f ∼ const. one might expect f to be tame.
We verify that this is the case for a number of quantities we have studied
in the previous chapter. We also point out, when relevant, how the given
quantity relates to the functions β, δ, φ, ζ introduced above.

Lemma 9.1 YL(L) is tame. Hence φ̇(0) ∼ 0.

Proof: Since YL(0) = YL(L), it suffices to prove that YL(0) is tame. Lemma
8.1 tells us that

d

dy
YL(0) ∼ 0, (73)

where y = yL(0). But, since YL(0) is asymptotic to a finite number, and
yL(0) ∼ 0, we have dy

dL
∼ 0. Therefore, a fortiori we have d

dL
YL(0) ∼ 0. ♠

Lemma 9.2 XL(L) is tame.

Proof: Since XL(0) = XL(L), it suffices to prove that XL(0) is tame. Dif-
ferentiating Equation 54 with respect to L, we get

2x2
L(0)X2

L(0) +x2
L(0)

(
d

dL
XL(0)

)
+ 2y2

L(0)Y 2
L (0) +y2

L

(
d

dL
YL(0)

)
= 0. (74)

Given that xL(0) ∼ 1 and yL(0) ∼ 0 and YL(0) ∼ −1/2 and that YL(0) is
tame, we see that XL(0) is also tame. ♠

Lemma 9.3 ZL(L) is tame. Hence ζ̇(0) ∼ 0.

Proof: We have

d

dL
ZL(L) =

d

dL
(y2
L(0)− xL(0)2) = y2

L(0)YL(0)− x2
L(0)XL(0) ∼ 0.

The last equation comes from the fact that all quantities in the last expres-
sion are asymptotic to finite numbers and yL(0) ∼ 0 and XL(0) ∼ 0. ♠
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Lemma 9.4 Z ′L(L) is tame. Hence (ζ̇)′(0) ∼ 0.

Proof: Since zL(L) = 0 we have

Z ′L(L) = −4y2
L(L)YL(L). (75)

Differentiating Equation 75 with respect to L and using the product rule, as
above, we see that d

dL
Z ′L ∼ 0. ♠

Lemma 9.5 yL(L)bL(L) is tame.

Proof: We begin by proving an estimate that will come in at the end of the
proof. We claim that

max
[0,L/4]

|YL| < 1. (76)

To see this, note that Y ′L = ZL. We also know that ZL ≥ 0 on [0, L/2]. Hence
YL is monotone increasing on [0, L/2] and YL(L/2) ∼ 1/2. This establishes
Equation 76.

By Lemma 5.1, we see that

yL(L)bL(L) = 2zL(L/4) + 2φL, φL =

∫ L/4

0

y2
L dt. (77)

We deal with these terms one at a time. Referring to Equation 11 we have
zL(L/4) =

√
1− 2α2

L. Here αL ∼ 0. This leads to d
dα

(ZL(L/4)) ∼ 0. A
calculation like the one done in Lemma 8.4 shows that |dLα/dα| ∼ ∞. Hence
dαL/dL ∼ 0. But then, by the chain rule, d

dL
zL(L/4) ∼ 0.

We have
dφL
dL

=

∫ L/4

0

∂

∂L
(yL)2 dt+

1

4
yL(L/4). (78)

Referring to Equation 11 we have yL(L/4) = α. So, the same argument as
for ZL(L/4) now shows that d

dL
yL(L/4) ∼ 0. Finally, we have∫ L/4

0

∂

∂L
(yL)2 dt = 2

∫ L/4

0

y2
LYL dt ≤∗ 2

∫ L/4

0

y2
L ∼ 0.

The starred inequality comes from Equation 76. The final asymptotic result
comes from the proof of Lemma 5.1. ♠

All of the asymptotic results we have obtained so far feed into one final
one.
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Lemma 9.6 BL(L) is tame. Hence β̇(0) ∼ 0.

Proof: As in Lemma 8.7 have

BL(L) = XL(L)− 1

2
YL(L)− 1

yL(L)bL(L)
ZL(L) ∼

XL(L)− 1

2
YL(L)− 1

4
ZL(L) ∼ 0 + (−1/2)(−1/2) + (−1/4)(−1) = 1/2. (79)

We know that
XL(L), YL(L), ZL(L), yL(L)bL(L)

are all tame. Also, we know that

yL(L)bL(L) ∼ 2,

by the Asymptotic Theorem. Using all this information, and the product
and quotient rules for differentiation, we see that BL(L) is tame. ♠

Lemma 9.7 ‖Z‖ ∼ 0.

Proof: Our notation here is a bit funny. We mean to restrict our func-
tion ZL to the interval [0, 1] and take its maximum. We have Z(0) ∼ 0
and |Z ′′| ≤ 4|Z]. Since Z > 0 on (0, 1], the same kind of comparison
argument used in the proof of the Y Variation Lemma now shows that
max[0,1] |Z| ≤ Z(0) cosh(2) ∼ 0. ♠

Now we establish the remaining estimates from §9.1

Lemma 9.8 ‖δ‖ ∼ 0 and ‖δ̇‖ ∼ 0.

Proof: The argument in the proof of the B Variation Lemma shows, inci-
dentally, that ‖δ‖ ∼ 0. Using our derivative formulas, we have

δ̇(t) = (Y (L− t)−B(L− t))δ(t).

Combining the Y Variation Lemma and the B Variation Lemma we see that
|B|, |Y | < 6 on [L− 1, L] for large L. Hence ‖δ̇‖ < 12‖δ‖ ∼ 0. ♠
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Lemma 9.9 ‖ζ̇‖ ∼ 0.

Proof: Define η = ζ̇. From the differential equation for Z ′′ and the fact
that zL−t = zt we get ζ ′′(t) = (−2 + 6z2(t))ζ. Differentiating with respect to
L and using the fact that the mixed partials commute, we see that

ζ̇ ′′(t) = (−2 + 6z2(t)ζ̇(t) + 12Z(t)z2(t)ζ(t).

The first term on the right lies in [−4, 4]ζ̇(t). The second term is at most

12‖Z‖ max
[L−1,L]

|Z| < 60‖Z‖ ∼ 0.

Here we have used Statement1 of the Y Variation Lemma and also the bound
from Lemma 9.7. Putting these estimates together, we get

|ζ̇ ′′| ≤ 4|ζ̇(t)|+ ε, (80)

where ε ∼ 0. We have already seen that ζ̇(0) ∼ 0 and (ζ̇)′(0) ∼ 0. The same
kind of comparison argument as above now give us the desired bound on ζ̇. ♠

Lemma 9.10 ‖φ̇‖ ∼ 0.

Proof: We have φ′ = −ζ. Differentiating with respect to L we get

(φ̇)′ = −ζ̇ .

We also have φ̇(0) ∼ 0. We now integrate the bound on ‖ζ̇‖ to get the bound
on ‖φ̇‖. ♠

With these bounds, we complete the proof of the Monotonicity Lemma.

56



10 References
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