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Abstract

We study the (k + 1, k) diagonal map for k = 2, 3, 4, .... We call
this map ∆k. The map ∆1 is the pentagram map and ∆k is a gen-
eralization. ∆k does not preserve convexity, but we prove that ∆k

preserves a subset Bk of certain star-shaped polygons which we call
k-birds. The action of ∆k on Bk seems similar to the action of ∆1 on
the space of convex polygons. We show that some classic geometric
results about ∆1 generalize to this setting.

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram
map itself your first stop. This old and venerated animal has been around
since the place opened up and it is very friendly towards children. When
defined on convex pentagons, this map has a very long history. See e.g.
[15]. In modern times [19], the pentagram is defined and studied much more
generally. The easiest case to explain is the action on convex n-gons. One
starts with a convex n-gon P , for n ≥ 5, and then forms a new convex n-gon
P ′ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I
proved in [19] about the pentagram map is the successive iterates shrink to
a point. Many years later, M. Glick [3] proved that this limit point is an
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algebraic function of the vertices, and indeed found a formula for it. See also
[9] and [1].

P

P'

P''

Figure 1.1: The pentagram map iterated on a convex 7-gon P .

Forgetting about convexity, the pentagram map is generically defined
on polygons in the projective plane over any field except for Z/2. In all
cases, the pentagram map commutes with projective transformations and
thereby defines a birational map on the space of n-gons modulo projective
transformations. The action on this moduli space has a beautiful structure.
As shown in [17] [18], and independently in [23], the pentagram map is a
discrete completely integrable system when the ground field is the reals.
([23] also treats the complex case.) Recently, M. Weinreich [24] generalized
the integrability result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14],
[16], [10], [11], [6]. The paper [2] has the first general complete integrability
result. The authors prove the complete integrability of the (k, 1) diagonal
maps, i.e. the maps obtained by intersecting successive k-diagonals. Figure
1.3 below shows the (3, 1) diagonal map. (Technically, [2] concentrates on
what happens when these maps act on so-called corregated polygons in higher
dimensional Euclidean spaces.) The paper [6] proves an integrability result
for a very wide class of generalizations, including the ones we study below.
(Technically, for the maps we consider here, the result in [6] does not establish
the algebraic independence of invariants needed for complete integrability.)
The pentagram map and its many generalizations are related to a number
of topics: alternating sign matrices [20], dimers [5], cluster algebras [4], the
KdV hierarchy [12], [13], spin networks [2], Poisson Lie groups [8], Lax pairs
[23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes
you have to get up on a tall ladder to see inside them.
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Figure 1.2: The (3, 1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but
the geometric side is hardly developed at all. In spite of all the algebraic
results, we don’t really know, geometrically speaking, much about what the
pentagram map and its relatives really do to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity
and non-convexity. The generic pentagram orbit of a projective equivalance
class of a convex polygon lies on a smooth torus, and you can make very
nice animations. What you will see, if you tune the power of the map and
pick suitable representatives of the projective classes, is a convex polygon
sloshing around as if it were moving through water waves. If you try the
pentagram map on a non-convex polygon, you see a crazy erratic picture no
matter how you try to normalize the images. The situation is even worse
for the other maps in the pentagram zoo, because these generally do not
preserve convexity. Figure 1.2 shows how the (3, 1)-diagonal map does not
necessarily preserve convexity, for instance. See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to aban-
don convexity. However, in this paper, I will show that sometimes there are
geometrically appealing replacements. The context for these replacements is
the (k+1, k)-diagonal map, which I call ∆k, acting on what I call k-birds . ∆k

starts with the polygon P and intersects the (k + 1)-diagonals which differ
by k clicks. (We will give a more formal definition in the next section.) ∆k

is well (but not perfectly) understood algebraically [6]. Geometrically it is
not well understood at all.
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1.2 The Maps and the Birds

Definition of a Polygon: For us, a polygon is a choice of both vertices and
the edges connecting them. Each polygon P we consider will all be planar ,
in the sense that there is some projective transformation that maps P , both
vertices and edges, to the affine patch. Our classical example is a regular
n-gon, with the obvious short edges chosen.

The Maps: Given a polygon P , let Pa denote the (a)th vertex of P . Let
Pab be the line through Pa and Pb. The vertices of ∆k(P ) are

Pj,j+k+1 ∩ Pj+1,j−k. (1)

Here the indices are taken mod n. Figure 1.3 shows this for (k, n) = (2, 7).
The polygons in Figure 1.3 are examples of a concept we shall define shortly,
that of a k-bird.

Figure 1.3: ∆2 acting on 2-birds.

We should say a word about how the edges are defined. In the case for the
regular n-gon we make the obvious choice, discussed above. In general, we
define the class of polygons we consider in terms of a homotopy from the
regular n-gon. So, in general, we make the edge choices so that the edges
vary continuously.

The Birds: Given an n-gon P , we let Pa,b denote the line containing the
vertices Pa and Pb. We call P k-nice if n > 3k, and P is planar, and the 4
lines

Pi,i−k−1, Pi,i−k, Pi,i+k, Pi,i+k+1 (2)

are distinct for all i. It is not true that the generic n-gon is k-nice, because
there are open sets of non-planar polygons. (Consider a neighborhood of P ,
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where P the regular 100-gon with the opposite choice of edges.) However,
the generic perturbation of a planar n-gon is also k-nice.

We call P a k-bird if P is the endpoint of a path of k-nice n-gons that
starts with the regular n-gon. We let Bk,n be the subspace of n-gons which
are k-birds. Note that Bk,n contains the set of convex n-gons, and the con-
tainment is strict when k > 1. As Figure 1.3 illustrates, a k-bird need not
be convex for k ≥ 2. We will show that k-birds are always star-shaped, and
in particular embedded. As we mentioned above, we use the homotopic def-
inition of a k-bird, to define the edges of ∆k(P ) when P is a k-bird.

Example: The homotopy part of our definition looks a bit strange, but
it is necessary. To illustrate this, we consider the picture further for the case
k = 1. In this case, a 1-bird must be convex, though the 1-niceness condi-
tion just means planar and locally convex. Figure 1.4 shows how we might
attempt a homoropy from the regular octagon to a locally convex octagon
which essentially wraps twice around a quadrilateral. The little grey arrows
give hints about how the points are moved. At some times, the homotopy
must break the 1-niceness condition. The two grey polygons indicate failures
and the highlighted vertices indicate the sites of the failures. There might
be other failures as well; we are taking some jumps in our depiction.

Figure 1.4: A homotopy that cannot stay 1-nice.

One could make similar pictures when k ≥ 1, but the pictures might be
harder to understand.
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1.3 The Main Result

Given an embedded planar polygon P , let P I denote the interior of region
bounded by P . We say that P is strictly star shaped with respect to x ∈ P I

if each ray emanating from x intersects P exactly once. More simply, we say
that P is strictly star shaped if it is strictly star shaped with respect to some
point x ∈ P I . Here is the main result.

Theorem 1.1 Let k ≥ 2 and n > 3k and P ∈ Bk,n. Then

1. P is strictly star-shaped, and in particular embedded.

2. ∆k(P ) ⊂ P I .

3. ∆k(Bk,n) = Bk,n.

Remark: The statement that n > 3k is present just for emphasis. Bn,k is by
definition empty when n ≤ 3k. The restriction n > 3k is necessary. Figure
1.5 illustrates what would be a counter-example to Theorem 1.1 for the pair
(k, n) = (3, 9). The issue is that a certain triple of 4-diagonals has a common
intersection point. This does not happen for n > 3k. See Lemma 3.6.
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Figure 1.5: ∆3 acting on a certain convex 9-gon.
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1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The
key to proving Statement 3 is a natural quantity associated to a k-bird. We
let σa,b be the slope of the line Pa,b and we define the cross ratio

χ(a, b, c, d) =
(a− b)(c− d)

(a− c)(b− d)
. (3)

We define

χk(P ) =

n∏
i=1

χ(i, k, P ), χ(i, k, P ) = χ(σi,i−k, σi,i−k−1, σi,i+k+1, σi,i+k) (4)

Here we are taking the cross ratio the slopes the lines involved in our defi-
nition of k-nice. When k = 1 this is the familiar invariant χ1 = OE for the
pentagram map ∆1. See [19], [20], [17], [18]. When n = 3k + 1, a suitable
star-relabeling of our polygons converts ∆k to ∆1 and χk to 1/χ1. So, in this
case χk ◦∆k = χk. Figure 1.5 illustrates this for (k, n) = (3, 10). Note that
the polygons suggested by the dots in Figure 1.5 are not convex. Were we to
add in the edges we would get a highly non-convex pattern.
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Figure 1.6: A star-relabeling converts ∆1 to ∆3 and 1/χ1 to χ3.

In general, χk is not as clearly related to χ1. Nonetheless, we will prove

Theorem 1.2 χk ◦∆k = χk.

Theorem 1.2 is meant to hold for all n-gons, as long as all quantities are
defined. There is no need to restrict to birds.
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1.5 The Collapse Point

When it is understood that P ∈ Bk,n it is convenient to write

P ` = ∆`
k(P ) (5)

We also let P̂ denote the closed planar region bounded by P . Figure 1.7
below shows P̂ = P̂ 0, P̂ 1, P̂ 2, P̂ 3, P̂ 4 for some P ∈ B4,13.

Figure 1.7: ∆4 and its iterates acting on a member of B4,13.

Define
P̂∞ =

⋂
`∈Z

P̂ `, P̂−∞ =
⋃
`∈Z

P̂ `. (6)

Theorem 1.3 If P ∈ Bk,n then P̂∞ is a point and P̂−∞ is an affine plane.

Our argument will show that P ∈ Bk,n is strictly star-shaped with respect

to all points in P̂ n. In particular, all polygons in the orbit are strictly star-
shaped with respect to the collapse point P̂∞. See Corollary 7.3.

One might wonder if some version of Glick’s formula works for the P̂∞ in
general. I discovered experimentally that this is indeed the case for n = 3k+1
and n = 3k + 2. See §9.2 for a discussion of this and related matters.

Here is a corollary of our results that is just about convex polygons.

Corollary 1.4 Suppose that n > 3k and P is a convex n-gon. Then the
sequence {∆`

k(P )} shrinks to a point as ` → ∞, and each member of this
sequence if strictly star-shaped with respect to the collapse point.
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1.6 The Triangulations

In §7.1 we associate to each k-bird P a triangulation τP ⊂ P , the projective
plane. Here τP is an embedded degree 6 triangulation of P−∞ − P∞. The
edges are made from the segments in the δ-diagonals of P and its iterates for
δ = 1, k, k + 1.

Figure 1.8: The triangulation associated to a member of B5,16.

Figure 1.8 shows this tiling associated to a member of B5,16. In this figure,
the interface between the big black triangles and the big white triangles is
some ∆`

5(P ) for some smallish value of `. (I zoomed into the picture a bit to
remove the boundary of the initial P .) The picture is normalized so that the
line P−∞ is the line at infinity. When I make these kinds of pictures (and
animations), I normalize so that the ellipse of inertia of P is the unit disk.
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1.7 Paper Organization

This paper is organized as follows.

• In §2 we prove Theorem 1.2.

• In §3 we prove Statement 1 of Theorem 1.1.

• In §4 we prove Statement 2 of Theorem 1.1.

• In §5 we prove a technical result called the Degeneration Lemma, which
will help with Statement 3 of Theorem 1.1.

• In §6 we prove Statement 3 of Theorem 1.1.

• In §7 we introduce the triangulations discussed above. Our Theorem
7.2 will help with the proof of Theorem 1.3.

• In §8 we prove Theorem 1.3.

• In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which
Anton Izosimov kindly explained. We also discuss Glick’s collapse for-
mula and star relabelings of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results
even have geometric implications for the pentagram map itself. See §9.3.
There are different ways to visit the flapping bird exhibit in the zoo. You
could read the proofs here, or you might just want to to look at some images:
http://www.math.brown.edu/∼reschwar/BirdGallery
You can also download and play with the software I wrote:
http://www.math.brown.edu/∼reschwar/Java/Bird.TAR
The software has detailed instructions. You can view this paper as a justifi-
cation for why the nice images actually exist.

1.9 Acknowledgements

I would like to thank Misha Gekhtman, Max Glick, Anton Izosimov, Boris
Khesin, Valentin Ovsienko, and Serge Tabachnikov for many discussions
about the pentagram zoo. I would like to thank Anton, in particular, for
extensive discussions about the material in §9.
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2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which
is similar to what I do in [19], is more of a verification than a conceptual
explanation. My computer program allows the reader to understand the
technical details of the proof better. The reader might want to just skim this
chapter on the first reading. In §9 I will sketch an alternate proof, which I
learned from Anton Izosimov. Izosimov’s proof also uses the first two sections
of this chapter.

2.1 Projective Geometry

Let P denote the real projective plane. This is the space of 1-dimensional
subspaces of R3. The projective plane P contains R2 as the affine patch.
Here R2 corresponds to vectors of the form (x, y, 1), which in turn define
elements of P .

Let P ∗ denote the dual projective plane, namely the space of lines in P .
The elements in P ∗ are naturally equivalent to 2-dimensional subspaces of
R3. The line in P such a subspace Π defines is equal to the union of all
1-dimensional subspaces of Π.

Any invertible linear transformation of R3 induces a projective transfor-
mation of P , and also of P ∗. These form the projective group PSL3(R).
Such maps preserve collinear points and coincident lines.

A duality from P to P ∗ is an analytic diffeomorphism P → P ∗ which
maps collinear points to coincidence lines. The classic example is the map
which sends each linear subspace of R3 to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of P . When there are n
such points, we call this an n-Point . A PolyLine is a cyclically ordered list
of lines in P , which is the same as a cyclically ordered list of points in P ∗.
A projective duality maps PolyLines to PolyPoints, and vice versa.

Each n-Point determines 2n polygons in P because, for each pair of con-
secutive points, we may choose one of two line segments to join them. As
we mentioned in the introduction, we have a canonical choice for k-birds.
Theorem 1.2 only involves PolyPoints, and our proof uses PolyPoints and
PolyLines.

Given a n-Point P , we let Pj be its jth point. We make a similar definition
for n-Lines. We always take indices mod n.
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2.2 Factoring the Map

Like the pentagram map, the map ∆k is the product of 2 involutions. This
factorization will be useful here and in later chapters.

Given a PolyPoint P , consisting of points P1, ..., Pn, we define Q = Dm(P )
to be the PolyLine whose successive lines are P0,m, P1,m+1, etc. Here P0,m

denotes the line through P0 and Pm, etc. We labed the vertices so that

Q−m−i = Pi,i+m. (7)

This is a convenient choice. We define the action of Dm on PolyLines in the
same way, switching the roles of points and lines. For PolyLines, P0,m is the
intersection of the line P0 with the line Pm. The map Dm is an involution
which swaps PolyPoints with PolyLines. We have the compositions

∆k = Dk ◦Dk+1, ∆−1
k = Dk+1 ◦Dk. (8)

The energy χk makes sense for n-Lines as well as for n-Points. The quanti-
ties χk◦Dk(P ) and χk◦Dk+1(P ) can be computed directly from the PolyPoint
P . Figure 2.1 shows schematically the 4-tuples associated to χ(0, k, Q) for
Q = P and Dk(P ) and Dk+1(P ). In each case, χk(Q) is a product of n cross
ratios like these. If we want to compute the factor of χk(Dk(P )) associated
to index i we subtract (rather than add) i from the indices shown in the
middle figure. A similar rule goes for Dk+1(P ).

Figure 2.1: Computing the k-energy.

Theorem 1.2 follows from the next two results.

Lemma 2.1 χk ◦Dk = χk.

Lemma 2.2 χk ◦Dk+1 = χk.

These results have almost identical proofs. We consider Lemma 2.1 in
detail and then explain the small changes needed for Lemma 2.2.
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2.3 Proof of the First Result

We study the ratio

R(P ) =
χk ◦Dk(P )

χk(P )
. (9)

We want to show that R(P ) equals 1 wherever it is defined. We certainly
have R(P ) = 1 when P is the regular n-Point.

Given a PolyPoint P we choose a pair of vertices a, b with |a − b| = k.
We define P (t) to be the PolyPoint obtained by replacing Pa with

(1− t)Pa + tPb. (10)

Figure 2.2 shows what we are talking about, in case k = 3. We have rotated
the picture so that Pa and Pb both lie on the X-axis.

t

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

f(t) = χk(P (t)), g(t) = χk ◦Dk(P (t)) (11)

are each rational functions of t. Our notation does not reflect that f and g
depend on P, a, b.

A linear fractional transformation is a map of the form

t→ αt+ β

γt+ δ
, α, β, γ, δ ∈ R, αδ − βγ 6= 0.

Lemma 2.3 (Factor I) If n ≥ 4k+2 and P is a generically chosen n-Point,
then f(t) and g(t) are each products of 4 linear fractional transformations.
The zeros of f and g occur at the same points and the poles of f and g occur
at the same points. Hence f/g is constant.
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The only reason we choose n ≥ 4k + 2 in the Factor Lemma is so that
the various diagonals involved in the proof do not have common endpoints.
The Factor Lemma I works the same way for all k and for all choices of
(large) n. We write P ↔ Q if we can choose indices a, b and some t ∈ R
such that Q = P (t). The Factor Lemma implies that when P,Q are generic
and P ↔ Q we have R(P ) = R(Q). The result for non-generic choices of P
follows from continuity. Any n-Point Q can be included in a finite chain

P0 ↔ P1 ↔ · · · ↔ P2n = Q,

where P0 is the regular n-Point. Hence R(Q) = R(P0) = 1. This shows that
Lemma 2.1 holds for (k, n) where k ≥ 2 and n ≥ 4k + 2. (The case k = 1 is
a main result of [19], and by now has many proofs.)

Lemma 2.4 If Lemma 2.1 is true for all large values of n, then it is true
for all values of n.

Proof: If we are interested in the result for small values of n, we can
replace a given PolyPoint P with its m-fold cyclic cover mP . We have
χk(mP ) = χk(P )m and χk(Dk(mP )) = χk(Dk(p))

m. Thus, the result for
large n implies the result for small n. ♠

In view of Equation 4 we have

f(t) = f1(t)...fn(t), fj(t) = χ(j, k, P (t)). (12)

Thus f(t) is the product of n “local” cross ratios. We call an index j asleep
if none of the lines involved in the cross ratio fj(t) depend on t. In other
words, the lines do not vary at all with t. Otherwise we call j awake.

As we vary t, only the diagonals P0,h change for h = −k,−k− 1, k+ 1, k.
From this fact, it is not surprising that there are precisely 4 awake indices.
These indices are

j0 = 0, j1 = k + 1, j2 = −k − 1, j3 = −k. (13)

The index k is not awake because the diagonal P0,k(t) does not move with t.
We define a chord of P (t) to be a line defined by a pair of vertices of

P (t). The point P0(t) moves at linear speed, and the 4 lines involved in the
calculation of fcj(t) are distinct unless P0(t) lies in one of the chords of P (t).
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Thus fcj(t) only has zeros and poles at the corresponding values of t. It turns
out that only the following chords are involved.

−k
−k − 1

−k
k + 1

−k
1

−k
−2k − 1

−k − 1
−1

−k − 1
−2k − 1

k + 1
1

k + 1
2k + 1

(14)

We call these c0, ..., c7. For instance, c0 is the line through P−k and P−k−1.
Let tj denote the value of t such that P (tj) ∈ cj.

The PolyPoint Q(t) = Dk(P (t)) has the same structure as P (t). Up to
projective transformations Q(t) is also obtained from the regular PolyPoint
by moving a single vertex along one of the k-diagonals. The pattern of
zeros and poles is not precisely the same because the chords of Q(t) do not
correspond to the chords of P (t) in a completely straightforward way. The
k-diagonals of Q(t) correspond to the vertices of P (t) and vice versa. The
(k + 1) diagonals of Q(t) correspond to the vertices of ∆−1

k (P (t)). This is
what gives us our quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by
way of example. The quadruple (f, 2, 4, 5) indicates that fc2 has a simple
zero at f4 and a simple pole at t5.

(f, 0, 0, 1), (f, 1, 6, 7), (f, 2, 4, 5), (f, 3, 2, 3). (15)

(g, 0, 6, 5), (g, 1, 0, 3), (g, 2, 2, 1), (g, 3, 4, 7). (16)

Since these functions have holomorphic extensions to C with no other zeros
and poles, these functions are linear fractional transformations. This pattern
establishes the Factor Lemma I.

Checking that the pattern is correct is just a matter of inspection. We
give two example checks.

• To see why fc2 has a simple zero at t4 we consider the quintuple

(−k − 1,−2k − 1,−2k − 2, 0,−1).

At t4 the two diagonals P−k−1,0 and P−k−1,−1 coincide. In terms of the
cross ratios of the slopes we are computing χ(a, b, c, d) with a = b. The
point P0(t) is moving with linear speed and so the zero is simple.

• To see why gc2 has a simple pole at t1 we consider the 4 points

P2k+2,k+2 ∩ P1,k+1, Pk+1, P1, P1,k+1 ∩ P−k,0. (17)

15



These are all contained in the k-diagonal P1,k+1, which corresponds to
the vertex (−k − 1) of Dk(P ). At t = t1 the three points P0(t) and
P−k and Pk+1 are collinear. This makes the 2nd and 4th listed point
coincided. In terms of our cross ratio χ(a, b, c, d) we have b = d. This
gives us a pole. The pole is simple because the points come together
at linear speed.

The other explanations are similar. The reader can see graphical illustra-
tions of these zeros and poles using our program.

2.4 Proof of the Second Result

The proof of Lemma 2.2 is essentially identical to the proof of Lemma 2.1.
Here are the changes. The Factor Lemma II has precisely the same statement
as the Factor Lemma I, except that

• When defining P (t) we use points Pa and Pb with |a− b| = k + 1.

• We are comparing P (t) with Dk+1(P (t)).

This changes the definition of the functions f and g. With these changes
made, the Factor Lemma I is replaced by the Factor Lemma II, which has
an identical statement. This time the chords involved are as follows.

−k − 1
−k

−k − 1
k

−k − 1
−1

−k − 1
−2k − 1

−k
1

−k
−2k − 1

k
−1

k
2k + 1

(18)

This time the 4 awake indices are:

j0 = 0, j1 = k, j2 = −k − 1, j3 = −k. (19)

Here is the pattern of zeros and poles.

(f, 0, 1, 0), (f, 1, 7, 6), (f, 2, 3, 2), (f, 3, 5, 4). (20)

(g, 0, 5, 6), (g, 1, 3, 0), (g, 2, 7, 4), (g, 3, 1, 2). (21)

The pictures in these cases look almost identical to the previous case. The
reader can see these pictures by operating my computer program. Again, the
zeros of f and g are located at the same places, and likewise the poles of f
and g are located at the same places. Hence f/g is constant. This completes
the proof the Factor Lemma II, which implies Lemma 2.2.
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3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon P ⊂ R2, let P̂ be the closure of the bounded components
of R2−P and let P I be the interior of P̂ . (Eventually we will see that birds

are embedded, so P̂ will be a closed topological disk and P I will be an open
topological disk.)

Suppose now that P (t) for t ∈ [0, 1] is a path in Bn,k starting at the
regular n-gon P (0). We can adjust by a continuous family of projective
transformations so that P (t) is a bounded polygon in R2 for all t ∈ [0, 1].
We orient P (0) counter-clockwise around P I(0). We extend this orientation
choice continuously to P (t). We let Pab(t) denote the diagonal through ver-
tices Pa(t) and Pb(t). We orient Pa,b(t) so that it points from Pa(t) to Pb(t).
We take indices mod n.

We now recall a definition from the introduction: When P is embedded,
we say that P is strictly star shaped with respect to x ∈ P I if each ray
emanating from x intersects P exactly once.

0

1
2

3

4

5

6

7

8 9

Figure 3.1: The soul of a 3-bird

Each such (k + 1)-diagonal defines an oriented line that contains it, and
also the (closed) distinguished half plane which lies to the left of the oriented
line. These n half-planes vary continuously with t. The soul of P (t), which
we denote S(t), is the intersection of the distinguished half-planes. Figure
3.1 shows the an example.

17



The goal of this chapter is to prove the following result.

Theorem 3.1 Let P be a bird and let S be its soul. Then:

1. S is has non-empty interior.

2. S ⊂ P I .

3. P is strictly star-shaped with respect to any point in S.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.
We are going to give a homotopical proof of Theorem 3.1. We say that

a value t ∈ [0, 1] is a good parameter if Theorem 3.1 holds for P (t). All
three conclusions of Theorem 3.1 are open conditions. Finally, 0 is a good
parameter. For all these reasons, it suffices to prove that the set of good
parameters is closed. By truncating our path at the first supposed failure,
we reduce to the case when Theorem 3.1 holds for all t ∈ [0, 1).

3.2 The Proof

For ease of notation we set X = X(1) for any object X associated to P (1).

Lemma 3.2 If P is any k-bird, then P0 and P2k+1 lie to the left of Pk,k+1.
The same goes if all indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices P0(t) and Pk(t) and Pk+1(t).
The k-niceness condition implies that this triangle is non-degenerate for all
t ∈ [0, 1]. Since P0(t) lies to to the left of Pk,k+1(t), the non-degeneracy
implies the same result for t = 1. The same argument works for the triple
(2k + 1, k, k + 1). ♠

Lemma 3.3 S is non-empty and contained in P I .

Proof: By continuity, S is nonempty and contained in P ∪ P I . By the k-
niceness property and continuity, P1 lies strictly to the right of P0,k+1. Hence
the entire half-open edge [P0, P1) lies strictly to the right of P0,k+1. Hence
[P0, P1) is disjoint from S. By cyclic relabeling, the same goes for all the
other half-open edges. Hence S ∩ P = ∅. Hence S ⊂ P I . ♠
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Lemma 3.4 P is strictly star-shaped with respect to any point of S.

Proof: Since P (t) is strictly star-shaped with respect to all points of S(t)
for t < 1, this lemma can only fail if there is an edge of P whose extending
line contains a point x ∈ S. We can cyclically relabel so that the edge of
P0P1.

01x

k+1

01x

k+1

or

Figure 3.2: The diagonal P0,k+1 does not separate 1 from x.

Since x 6∈ P , either P1 lies between P0 and x or P0 lies in between x and
P1. In the first case, both P1 and x lie on the same side of the diagonal P0,k+1.
This is a contradiction: P1 is supposed to lie on the right and x is supposed
to lie on the left. In the second case we get the same kind of contradiction
with respect to the diagonal P−k,1. ♠

We say that P has opposing (k + 1)-diagonals if it has a pair of (k + 1)-
diagonals which lie in the same line and point in opposite directions. In this
case, the two left half-spaces are on opposite sides of the common line.

Lemma 3.5 P does not have opposing (k + 1)-diagonals.

Proof: We suppose that P has opposing diagonals and we derive a contra-
diction. In this case S, which is the intersection of all the associated left
half-planes, must be a subset of the line L containing these diagonals. But
then P intersects L in at least 4 points, none of which lie in S. But then
P cannot be strictly star-shaped with respect to any point of S. This is a
contradiction. ♠

We call three (k + 1)-diagonals of P (t) interlaced if the intersection of
their left half-spaces is a triangle. See Figure 3.3.
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a1

b1

a2

a3

b2

b3

Figure 3.3: Interlaced diagonals on P (t).

Given interlaced (k + 1)-diagonals, and a point x in the intersection, the
circle of rays emanating from x encounters the endpoints of the diagonals in
an alternating pattern: a1, b3, a2, b1, a3, b2, where a1, a2, a3 are the tail points
and b1, b2, b3 are the head points. Here a1 names the vertex Pa1(t), etc.

Lemma 3.6 P (t) cannot have interlaced diagonals for t < 1.

Proof: Choose x ∈ S(t). The n-gon P (t) is strictly star-shaped with respect
to x. Hence, the vertices of P are encountered in order (mod n) by a family
of rays that emanate from x and rotates around full-circle. Given the order
these vertices are encountered, we have aj+1 = aj + ηj, where ηj ≤ k. Here
we are taking the subscripts mod 3 and the vertex values mod n. This tells
us that n = η1 + η2 + η3 ≤ 3k. This contradicts the fact that n > 3k. ♠

It only remains to show that S has non-empty interior. A special case
of Helly’s Theorem says the following: If we have a finite number of convex
subsets of R2 then they all intersect provided that every 3 of them inter-
sect. Applying Helly’s Theorem to the set of interiors of our distinguished
half-planes, we conclude that we can find 3 of these open half-planes whose
triple intersection is empty. On the other hand, the triple intersection of the
closed half-planes contains x. Since P has no opposing diagonals, this is only
possible if the 3 associated diagonals are interlaced for t sufficiently close to
1. This contradicts Lemma 3.6. Hence S has non-empty interior.
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4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that P I is the interior of the region bounded by P . We call the union
of black triangles in Figure 4.1 the feathers of the bird. the black region in
the center is the soul.

e

v

Figure 4.1 The feathers of a 3-bird.

Each feather F of a k-bird P is the convex hull of its base, an edge e of
P , and its tip, a vertex of ∆k(P ).

The goal of this chapter is to prove the following result, which says that
the simple topological picture shown in Figure 4.1 always holds.

Theorem 4.1 The following is true.

1. Let F be an feather with base e. Then F − {e} ⊂ P I .

2. Distinct feathers can only intersect at a vertex of P .

3. The line segment connecting two consecutive feather tips lies in P I .

When we apply ∆k to P we are just specifying the points of ∆k(P ).
We define the polygon ∆k(P ) so that the edges are the bounded segments
connecting the consecutive tips of the feathers of P . With this definion,
Statement 2 of Theorem 1.1 follows immediately from Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of P lies in
the sector F ∗ opposite any of its feathers F . See Figure 4.2.

F*

F

S

e
v

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our
path of birds, we can assume that Theorem 4.1 holds for all t ∈ [0, 1). We
set P = P (1), etc.

Statement 1: Figure 4.3 shows the 2 ways that Statement 1 could fail:

1. The tip v of the feather F could coincide with some p ∈ P .

2. Some p ∈ P could lie in the interior point of ∂F − e.

Figure 4.3: Case 1 (left) and Case 2 (right).

For all x ∈ F ∗, the ray −→xp intersects P both at p and at a point p′ ∈ e.
This contradicts the fact that for any x ∈ S ⊂ F ∗, the polygon P is strictly
star-shaped with respect to x. This establishes Statement 1 of Theorem 4.1.
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Statement 2: Let F1 and F2 be two feathers of P , having bases e1 and
e2. For Statement 2, it suffices to prove that F1− e1 and F2− e2 are disjoint.

The same homotopical argument as for Statement 1 reduces us to the
case when F1 and F2 have disjoint interiors but ∂F1 − e1 and ∂F2 − e2 share
a common point x. If ∂F1 and ∂F2 share an entire line segment then, thanks
to the fact that all the feathers are oriented the same way, we would have two
(k+1) diagonals of P lying in the same line and having opposite orientation.
Lemma 3.5 rules this out.

In particular x must be the tip of at least one feather. Figure 4.4 shows
the case when x = v1, the tip of F1, but x 6= v2. The case when x = v1 = v2

has a similar treatment.

F
1

F
2

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors F ∗1 and F ∗2 are either disjoint or intersect in
a single point. This contradicts the fact that S ⊂ F ∗1 ⊂ F ∗2 has non-empty
interior. This contradiction establishes Statement 2 of Theorem 4.1.
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Statement 3: Recall that P̂ = P ∪ P I . Let F1 and F2 be consecutive
feathers with bases e1 and e2 respeectively. Let f be the edge connecting the
tips of F1 and F2. Our homotopy idea reduces us to the case when f ⊂ P̂
and f ∩ P 6= ∅. Figure 4.5 shows the situation.

F
1 F

2

2

e1 e2

Figure 4.5: The problem a common boundary point

Note that f∩P must be strictly contained in the interior of f because (by
Statement 1 of Theorem 4.1) the endpoints of f lie in P I . But then, f ∩P is
disjoint from F ∗1 ∩F ∗2 , which is in turn contained in the shaded region G. For
any x ∈ G and each vertex p of f , the ray the ray −→xp also intersects P at a
point p′ ∈ e1 ∪ e2. This gives the same contradiction as above when we take
x ∈ S ⊂ F ∗1 ∩ F ∗2 ⊂ G. This completes the proof of Statement 3 of Theorem
4.1.
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5 The Degeneration of Birds

5.1 Statement of Result

Let Bk,n denote the space of n-gons which are k-birds. Let χk denote the
k-energy. With the value of k fixed in the background, we say that a degen-
erating path is a path Q(t) of n-gons such that

1. Q(t) is planar for all t ∈ [0, 1].

2. All vertices of Q(t) are distinct for all t ∈ [0, 1].

3. Q(t) ∈ Bk,n for all t ∈ [0, 1) but Q(1) 6∈ Bk,n.

4. χk(Q(t)) > ε0 > 0 for all t ∈ [0, 1].

In this chapter we will prove the following result, which will help us prove
that ∆k(Bk,n) ⊂ Bk,n in the next chapter. The reader should probably just
use the statement as a black box on the first reading.

Lemma 5.1 (Degeneration) If Q(·) is a degenerating path, then all but at
most one vertex of Q(1) lies in a line segment.

Remark: Our proof only uses the fact that Q has nontrivial edges, nontriv-
ial k-diagonals, and nontrivial (k + 1)-diagonals. Some of the other vertices
could coincide and it would not matter. Also, the same proof works if, instead
of a continuous path, we have a convergent sequence {Q(tn)} with tn → 1
and a limiting polygon Q(1) = limQ(tn).

Example: Let us give an example for the case k = 1 and n = 5. Figure 5.0
shows a picture of a pentagon Q(t) for t = 1− s.

(0,1)

(-2,0) (2,0)

(-1,-s) (1,-s)
-s

1/2

-s/3

0

1+s

A

B
C

Figure 5.0: A degenerating path in the case k = 1 and n = 5.

Here s ranges from 1 to 0 as t ranges from 0 to 1. We have labeled some
of the slopes to facility the calculation (which we leave to the reader) that
χ1(Q(t)) remains uniformly bounded away from 0.
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5.2 Distinguished Diagonals

We orient Q(t) so that it goes counter-clockwise around the region it bounds.
We orient the diagonal Qab so that it points from Qa to Qb. For t < 1 the
vertices Q1(t) and Qk(t) lie to the right of the diagonal Q0,k+1(t), in the sense
that a person walking along this diagonal according to its orientation would
see that points in the right. This has the same proof as Lemma 3.2. The
same rule holds for all cyclic relabelings of these points. The rule holds when
t < 1. Taking a limit, we get a weak version of the rule: Each of Q1(1) and
Qk(1) either lies to the right of the diagonal Q0,k+1(1) or on it. The same
goes for cyclic relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of Q(t) is either a k-diagonal or a (k+1)-
diagonal. There are 2n of these, and they come in a natural cyclic order:

Q0,k(t) Q0,k+1(t), Q1,k+1(t), Q1,k+2(t), ... (22)

The pattern alternates between k and (k + 1)-diagonals. We say that a
diagonal chain is a consecutive list of these.

We say that one oriented segment L2 lies ahead of another one L1 if we
can rotate L1 by θ ∈ (0, π) radians counter-clockwise to arrive at a segment
parallel to L2, In this case we write L1 ≺ L2. We have

Q0,k+1(t) ≺ Q1,k+1(t) ≺ Q1,k+2(t) ≺ Q2,k+2(t). (23)

0

k+1

1

k+2

2

Figure 5.1: The turning rule

This certainly holds when t = 0. By continuity and the Right Hand Rule,
this holds for all t < 1. Taking a limit, we see that the k-diagonals of
Q(1) weakly turn counter-clockwise in the sense that either L1 ≺ L2 for
consecutive diagonals or else L1 and L2 lie in the same line and point in
the same direction. Moreover, the total turning is 2π. If we start with one
distinguished diagonal and move through the cycle then the turning angle
increases by jumps in [0, π] until it reaches 2π. We call these observations
the Turning Rule.
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5.3 Collapsed Diagonals

Figure 5.2 shows the distinguished diagonals incident to Q0. We always take
indices mod n. Thus −k − 1 = n− k − 1 mod n.

Figure 5.2: The 4 distinguished diagonals incident to Q0(t).

We say that Q has collapsed diagonals at a vertex if Q if the 4 distin-
guished diagonals incident to Qk do not all lie on distinct lines. We set
Q = Q(1). We set X = X(1) for each object X associated to Q(1).

Since Q is planar but not k-nice, Q must have collapsed diagonals at some
vertex. We relabel so that the collapsed diagonals are at Q0.

Lemma 5.2 If Q has collapsed diagonals at Q0 then Q−k−1,0 and Q0,k+1

point in opposite directions or Q−k,0 and Q0,k point in the same direction.

Proof: Associated to each diagonal incident to Q0 is the ray which starts at
Q0 and goes in the direction of the other endpoint of the diagonal. (Warning:
The ray may have the opposite orientation than the diagonal it corresponds
to.) If the angle between any of the rays tends to π as t→ 1 then the angle
between the outer two rays tends to π. In this case Q−k,0 and Q0,k point in
the same directions. If the angle between non-adjacent rays tends to 0 then
Q−k−1,0 and Q0,k+1 are squeezed together and point in opposite directions.

Suppose that the angle between adjacent rays tends to 0. If the two adja-
cent rays are the middle ones, we have the case just considered. Otherwise,
either the angle between the two left rays tends to 0 or the angle between
the two right rays tends to 0. In either case, the uniform lower bound on the
cross ratio forces a third diagonal to point either in the same or the opposite
direction as these adjacent diagonals when t = 1. Any situation like this
leads to a case we have already considered. ♠
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5.4 The Case of Aligned Diagonals

We say that Q has aligned diagonals at the vertex Q0 if Q−k,0 and Q0,k are
parallel. This is the second option in Lemma 5.2. We make the same kind
of definition at other vertices, with the indices shifted in the obvious way,.

Lemma 5.3 Suppose Q does not lie in a single line. Suppose also that Q
has aligned diagonals at Q0. Then the diagonals Q−k,0, Q−k,1, ..., Q−1,k, Q0,k

all are parallel and (hence) the 2k+ 1 points Q−k, ..., Q0, ..., Qk are contained
in the line defined by these diagonals.

Proof: These two diagonals define a short chain of diagonals, which starts
with the first listed diagonal and ends with the second one. They also define
a long chain, which starts with the second and ends with the first. The total
turning of the diagonals is 2π, so one of the two chains defined by our diago-
nals turns 2π and the other turns 0. Suppose first that the long chain has 0
turning. This chain involves all points of Q, and forces all points of Q to be
on the same line. So, the short chain must consist of parallel diagonals. ♠

All we use in the rest of the proof is that Q−k, ..., Qk are all contained
in a line L. By shifting our indices, we can assume that Qk+1 6∈ L. This
relabeling trick comes with a cost. Now we cannot say whether the points
Q−k....Qk come in order on L. We now regain this control.

Lemma 5.4 The length 2k-diagonal chain Q−k,0 → ... → Q0,k consists en-
tirely of parallel diagonals. There is no turning at all.

Proof: The diagonals Q−k,0 and Q0,k. are either parallel or anti-parallel. If
they are anti-parallel, then the angle between the corresponding rays incident
Q0(t) tends to 0 as t→ 1. But these are the outer two rays. This forces the
angle between all 4 rays incident to Q0(t) to tend to 0. The whole picture
just folds up like a fan. But one or these rays corresponds to Q0,k+1(t). This
picture forces Qk+1 ∈ L. But this is not the case.

Now we know that Q−k,0 and Q0,k are parallel. All the diagonals in our
chain are either parallel or anti-parallel to the first and last ones in the chain.
If we ever get an anti-parallel pair, then the diagonals in the chain must turn
2π around. But then none of the other distinguished diagonals outside our
chain turns at all. As in Lemma 5.3, this gives Q ⊂ L, which is false. ♠
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We rotate the picture so that L coincides with the X-axis and so that
Q0,k points in the positive direction. Since we are already using the words
left and right for another purpose, we say that p ∈ L is forward of of q ∈ L
if p has larger X-coordinate. Likewise we say that q is backwards of p in
this situation. We say that Q0,k points forwards . We have established that
Q−k,0, ..., Q0,k all point forwards.

Lemma 5.5 Qk+2 ∈ L and both Q1,k+2 and Q2,k+2 point backwards.

Proof: We have arranged that Qk+1 6∈ L. Let us first justify the fact that
Qk+1 lies above L. This follows from Right Hand Rule applied to Q0,k+1 and
Qk and the fact that Q0,k points forwards. Since Q−k, Q−k+1, Q1 are collinear,
Q has collapsed diagonals at Q1. But Q cannot have aligned diagonals be-
cause Q1,k+1 is not parallel to Q−k,1. Hence Q has folded diagonals at 1. This
means that the diagonals Q−k,1 and Q1,k+2 point in opposite directions. This
forces Qk+2 ∈ L and morever we can say that Q1,k+2 points backwards.

We have Q2 ∈ L because 2 ≤ k. We want to see that Q2,k+2 points
forwards and they Suppose not. We consider the 3 distinguished diagonals

Q0,k, Q1,k+2, Q2,k+2.

These diagonals respectively point forwards, backwards, forwards and they
all point one direction or the other along L. But then, in going from Q0,k to
Q2,k+2, the diagonals have already turned 2π. Since the total turn is 2π, the
diagonals Q2,k+2, Q3,k+3, ..., Qn,n+k are all parallel. But then Q2, ..., Qn ∈ L.
This contradicts the fact that Qk+1 6∈ L. ♠

Lemma 5.6 For at least one of the two indices j ∈ {2k+ 2, 2k+ 3} we have
Qj ∈ L and Qk+2,j points forwards.

Proof: Since Q1, Q2, Qk+2 are collinear, Q has collapsed diagonals at Qk+2.
So, by Lemma 5.2, we either have folded diagonals at Qk+2 or aligned diag-
onals at Qk+2. The aligned case gives Q2k+2 ∈ L and the folded case gives
Q2k+3 ∈ L. We need to work out the direction of pointing in each case.

Consider the aligned case. Suppose Qk+2,2k+2 points backwards, as shown
in Figure 5.3.
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k+2

k+1

2k+2

Figure 5.3: Violation of the Right Hand Rule

This violates the Right Hand Rule for Qk+2 and Qk+1,2k+2 because Qk+1

lies above L.
Consider the folded case. Since Qk+2,2k+3 and Q1,k+2 point in opposite

directions, and Q1,k+2 points backwards (by the previous lemma), Qk+2,2k+3

points forwards. ♠

Let j ∈ {2k + 2, 2k + 3} be the index from Lemma 5.6. Consider the 3
diagonals

Q0,k, Q1,k+1, Qk+2,j.

These diagonals are all parallel to L and respectively point in the forwards,
backwards, forwards direction. This means that the diagonals in the chain
Q0,k → ... → Qk+2,j have already turned 2π radians. But this means that
the diagonals

Qk+2,2k+3, Qk+3,2k+3, Qk+3,2k+4, ... Q0,k = Qn,n+k

are all parallel and point forwards along L. Hence Qk+2, Qk+3, ..., Qn ∈ L.
Hence all points but Qk+1 lie in L.

5.5 The Case of Double Folded Diagonals

We fix a value of k. Say that two indices a, b ∈ Z/n are far if their distance
is at least k in Z/n. We say that Q has far folded diagonals if Q has folded
diagonals at Qa and Q has folded diagonals at b and a, b are far.

In this case we have two parallel diagonals Qa,a+k+1 and Qb,b+k+1. As
in the proof of Lemma 5.3, one of the two diagonal chains defined by these
diagonals consists of parallel diagonals. The far condition guarantees that
at least 2k + 1 consecutive points are involved in each chain. But then we
get 2k + 1 collinear points. So, if Q has far folded diagonals, then the same
proof as in the previous section shows that the conclusion of the Degeneration
Lemma holds for Q.
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5.6 Good Folded Diagonals

We say that the folded diagonals Q−k−1,0 and Q0,k+1 are good if all the points
Qk+1, Qk+2, ..., Qn−k−1 are collinear. This notion is empty when k = 2 and
n = 7 but otherwise it has content. In this section we treat the case when
Q has a pair of good folded diagonals. We start by discussing an auxiliary
notion.

We say that Q has backtracked edges at Qa if the angle between the edges
Qa,a+1 and Qa,a−1 is either 0 or 2π.

Lemma 5.7 If Q has backtracked edges at Qa then Q has folded diagonals
at Qa.

Proof: For t ∈ [0, 1), the edges of Q emanating from a divide the plane
into 4 sectors, and one of these sectors, C(t) contains all the distinguished
diagonals emanating from Qa(t). The sector C(t) is the one which locally
intersects Q(t) near Qa(t). The angle of C(t) tends to 0 as t→ 1, forcing all
the distinguished diagonals emanating from Qa(t) to squeeze down as t→ 1.
This gives us the folded diagonals. ♠

We will use Lemma 5.7 in our analysis of good folded edges. Now we
get to it. We rotate so that our two diagonals are in the line L, which is
the X-axis. We normalize so that Q0 is the origin, and Qk+1 and Q−k−1 are
forward of Q0.

Lemma 5.8 If n > 3k + 1 and Q−k−1,0, Q0,k+1 are good folded diagonals,
then the Degeneration Lemma is true for Q.

Proof: Suppose first that Q1 ∈ L. Then Q has folded diagonals at Qk+1.
When n > 3k + 1 the indices (k + 1) and (−k − 1) are k-far. This gives Q
far folded diagonals, a case we have already treated.

To finish our proof, we show that Q1 ∈ L. We explore some of the other
points. We know that Qk+1, ..., Qn−k−1 ∈ L. We can relabel dihedrally so
that Qn−k−1 is forwards of Qk+1. We claim that Qk+2 is forwards of Qk+1.
Suppose not. Then there is some index a ∈ {k + 2, ...,−k − 2} such that
Qa is backwards of Qa±1. What is going on is that our points would start
by moving backwards on L and eventually they have to turn around. The
index a is the turn-around index. This gives us backtracked edges at Qa. By
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Lemma 5.7, we have folded diagonals at Qa. But a and 0 are k-far indices.
This gives Q far-folded diagonals.

The only way out of the contradiction is that Qk+2 is forwards of Qk+1.

0

k+1

-k-1L

k+2

1

Figure 5.4: A contradiction involving Q1.

Suppose Q1 6∈ L. by the Right Hand Rule applied to the diagonal Q0,k+1,
the point Q1 lies beneath L, as shown in Figure 5.4. But then Qk+1 lies to
the left of the diagonal Q1,k+2. This violates the Right Hand Rule. Now we
know that Q1 ∈ L. ♠

Lemma 5.9 Suppose n = 3k + 1 and k > 2. If Q−k−1,0, Q0,k+1 are good
folded diagonals, then the Degeneration Lemma is true for Q.

Proof: The same argument as in Lemma 5.8 establishes the key containment
Q1 ∈ L. (We need k > 2 for this.) From here, as in Lemma 5.8, we deduce
that Q−k−1,0 and Qk+1,2k+2 are parallel. This time the conclusion we get
from this is not as good. We get a run of k points in L, and then a point not
necessarily in L, and then a run of k additional points in L.

The points are Qk+1, ..., Q2k+1, ..., Q0 with the point Q−k omitted. But
then Q has folded diagonals at each of these points except the outer two,
Qk+1 and Q0. But then For each such index h, we see that both Qh±(k+1)

belong to L. This gives us all but one point in L.
It is instructive to consider an example, say k = 4 and n = 13. In this

case, our initial run of points in L is Q5, Q6, Q7, Q8, Q10, Q11, Q12, Q13. The
folded diagonals at Q6, Q7, Q8 respectively give Q1, Q2, Q3 ∈ L. The folded
diagonals at Q10, Q11, Q12 respectively give Q2, Q3, Q4 ∈ L. ♠

Finally we consider the case k = 2 and n = 7. In this case all we know is
that Q0, Q3, Q4 ∈ L with Q3, Q4 forwards of Q0. We can dihedrally relabel
to that Q4 is forwards of Q3. Here Q3 = Qk+1 and Q4 = Qk+2. So, now we
can run the same argument as in Lemma 5.9 to conclude that Q1 ∈ L. Now
we proceed as in the proof of Lemma 5.9.
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5.7 Properties of the Soul

We define S = S(1) to be the set of all accumulation points of sequences
{p(tn)} where p(tn) ∈ S(tn) and tn → 1. Here S(tn) is the soul of P (tn). We
have one more case to analyze, namely ungood folded diagonals. To make
our argument go smoothly, we first prove some properties about S.

Lemma 5.10 Suppose that Q has folded diagonals at Q0. If the Degenera-
tion Lemma is false for Q, then S is contained in the line segment joining
Q0 to Qk+1

Proof: Here is a general statement about S. Since S(t) is non-empty and
closed for all t < 1, we see by compactness that S is also a non-empty closed
subset of the closed region bounded by Q. By continuity S lies to the left
of all the closed half-planes defined by the oriented (k + 1) diagonals (or in
their boundaries). Since S lies to the left of (or on) each (k + 1) diagonal, S
is a subset of the line L common to the folded diagonals and indeed S lies
to one side of the fold point Q0. From the way we have normalized, S lies in
the X-axis forward of Q0. (The point Q0 might be an endpoint of S.)

If S contains points of L that lie forward of Qk+1 then either the diagonal
Qk+1,2k+2 points along the positive X-axis or into the lower half-plane. In
the former cases, the diagonals Q0,k+1, Qk+1,2k+2 are parallel and we get at
least 2k + 1 collinear points and so the Degeneration Lemma holds for Q.

If Qk+1,2k+2 points into the negative half-plane, then the diagonal Q0,k+1

turns more than π degrees before reaching Qk+1,2k+2. But then the diago-
nals in the chain Q−k−1,0 → ... → Q0,k+1... → Qk+1,2k+2 turn more than 2π
degrees. This is a contradiction. ♠

Remark: The same argument works with Q−k−1 in place of Qk+1.

Lemma 5.11 If the Degeneration Lemma is false for Q then S cannot in-
tersect Q in the interior of an edge of Q.

Proof: Suppose this happens. We relabel so that the edge is Q0,1. By the
Right Hand Rule, the pointQ1 is not on the left of the diagonalQ0,k+1. At the
same time, S is not on the right of the diagonal. The only possibility is that
Q1, Q0, Qk+1 are collinear. Likewise Q−k, Q0, Q1 are collinear. Furtheremore,
the (k + 1)-diagonals Q−k,1 and Q0,k+1 are parallel. Figure 5.5 shows the
situation for Q(t) and S(t) when t is very near 1.
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0 1

k+1-k
the soul

Figure 5.5: The relevant points and lines.

But now we have two (k + 1)-diagonals that are parallel and which start
at indices that are k apart in Z/n. This gives us 2k+ 1 consecutive collinear
points on the line containing our edge. We know how to finish the Degener-
ation Lemma in this case. The only way out is that S cannot intersect Q in
the interior of an edge of Q. ♠

Lemma 5.12 If the Degeneration Lemma is false for Q, then S cannot con-
tain a vertex of Q.

Proof: We relabel so that Q0 ∈ S. The same analysis as in the previous
lemma shows that Q1, Q0, Q−k are collinear. Figure 5.6. shows the situation
for t near 1. At the same time, the points Q−1, Q0, Qk are collinear.

the soul

0

-k

1

Figure 5.6: The relevant points and lines

To avoid a case of the Degeneration Lemma we have already done, Q
must have folded diagonals at Q−k. Likewise Q must have folded diagonals
at Qk. But then Q has far folded diagonals, and the Degeneration Lemma
holds for Q. ♠

Now let us bring back our assumptions: Q has folded diagonals at Q0 and
the points Q0, Qk+1, Q−k−1 all lie in the X-axis in the forward order listed.

Corollary 5.13 If the Degeneration Lemma is false for Q then S lies in
the open interval bounded by Q0 and Qk+1 and no point of S lies in Q. In
particular, S contains a point x, forwards of Q0 and backwards of both Qk+1

and Q−k−1, that is disjoint from Q.
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5.8 Ungood Folded Diagonals

The only case left is when Q does not have 2k+1 consecutive collinear points,
and when all folded diagonals of Q are ungood. Without loss of generality,
we will consider the case when Q has ungood folded diagonals at Q0. We
normalize as in the previous section, so that Q0, Qk+1, Q−k−1 lie in forward
order on L, which is the X-axis. Let x be a point from Corollary 5.13.

We call an edge of Q escaping if e ∩ L is a single point. We call two
different edges of Q, in the labeled sense, twinned if they are both escaping
and if they intersect in an open interval. Even if two distinctly labeled edges
of Q coincide, we consider them different as labeled edges.

Lemma 5.14 Q cannot have twinned escaping edges.

Proof: Consider Q(t) for t near 1. This polygon is strictly star shaped with
respect to a point x(t) near x.

L

the twinned 

edges of Q
part

of Q(t)

D

Figure 5.7: Rays intersecting the twinned segments

There is a disk D about x such that every p ∈ D contains a ray which
intersects the twinned edges in the middle third portion of their intersection.
Figure 5.7 shows what we mean. Once t is sufficiently near 1, the soul S(t)
will intersect D, and for all points p ∈ D there will be a ray which intersects
Q(t) twice. This contradicts the fact that Q(t) is strictly star-shaped with
respect to all points of S(t). ♠

We say that an escape edge rises above L if it intersects the upper half
plane in a segment.

Lemma 5.15 Q cannot have two escape edges which rise above L and in-
tersect Q on the same side of the point x.
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Proof: This situation is similar to the previous proof. In this case, there is a
small disk D about x such that every point p ∈ D has a ray which intersects
both rising escape edges transversely, and in the middle third of each of the
two subsegments of these escape edges that lie above L. Figure 5.8 shows
this situation.

L

part

of Q(t)

D

the 

rising

edges

Figuren 5.8: Rays intersecting the rising segments.

In this case, some part of Q(t) closely shadows our two escape edges for t
near 1. But then, once t is sufficiently near 1, each ray we have been talking
about intersects Q(t) at least twice, once by each escaping edge. This gives
the same contradiction as in the previous lemma. ♠

We define falling escape segments the same way. The same statement as
in Lemma 5.15 works for falling escape segments. Since x 6∈ Q we conclude
that Q can have at most 4 escaping segments total.

But Q = Q+ ∪Q−, where Q± is an arc of Q that starts at Qk+1 and ends
at Q−k−1. Since both these arcs start and end on L, and since both do not
remain entirely on L, we see that each arc has at least 2 escape edges, and
none of these are twinned. This means that both Q+ and Q− have exactly
two escape edges.

Now for the moment of truth: Consider Q+. Since Q+ just has 2 escape
edges, they both have to be either rising or falling. Also, since Q+ starts and
ends on the same side of x, and cannot intersect x, both the escape edges for
Q+ are on the same side of x. This is a contradiction. The same argument
would work for Q− but we don’t need to make it.
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6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that
∆k(Bn,k) = Bn,k. First we use the Degeneration Lemma to prove that
∆k(Bn,k) ⊂ Bn,k. Then we deduce the opposite containment from projec-
tive duality and from the factoring of ∆k given in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some P ∈ Bk,n such that
∆(P ) 6∈ Bk,n. Recall that there is a continuous path P (t) for t ∈ [0, 1] such
that P (0) is the regular n-gon.

Define Q(t) = ∆k(P (t)). There is some t0 ∈ [0, 1] such that Q(t0) 6∈ Bk,n.
We can truncate our path so that t0 = 1. In other words, Q(t) ∈ Bn,k for
t ∈ [0, 1) but Q(1) 6∈ Bk,n.

Lemma 6.1 Q(·) is a degenerating path.

Proof: Note that Q(·) is planar and hence satisfies Property 1 for degen-
erating paths. Let P = P (1) and Q = Q(1). If Q doe not have all distinct
vertices then two different feathers of P intersect at a point which (by State-
ment 2 of Theorem 1.1) lies in P I . This contradicts Statement 2 of Theorem
4.1. Hence Q(·) satisfies Property 2 for degenerating paths. By construc-
tion, Q(t) ∈ Bn,k for all t ∈ [0, 1). Hence Q(·) satisfies Property 3. The
energy χk is well-defined and continuous on Bk,n. Hence, by compactness,
χk(P (t)) > ε0 for some ε0 > 0 and all t ∈ [0, 1]. Now for the crucial step: We
have already proved that χk ◦∆k = χk. Hence χk(Q(t)) > ε0 for all t ∈ [0, 1].
That is, Q(·) satisfies Property 4 for degenerating paths. ♠

Now we apply the Degeneration Lemma to Q(·). We conclude that all
but at most 1 vertex of Q(1) lies in a line L. Stating this in terms of P (1),
we can say that all but at most one of the feathers of P (1) have their tips in
a single line L. Call an edge of P (1) ordinary if the feather associated to it
has its tip in L. We call the remaining edge, if there is one, special . Thus,
all but at most one edge of P is ordinary.

Let S(t) be the soul of P (t). We know that S(1) has non-empty interior
by Theorem 3.1. For ease of notation we set P = P (1) and S = S(1).
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Lemma 6.2 P cannot have ordinary edges e1 and e2 that lie on opposite
sides of L and are disjoint from L.

Proof: Suppose this happens. Figure 6.1 shows the situation.

L

F1

F2

Figure 6.1: Two feathers on opposite sides of L.

Let F1 and F2 be the two associated feathers. Then the opposite sector
F ∗1 lies above L, and the opposite sector F ∗2 lies below L and the two tips are
distinct. But then S(1), which must lie in the intersection of these sectors,
is empty. ♠

Lemma 6.3 P cannot have more than 2 ordinary edges which intersect L.

Proof: Note that an ordinary edge cannot lie in L because then the tip
would not. So, an ordinary edge that intersects L does so either at a single
vertex or at an interior point. As we trace along L in one direction or the
other we encounter the first intersecting edge and then the last one and then
some other intersecting edge. Let F1.F2.F3 be the two feathers, as shown in
Figure 6.3. Let ej be the edge of Fj that belongs to P . Let vj be the tip of
Fj. (Figure 6.3 shows the case when ej ∩L is an interior point of ej for each
j = 1, 2, 3, but the same argument would work if some of these intersection
points were vertices.)

outsideF1
F2F3

e3
v1 v2

Figure 6.2: Three or more crossing edges

One of the two arcs α of Q joining v1 to v2 stays in L, namely the one
avoiding the one point of Q not on L. However, α passes right through F3

and in particular crosses e3 transversely. However, one side of F3 is outside
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P . Hence α is not contained in P I , the interior of the region bounded by
P . This contradicts Statement 2 of Theorem 1.1, which says that Q ⊂ P I . ♠

The line L divides the plane into two open half-planes, which we call the
sides of L. Lemma 6.2 says that P cannot have ordinary edges contained
in opposite sides of L. Lemma 6.3 says that at most 2 ordinary edges can
intersect L. Hence, all but at most 2 of the ordinary edges of P lie on one
side of L. Call this the abundant side of L. Call the other side the barren
side. The barren side contains no ordinary edges at all, and perhaps the
special edge. In particular, at most two vertices of P lie in the barren side.

abundant

barren

e1
e2

L

v1

v3

v2

Figure 6.3: Following the diagonals bounding a feather

At the same time, each ordinary edge on the abundant side contributes
two vertices to the barren side: We just follow the diagonals comprising the
corresponding feather. These diagonals cross L from the abundant side into
the barren side. Two different ordinary edges contribute at least 3 distinct
vertices to the barren side. This is a contradiction.

We have ruled out all possible behavior for P = P (1) assuming that
Q = Q(1) is degenerate. Hence, Q(1) is not degenerate. This means that
Q(1) is a bird. This completes the proof that

∆k(Bk,n) ⊂ Bk,n. (24)

6.2 Equality

We use the notation from §2.2. Equation 8 implies that

∆−1
k = Dk+1 ◦∆k ◦Dk+1. (25)

So far, Equation 25 makes sense in terms of PolyPoints and PolyLines.
Below we will explain how to interpret Dk+1 as a map from polygons in

P to polygons in P ∗ and also as a map from polygons in P ∗ to polygons in
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P . Since the dual projective plane P ∗ is an isomorphic copy of P , it makes
sense to define B∗k.n. This space is just the image of Bk,n under any projective
duality. Below we will prove

Theorem 6.4 Dk+1(Bk,n) ⊂ B∗k,n.

It then follows from projective duality that Dk+1(B∗k,n) ⊂ Bk,n. Combin-

ing these equations with Equation 25 we see that ∆−1
k (Bn,k) ⊂ Bn,k. This

combines with Equation 24 to finish the proof of Theorem 1.1.
Now we prove Theorem 6.4.

Lemma 6.5 If P ∈ Bk,n, then we can enhance Dk+1(P ) in such a way that
Dk+1(P ) is a planar polygon in P ∗. The enhancement varies continuously.

Proof: A polygon is a PolyPoint together with additional data specifying an
edge in P joining each consecutive pair of points. Dually, we get a polygon in
P ∗ from a PolyLine by specifying, for each pair of consecutive lines Lj, Lj+1,
an arc of the pencil of lines through the intersection point which connects Lj
to Lj+1.

Specifying an enhancement of Dk+1(P ) is the same as specifing, for each
consecutive pair L1, L2 of (k+1) diagonals of P , an arc of the pencil through
their intersection that connects L1, L2. There are two possible arcs. One of
them avoids the interior of the soul of P and the other one sweeps through
the soul of P . We choose the arc that avoids the soul interior. Figure 6.4
shows that we mean for a concrete example.

Figure 6.4: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of P has non-empty interior, there exists a point x ∈ P
which is disjoint from all these pencil-arcs. Applying duality, this exactly
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says that there is some line in P ∗ which is disjoint from all the edges of our
enhanced Dk+1(P ). Hence, this enhancement makes Dk+1(P ) planar. Our
choice also varies continuously on Bn,k. ♠

Lemma 6.6 Dk+1 maps a member of Bk,n to an n-gon which is k-nice.

Proof: Let Q = Dk+1(P ). A (k + 1)-diagonal of Q is just a vertex of P .
A k diagonal of Q is a vertex of ∆k(p). Thus, to check the k-nice property
for Q we need to take n-collections of 4-tuples of points and check that they
are distinct. In each case, the points are collinear because the lines of Q are
coincident.

a
b

c

d

Figure 6.5 One of the n different 4-tuples we need to check.

Once we make this specification, there is really combinatorially only pos-
sibility for which collections we need to check. Figure 6.5 shows one such
4-tuple, a, b, c, d. The shaded triangles are the two feathers of P whose tips
are b, c. But a, b, c, d are distinct vertices of P ∪∆k(P ) and so they are dis-
tinct. That is all there is to it. ♠

To show that Q = Dk+1(P ) is a k-bird, we consider a continuous path
P (t) from the regular n-gon P (0) to P = P (1). We set Q(t) = P (t). By
construction, Q(0) is a copy of the regular n-gon in P ∗, and Q(t) is k-nice
for all t ∈ [0, 1], and Q(t) is a planar polygon for all t ∈ [0, 1]. By definition
Q = Q(1) is a k-bird. This completes the proof of Theorem 6.4.
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7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and
explain how we construct the triangulation τP associated to a bird P ∈ Bk,n.

Since ∆k(Bk,n) ⊂ Bk,n, we know that ∆k(P ) is also a k-bird. Combin-
ing this with Theorem 3.1 and Theorem 4.1 we can say that ∆k(P ) is one
embedded n-gon contained in P I , the interior of the region bounded by the
embedded P . The region between P and ∆k(P ) is a topological annulus.
Moreover, ∆k(P ) is obtained from P by connecting the tips of the feathers
of P . The left side Figure 7.1 shows how this region is triangulated. The
black triangles are the feathers of P and each of the white triangles is made
from an edge of ∆k(P ) and two edges of adjacent feathers.

Figure 7.1: The triangulation of the annulus

Lemma 7.1 For every member P ∈ Bk,n, the associated 2n triangles have
pairwise disjoint interiors, and thus triangulate the annular region between
P and ∆k(P ).

Proof: As usual, we make a homotopical argument. If this result is false
for some P , then we can look at path which starts at the regular n-gon (for
which it is true) and stop at the first place where it fails. Theorem 4.1 tells
us that nothing goes wrong with the feathers of P . The only thing that can
go wrong is ∆k(P ) fails to be an embedded polygon. Since this does not
happen, we see that in fact there is no counter-example at all. ♠
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We can now iterate, and produce 2n triangles between ∆k(P ) and ∆2
k(P ),

etc. The right side of Figure 7.1 shows the result of doing this many times.
The fact that ∆k(Bk,n) = Bk,n allows us to extend outward as well. When
we iterate forever in both directions, we get an infinite triangulation of a
(topological) cylinder that has degree 6 everywhere. This is what Figure 1.6
is showing. We call this bi-infinite triangulation τP .

7.2 Some Structural Results

The following result will help with the proof of Theorem 1.3.

Theorem 7.2 Let P ∈ Bn,k. Let S be the soul of B. Then for ` ≥ n we
have ∆`

k(P ) ⊂ S.

Proof: We first note the existence of certain infinite polygonal arcs in τP .
We start at a vertex of P and then move inward to a vertex of ∆k(P ) along
one of the edges. We then continue through this vertex so that 3 triangles
are on our left and 3 on our right. Figure 7.2 below shows the two paths like
this that emanate from the same vertex of P .

e1 e2

Figure 7.2: The spiral paths.

43



The usual homotopical argument establishes the fact that the spiral paths
are locally convex. One can understand their combinatrics, and how they
relate to the polygons in the orbit, just by looking at the case of the regular
n-gon. We call the two spiral paths in Figure 7.2 partners . In the regular
n-gon the partners intersect infinitely often. So this is true in general. Each
spiral path has an initial segment joining the initial endpoint on P to the
first intersection point with the partner. We define a petal to be the region
bounded by the initial paths of the two partners.

It is convenient to write P ` = ∆`
k(P ). In the regular case, P ` is con-

tained in the petal for ` > n − 1.. Hence, the same goes in the general
case. Because the initial segments are locally convex, the petal lies to the
left of the lines extending the edges e1 and e2 when these edges are oriented
according to the (k + 1)-diagonals of P . But this argument works for ev-
ery pair of partner spiral paths which start at a vertex of P . We conclude
that for ` ≥ n, the polygon P ` lies to the left of all the (k + 1)-diagonals of
P . But the soul of P is exactly the intersection of all these left half planes. ♠

Theorem 7.2 in turn gives us information about the nesting properties of
birds within an orbit. Let S` denote the soul of P `. Let

S∞ =
⋂
`∈Z

S`, S−∞ =
⋃
`∈Z

S`. (26)

It follows from Theorem 7.2 that P̂∞ = S∞ and P̂−∞ = S−∞, because

S`+n ⊂ P `+n ⊂ S` ⊂ P `. (27)

Hence these sets are all convex subsets of an affine plane.

Corollary 7.3 Any P ∈ Bk,n is strictly star-shaped with respect to all points
in the convex hull of ∆n

k(P ).

Proof: Since P `+n ⊂ S`, and P ` is strictly star shaped with respect to all
points of S`, we see that P ` is strictly star shaped with respect to all points
of P `+n. Since S` is convex, we can say more strongly that P ` is strictly star-
shaped with respect to all points of the convex hull of P `+n. Now we just set
` = 0 and recall the meaning of our notation, we get the exact statement of
the result. ♠

An immediate corollary is that P is strictly star-shaped with respect to
P̂∞. (Theorem 1.3 says that this is a single point.)
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8 Nesting Properties of Birds

8.1 Duality

In this chapter we prove Theorem 1.3. In this first section we show how
Statement 1 of Theorem 1.3 implies Statement 2. We want to prove that the
“backwards union” P̂−∞ is an affine plane. Here P ∈ Bn,k is a k-bird.

We take ` ≥ 0 and consider P−` = ∆−`k (P ). Since P−` is planar, there is
a closed set Λ` of lines in P which miss P−`. These sets of lines are nested:
Λ1 ⊃ Λ2 ⊃ Λ3.... The intersection is non-empty and contains some line L.
We can normalize so that L is the line at infinity. Thus all P−` lie in R2.
We want to see that P̂−∞ = R2.

Let Dk+1 be the map from §2.2 and §6.2. From Equation 8 we see that
Dk+1 conjugates ∆k to ∆−1

k . With Theorem 6.4 in mind, define the following
“dual” k-birds:

Π` = ∆`
k(Dk+1(P )) = Dk+1(P−`). (28)

From Statement 1 of Theorem 1.3, the sequence of k-birds {Π`} shrinks to a
point in the dual plane P ∗. The vertices of Π` are the (k+1)-diagonals of P−`.
Because the vertices of Π` shrink to a single point, all the (k + 1)-diagonals
of P−` converge to a single line L′.

Lemma 8.1 L′ is the line at infinity.

Proof: Suppose not. When ` is large, all the (k + 1)-diagonals point nearly
in the same direction as L′. In particular, this is true of the subset of these
diagonals which define the soul S−`. But these special diagonals turn mono-
tonically and by less than π radians as we move from one to the next. Hence,
some of these diagonals nearly point in one direction along L′ and some point
nearly in the opposite direction. But then S−` converges to a subset of L′.
This is a contradiction, ♠

The soul S−` is a convex set, containing the origin, and is bounded by
some of the (k + 1) diagonals. If S−` does not converge to the whole plane,
then some (k + 1)-diagonal intersects a uniformly bounded region in R2 for
each `. But this produces a sequence of (k + 1)-diagonals that does not
converge to the line at infinity. This is a contradiction. Hence S−` converges
to all of R2. But then so does P−`.
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8.2 The Pre-Compact Case

The rest of the chapter is devoted to proving Statrement 1 of Theorem 1.3.
Let P ∈ Bn,k and let P ` = ∆`(P ). We take ` = 0, 1, 2, 3....

Conjecture 8.2 The sequence {P `} is pre-compact modulo affine transfor-
mations. That is, this sequence has a convergent subsequence which converges
to another element of Bn,k.

In this section I will prove the P̂∞ is a single point under the assumption
that {P `} is pre-compact.

We would like to see that the diameter of P ` steadily shrinks, but the
notion of diameter is not affinely natural. We first develop a notion of affinely
natural diameter. For each direction v in the plane, we let ‖S‖v denote the
maximum length of L ∩ S where L is a straight line parallel to v. We then
define

δ(S1, S2) = sup
v

‖S1‖v
‖S2‖v

∈ [0, 1]. (29)

The quantity δ(S1, S2) is affine invariant, and (choosing a direction µ which
realizes the diamater of S1) we have

diam(S1)

diam(S2)
≤ ‖S1‖µ
‖S2‖µ

≤ δ(S1, S2). (30)

Let S` be the soul of P `. By Theorem 5.11 we have S`+n ⊂ S`. More
precisely, the former set is contained in the interior of the latter set. Under
the pre-compactness assumption, there are infinitely many indices `j and
some ε > 0 such that

δ(S`j+n, S`j) < 1− ε. (31)

But then
diam(S`j+n)

diam(S`j)
< 1− ε (32)

infinitely often. This forces diam(S`) → 0. But P̂∞ is contained in this
nested intersection and hence is a point.

If we knew the truth of Conjecture 8.2 then our proof of Theorem 1.3
would be done. Since we don’t know this, we have to work much harder to
prove Statement 1 in general.
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8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {P `} of P under ∆k is not
pre-compact modulo affine transformations.

Lemma 8.3 There is a sequence {T`} of affine transformations such that

1. T`(P
`) has (the same) 3 vertices which make a fixed equilateral triangle.

2. T` expands distances on P ` for all `.

3. T`(P
`) is contained in a uniformly bounded subset of R2.

Proof: To P ` we associate the triangle τ` made from 3 vertices of P ` and
having maximal area. The diameter of τ` is uniformly small, so we can find a
single equilateral triangle T and an expanding affine map T` : τ` → T . Let d
be the side length of T . Every vertex of T`(P

`) is within d of all the sides of
T , because otherwise we’d have a triangle of larger area. The sequence {T`}
has the advertised properties. ♠

Let Q` = T`(P
`). By compactness we can pass to a subsequence so

that the limit polygon Q exists, in the sense that the vertices and the edges
converge. Let Q0, Q1, etc. be the vertices of Q. Perhaps some of these
coincide. Each distinguished diagonal of Q` defines the unit vector which is
parallel to it. Thus Q` defines a certain list of 2n unit vectors. We can pass
to a subsequence so that all these unit vectors converge. Thus Q still has
well defined distinguished diagonals even when the relevant points coincide.

We now define the “limiting soul”. Let S` = S(Q`), the soul of Q`. As in
§5.7. let S be the set of accumulation points of sequences {p`} with p` ∈ S`.
Since S` ⊂ Q` for all ` we have S ⊂ Q. Now we define a related object. We
have a left half-plane associated to each diagonal of Q. We define Σ to be the
intersection of all these half-planes. We will use the set Σ at various places
below to get control over the set S.

Lemma 8.4 S ⊂ Σ.

Proof: Fix ε > 0. If this is not the case, then by compactness we can find a
convergent sequence {p`}, with p` ∈ S`, which does not converge to a point
of Σ. But p` lies in every left half plane associated to Q`. But then, by
continuity, the accumulation point p lies in every left half plane associated
to Q. Hence p ∈ Σ. ♠
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8.4 Structure of the Normalized Limits

We work under the assumption that P̂∞ is not a single point. The goal of
this section is to establish several structural properties about the sets S and
Q. Our first property guarantees that there is a chord S∗ of S connecting
vertices of Q. Once we establish this, we show that Q is a union of two
“monotone” arcs joining the endpoints of S∗. These structural properties
will be used repeatedly in subsequent sections of this chapter.

Let HQ denote the convex hull of Q. Note that S ⊂ Q ⊂ HQ.

Corollary 8.5 Suppose that P̂∞ is not a single point. Then δ(S,HQ) = 1.

Proof: Suppose not. Note that HQ` ⊂ S`−n by Theorem 7.2 and convexity.
Then for ` large we have

δ(Q`−n) = δ(S`, S`−n) ≤ δ(S`, HQ`) < δ(S,HQ) + ε,

and we can make ε as small as we like. This gives us a uniform δ < 1 such
that δ(Q`) < δ once ` is large enough. The argument in the compact case

now shows that P̂∞ is a single point. ♠

Corollary 8.5 says that S and Q have the same diameter. Hence there is
a chord S∗ ⊂ S which has the same diameter as Q. Since Q is a polygon,
this means that Q must have vertices at either endpoint of S∗. We normalize
so that S∗ is the unit segment joining (0, 0) to (1, 0).

Lemma 8.6 Let Q′ ⊂ Q be an arc of Q that joins (0, 0) to (1, 0).

1. The vertices of Q′ must have non-decreasing x-coordinates.

2. If consecutive vertices of Q′ have the same x-coordinate, they coincide.

3. Either Q′ ⊂ S∗ or Q′ intersects S∗ only at (0, 0) and (1, 0).

Proof: Suppose the Statement 1 is false. Then we can find a vertical line
Λ which intersects S∗ at a relative interior point and which intersects Q′

transversely at 3 points. But then once ` is sufficiently large, Q` will intersect
all vertical lines sufficiently close to Λ in at least 3 points and moreover some
of these lines will contain points of S`. This contradicts the fact that Q` is
strictly star-shaped with respect to all points of Q`.
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For Statement 2, we observe that Q′ does not contain any point of the
form (0, y) or (1, y) for y 6= 0. Otherwise Q has larger diameter than 1.
This is to say that once Q′ leaves (0, 0) it immediately moves forward in
the X-direction. Likewise, once Q′ (traced out the other way) leaves (1, 0)
it immediately moves backward in the X-direction. If Statement 2 is false,
ten we can find a non-horizontal line Λ′ which intersects S∗ in a relative
interior point and which intersects Q′ transversely at 3 points. The slope is
Λ′ depends on which of the two vertices of Q′ lies above the other. Once we
have Λ′ we play the same game as for the first statement, and get the same
kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in
§5.8. By Statements 1 and 2 together, Q′ must have an escape edge which
touches S∗ in a relative interior point. Moreover, this one escape edge is
paired with another escape edge. Thus we can find a point x ∈ S∗ which
strictly lies on the same side of both of these same-type escape edges. The
argument in §5.8 now shows that Q` is not strictly star-shaped with respect
to points of S` very near x. ♠

Corollary 8.7 Suppose 0 ≤ a < b < n and Qa = Qb. Then either we have
Qa = Qa+1 = ... = Qb or else we have Qb = Qb+1 = ... = Qa+n.

Proof: In view of Lemma 8.6 it suffices to show that our two monotone arcs
comprising Q are disjoint except at their endpoints.

Let U denote the open upper halfplane, bounded by the X-axis. After
reflecting in the X-axis we can guarantee that one of our monotone arcs α
has a point in U . But then, by Lemma 8.6, all of α lies in U except for its
endpoints. If the other monotone arc β intersects α away from the endpoints,
then β has a point in U , but then, by Lemma 8.6, all of β lies in U except for
the endpoints. But then S lies in U , except for the points (0, 0) and (1, 0).
This contradicts the fact that S∗ ⊂ S. ♠

Our argument shows in particular that Q is embedded, up to adding
repeated vertices. However, we will not directly use this property in our
proof below.
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8.5 The Triangular Case

We continue with the assumption that P̂ is not a single point. Here we pick
off a special case:

• There is a line L such that Q0 6∈ L.

• Qk, Qk+1, ..., Qn−k−1, Qn−k ∈ L and

• Qk 6= Qn−k.

Figure 8.1 shows the situation. As always, the notation Q−k and Qn−k names
the same point. All but 2k − 1 points are on L, and except for Q0 we don’t
know where these other 2k − 1 points are.

L

0

-k

-k-1 k+1

k

Figure 8.1: The triangular limit Q.

Given the constant energy of our orbit, the cross ratio of the lines

Q0,k, Q0,k+1, Qn−k−1,0, Qn−k,0

is at least ε0. Also, these lines are cyclically ordered about 0 as indicated in
Figure 8.1, thanks to the k-niceness property and continuity. Also, the two
lines containing Q0,k and Q−k,0 are not parallel because Q0 6∈ L. Hence S is
contained in the shaded region in Figure 8.1, namely the triangle with vertices
Q0 and Q±(k+1). But this shaded region has diameter strictly smaller than the
triangle τ with vertices Q0 and Q±k. Hence diam(S) < diam(τ) ≤ diam(Q).
This contradicts Corollary 8.5 which says, in particular, that S and Q have
the same diameter.
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8.6 The Case of No Folded Diagonals

We work under the assumption that P̂∞ is not a single point. The notions
of collapsed diagonals, folded diagonals, and aligned diagonals from §5 make
sense for Q because the concepts just involve the directions of the diagonals.
The proof of Lemma 5.3 also works the same way.

Lemma 8.8 Q must either have a trivial edge, a trivial distinguished diag-
onal, or collapsed diagonals,

Proof: As remarked in §5, the proof of the Degeneration Lemma works for
sequences as well as paths, and only uses the fact that the limiting polygon
has nontrivial edges and nontrivial distinguished diagonals. So, if Q has no
trivial edges and no trivial distinguished diagonals, then all but one vertex
of Q lies in a single line. But then Q has collapsed diagonals. ♠

Remark: Here is a second, more direct proof. If Lemma 8.8 is false then we
have a picture as in the left side of Figure 7.1. The feathers defined in §4.1
would be all non-degenerate and the segments joining the tips of consecutive
feathers would be nontrivial. This would force S to lie in the interior of Q.
But then diam(S) < diam(Q), contradicting Corollary 8.5.

If Q has a trivial distinguished diagonal, then by Lemma 8.7, we see that
Q also has a trivial edge. If Q has a trivial edge, say Q−1 = Q0, then the
diagonals at Q are collapsed at Qk. So, in all cases, Q has collapsed diagonals.
We assume in this section that Q has no folded diagonals anywhere. This
means that Q has aligned diagonals, say at Qk. Thus Q0,k and Qk,2k are
parallel. Since Q does not lie in a line, Lemma 5.3 tells us that the chain of
2k + 1 parallel distinguished diagonals:

Q0,k, Q0,k+1, Q1,k+1, Q1,k+2, ..., Qk−1,2k, Qk,2k (33)

Now we have a “runaway situation”. The two diagonals Q2k,k and Q2k,k−1

(which are just the reversals of the last two in Equation 33) are parallel.
Thus Q has collapsed diagonals at Q2k. Since Q has no folded diagonals, Q
has aligned diagonals at Q2k. But then, applying Lemma 5.3 again, we can
extend that chain in Equation 33 so that it contines as , ..., Q2k−1,3k, Q2k,3k.
But now Q has collapsed diagonals at Q3k. And so on. Continuing this way,
we end up with all points on Q. This is a contradiction.

The only way out is that Q must have folded diagonals somewhere
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8.7 The Case of Folded Diagonals

We continue to work under the assumption that P̂∞ is not a single point.
Now we consider the case when Q has folded diagonals at, say, Q0. What this
means that the diagonalsQ0,k+1, Q0,−k−1 are parallel. (Again, these diagonals
are well defined even when their endpoints coincide; we are just using a
notational convention to name them here.) But then the corresponding half
planes intersect along a single line L, forcing Σ ⊂ L. By Lemma 8.4, the
soul S is contained in Σ. Hence, S ⊂ L. Letting S∗ be the chord from §8.4,
we also have S = S∗. This is because S and S∗ are segments of the same
diagonal and in the same line. We will use S and S∗ interchangeably below.

We normalize so that S is the line segment connecting (0, 0) to (1, 0).
As in §8.4, both these points are vertices of Q. The folding condition forces
Σ (and hence S) to lie to one side of these points. Hence, we have either
Q0 = (0, 0) or Q0 = (1, 0). Without loss of generality we consider the case
when Q0 = (0, 0). Note that points of Q− S do not belong to L, because Q
and S have the same diameter. We break the analysis down into cases.

Case 1: Suppose that Qk+1 is not an endpoint of S∗ and Qn−k−1 6= (0, 0).
Consider the arc Q′ given by Q0 → ...→ Qk+1 → ...→ Qβ = (1, 0). Here β
is some index we do not know explicitly, but we take β as large as possible,
in the sense that Qβ+1 6= (1, 0). The arc Q′ connects (0, 0) to (1, 0) and
intersets S∗ at Qk+1, a point which is neither (0, 0) or (1, 0). By Lemma 8.6,
we have Q′ ⊂ S∗. We conclude that Q0, ..., Qβ ⊂ S∗.

If β does not lie in the index interval (k+ 1, n− k− 1) then we have just
shown that Qk+1, ..., Qn−k−1 ∈ S∗. If β = n− k− 1 we have the same result.
Here is what we do if β does lie in (k + 1, n − k − 1). We apply our same
argument as in the previous paragraph to the arc Qβ → ...→ Qn−k−1, and see
that Qβ, ..., Qn−k−1 ∈ S. So, in all cases, we see that Qk+1, ..., Qn−k−1 ∈ S.

In short, Qj ∈ L unless j ∈ {−k, ...,−1}. All but k vertices belong to
L. In particular, we have an index h ∈ {−k, ...,−1} such that Qh 6∈ L but
Qh+k, Qh+k+1, ..., Qh+n−k−1, Qh+n−k ∈ L. Now we are close to the Triangular
case from §8.5 except that all the indices are shifted by h. If it happens that
Qh+k 6= Qh+n−k then we have the Triangular Case and we are done.

The other possibility is that Qh+k = Qh+n−k. In this case, Lemma 8.7
gives us Qh+k = Qh+k+1 = Qh+n−k−1 = Qh+n−k. In particular, the diagonals
Qh,h+k+1 and Qh,h+n−k−1 are folded at Qh. Since Qh 6∈ L this means that
there is some other line L′ such that S ⊂ L′. This is a contradiction.
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Case 2: Suppose Q−k−1 = Qk+1 = (1, 0). Before analyzing this case, we
remember a lesson from the end of Case 1: It is not possible for Q to have
folded diagonals at a point not on S.

Corollary 8.7 says that Qk+1 = ... = Qn−k−1 = (1, 0). This is a run of k+β
points, where β = n − (3k + 1) ≥ 0. There is some index h ∈ {±1, ... ± k}
such that Qh 6∈ L. Without loss of generality we will take h ∈ {1, ..., k}.

Suppose first that n > 3k + 1. Then there are at least k + 1 consecutive
vertices sitting at (1, 0) and so both diagonals Qh,k+h and Qh,k+h+1 point
from Qh to (1, 0) 6= Qh. This means that Q has collapsed diagonals at Qh.
Remembering our lesson, we know that Q does not have folded diagonals at
Qh. Hence Q has aligned diagonals at Qh.

Now we have the same runaway situation we had in §8.6. The diagonals
in the chain Qh−k,h...Qh,h+k point are all pointing along the line connecting
(1, 0) to Qh, and they are pointing away from (1, 0). This gives us collapsed
diagonals at Qh+k. Remembering our lesson, we see that Q has aligned
diagonals at Qh+k. And so on. All the points after Qh get stuck on L′ and
we have a contradiction.

If n = 3k + 1, then the same argument works as long as h 6= ±k. So, we
just have to worry about the case when all points of Q belong to S except
for Qk and Q−k, which do not belong to S. Applying Lemma 8.6 to the arc
Q0 → Q1 → ... → Qk → (1, 0) we conclude that Q0 = ... = Qk−1 = (0, 0).
Applying Lemma 8.6 to the arc Q0 → Q−1 → ...→ Q−k → (1, 0) we conclude
that Q0 = ... = Qk−1 = (0, 0). But now we have a run of 2k−1 ≥ k+1 points
sitting at (0, 0) and we can run the same argument as in the case n > 3k+ 1,
with (0, 0) in place of (1, 0).

Case 3: The only cases left to consider is when one or both of Q±(k+1)

equals (0, 0). We suppose without loss of generality that Q−k−1 = (0, 0).
Since we also have Q0 = (0, 0), Lemma 8.7 gives Q−k−1 = ... = Q0 = (0, 0).
This is a run of k + 2 consecutive points sitting at (0, 0).

There is some smallest h > 0 so that Qh 6∈ S. Applying Lemma 8.6 to the
arc Q0 → ...→ Qk → ...→ (1, 0), we conclude that Qh−1 = ... = Q1 = (0, 0).
(Otherwise Lemma 8.6 would force Qh ∈ S.)

Now we know that Q has collapsed diagonals at Qh 6∈ L. We now get a
contradiction from the same runaway situation as in Case 2.
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9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that χk ◦ ∆k = χk. This
proof requires the machinery from [6]. (The perspective comes from [8], but
the needed result for ∆k is in the follow-up paper [6].)

Let P be an n-gon. We let V1, ..., Vn be points in R3 representing the
consecutive vertices of P . Thus the vertex Pj is the equivalence class of Vj.
We can choose periodic sequences {ai}, {bi}, {ci}, {di} such that

aiVi + biVi+k + ciVi+k+1 + diVi+2k+1 = 0, ∀i. (34)

Recall from §2.2 that ∆k = Dk ◦Dk+1.

Lemma 9.1 One of the cross ratio factors of χk ◦Dk+1 is (a0d−k)/(c0b−k).

Proof: One of the factors is the cross ratio of P0, y, x, Pk+1, where

x = P0,k+1 ∩ Pk,2k+1, y = P−k,1 ∩ P0,k+1.

(Compare the right side of Figure 2.1, shifting all the indices there by k+ 1.)
The points x and y respectively are represented by vectors

X = a0V0 + c0Vk+1 = −b0Vk − d0V2k+1,

Y = −a−kV−k − c−kV1 = b−kV0 + d−kVk+1.

The point here is that the vector X lies in the span of {V0, Vk+1} and in
the span of {Vk, V2k+1} and projectively this is exactly what is required. A
similar remark applies to Y .

Setting Ω = V0 × Vk+1, we compute the relevant cross ratio as

V0 × Y
V0 ×X

· X × Vk+1

Y × Vk+1

=
d−kΩ

c0Ω
× a0Ω

b−kΩ
=
d−ka0

b−kc0

, (35)

which is just a rearrangement of the claimed term. ♠

The other cross ratio factors are obtained by shifting the indices in an
obvious way. As an immediate corollary, we see that

χk(Dk+1(P )) =
n∏
i=1

aidi
bici

. (36)

Let us call this quantity µk(P ).

54



Lemma 9.2 If µk ◦∆k = µk then χk ◦∆k = χk.

Proof: If µk ◦∆k = µk then µk ◦∆−1
k = µk. Equation 36 says that

χk ◦Dk+1 = µk, µk ◦Dk+1 = χk. (37)

The first equation implies the second because Dk+1 is an involution. Since
Dk+1 conjugates ∆k to ∆−1

k we have

χk ◦∆k = χk ◦Dk+1 ◦∆−1
k ◦Dk+1 = µk ◦∆−1

k ◦Dk+1 = µk ◦Dk+1 = χk.

This completes the proof. ♠

Let P̃ = ∆k(P ). Let {ãi}, etc., be the sequences associated to P̃ . We
want to show that

n∏
i=1

aidi
bici

=
n∏
i=1

ãid̃i

b̃ic̃i
. (38)

This is just a restatement of the equation µk ◦∆k = µk.
Now we use the formalism from [6] to establish Equation 38. We associate

to our polygon P operator D on the space V of bi-infinite sequences {Vi} of
vectors in R3. The definition of D is given coordinate-wise as

D(Vi) = aiVi + biT
k(Vi) + ciT

k+1(Vi) + diT
2k+1(Vi). (39)

Here T is the shift operator, whose action is T (Vi) = Vi+1. If we take {Vi}
to be a periodic bi-infinite sequence of vectors corresponding to our polygon
P , then D maps {Vi} to the 0-sequence.

Next, we write D = D+ +D− where coordinate-wise

D+(Vi) = aiVi + ciT
k+1(Vi), D−(Vi) = biT

k(Vi) + diT
2k+1(Vi). (40)

The pair (D+, D−) is associated to the polygon P .

Let D̃ and (D̃+, D̃−) be the corresponding operators associated to P̃ . One
of the main results of [6] is that the various choices can be made so that

D̃+D− = D̃−D+. (41)

This is called refactorization. Equating the lowest (respectively highest)

terms of the relation in Equation 41 gives us the identity ãibi = b̃iai+k (re-

spectively c̃idi+k+1 = d̃ici+2k+1.) These relations hold for all i and together
imply Equation 38.
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9.2 Extensions of Glick’s Formula

Theorem 1.1 in [3] says that the coordinates for the collapse point of the
pentagram map ∆1 are algebraic functions of the coordinates of the initial
polygon. In Equation 1.1 of [3], Glick goes further and gives a formula for
the collapse point. I will explain his formula. Let (x∗, y∗) denote the accu-

mulation point of the forward iterates of P under ∆1. Let P̂∞ = (x∗, y∗, 1)
be the collapse point. In somewhat different notation, Glick introduces the
operator

TP = nI3 −GP , GP (v) =
n∑
i=1

|Pi−1, v, Pi+1|
|Pi−1, Pi, Pi+1|

Pi. (42)

Here |a, b, c| denotes the determinant of the matrix with rows a, b, c and I3

is the 3 × 3 identity matrix. It turns out TP is a ∆1-invariant operator, in
the sense that T∆0(P ) = TP . Moreover P∞ is an eigenvector of TP . This is

Glick’s formula for P̂∞. Actually, one can say more simply that GP is a ∆0-
invariant operator and that P̂∞ is a fixed point of the projective action of Gp.
This means that the vectors representing these points in R3 are eigenvectors
for the operator. The reason Glick uses the more complicated expression
nI3 −GP is that geometrically it is easier to work with.

Define GP,a,b by the formula

GP,a,b(v) =
n∑
i=1

|Pi−a, v, Pi+b|
|Pi−a, Pi, Pi+b|

Pi. (43)

Let P̂∞,k be the limit point of the forward iterates of P under ∆k.
A lot of experimental evidence suggests the following conjecture.

Conjecture 9.3 Let k ≥ 2. If n = 3k + 1 the point P̂∞ is a fixed point
for the projective action of GP,k,k. If n = 3k + 2 the point P̂∞ is a fixed
point for the projective action of GP,k+1,k+1. In particular, in these cases the

coordinates of P̂∞ are algebraic functions of the vertices of P .

Anton Izosimov kindly explained the following lemma, which seems like
a big step in proving the conjecture. (I am still missing the geometric side
of Glick’s argument in this new setting.)

Lemma 9.4 When n = 3k + 1 the operator GP,k,k is invariant under ∆k.
When n = 3k + 2 the operator GP,k+1,k+1 is invariant under ∆k.
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Proof: These operators are Glick’s operator in disguise. When n = 3k+1 we
can relabel our n-gons in a way that converts ∆k to the pentagram map. The
corresponding space of birds Bn,k corresponds to some strange set of “rela-
beled k-birds”. This relabeling converts GP,k,k respectively to Glick’s original
operator. This proves the invariance of GP,k,k under ∆k when n = 3k+ 1. A
similar thing works for n = 3k + 2, but this time the relabeling converts ∆k

to the inverse of the pentagram map. ♠

I was not able to find any similar formulas when n > 3k + 2.

Question 9.5 When n > 3k + 2 and P is a k-bird, are the coordinates of
the collapse point P̂∞ algebraic functions of the vertices of P?

Here is one more thing I have wondered about. Suppose that n is very
large and P is a convex n-gon. Then P can be considered as a k-bird for all
k = 1, 2, ..., β, where β is the largest integer such that n ≥ 3β + 1. When we
apply the map ∆k for these various values of k we get potentially β different
collapse points. All I can say, based on experiments, is that these points are
not generally collinear.

Question 9.6 Does the collection of β collapse points in this situation have
any special meaning?

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.4. Given an n-gon
P and and some integer r relatively prime to n, we define a new n-gon P ∗r

by the formula
P ∗rj = Prj. (44)

Figure 1.5 shows the P ∗(−3) when P is the regular 10-gon.
As we have already mentioned, the action of ∆1 on the P ∗(−k) is the same

as the action of ∆k on P when n = 3k + 1. So, when n = 3k + 1, the
pentagram map has another nice invariant set (apart from the set of convex
n-gons), namely

B
∗(−k)
k,n = {P ∗(−k)| P ∈ Bk,n}.

The action of the pentagram map on this set is geometrically nice. If we
suitably star-relabel, we get star-shaped (and hence embedded) polygons. A
similar thing works when n = 3k + 2.
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