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Abstract

We study the (k + 1, k) diagonal map for k = 2, 3, 4, .... We call
this map ∆k. The map ∆1 is the pentagram map and ∆k is a gen-
eralization. ∆k does not preserve convexity, but we prove that ∆k

preserves a subset Bk of certain star-shaped polygons which we call
k-birds. The action of ∆k on Bk seems similar to the action of ∆1 on
the space of convex polygons. We show that some classic geometric
results about ∆1 generalize to this setting.

1 Introduction

1.1 Context

When you visit the pentagram zoo you should certainly make the pentagram
map itself your first stop. This old and venerated animal has been around
since the place opened up and it is very friendly towards children. When
defined on convex pentagons, this map has a very long history. See e.g.
[15]. In modern times [19], the pentagram is defined and studied much more
generally. The easiest case to explain is the action on convex n-gons. One
starts with a convex n-gon P , for n ≥ 5, and then forms a new convex n-gon
P ′ by intersecting the consecutive diagonals, as shown Figure 1.1 below.

The magic starts when you iterate the map. One of the first things I
proved in [19] about the pentagram map is the successive iterates shrink to
a point. Many years later, M. Glick [3] proved that this limit point is an
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algebraic function of the vertices, and indeed found a formula for it. See also
[9] and [1].

P

P'

P''

Figure 1.1: The pentagram map iterated on a convex 7-gon P .

Forgetting about convexity, the pentagram map is generically defined
on polygons in the projective plane over any field except for Z/2. In all
cases, the pentagram map commutes with projective transformations and
thereby defines a birational map on the space of n-gons modulo projective
transformations. The action on this moduli space has a beautiful structure.
As shown in [17] [18], and independently in [23], the pentagram map is a
discrete completely integrable system when the ground field is the reals.
([23] also treats the complex case.) Recently, M. Weinreich [24] generalized
the integrability result, to a large extent, to fields of positive characteristic.

The pentagram map has many generalizations. See for example [2], [14],
[16], [10], [11], [6]. The paper [2] has the first general complete integrability
result. The authors prove the complete integrability of the (k, 1) diagonal
maps, i.e. the maps obtained by intersecting successive k-diagonals. Figure
1.3 below shows the (3, 1) diagonal map. (Technically, [2] concentrates on
what happens when these maps act on so-called corregated polygons in higher
dimensional Euclidean spaces.) The paper [6] proves an integrability result
for a very wide class of generalizations, including the ones we study below.
(Technically, for the maps we consider here, the result in [6] does not establish
the algebraic independence of invariants needed for complete integrability.)
The pentagram map and its many generalizations are related to a number
of topics: alternating sign matrices [20], dimers [5], cluster algebras [4], the
KdV hierarchy [12], [13], spin networks [2], Poisson Lie groups [8], Lax pairs
[23], [10], [11], [6], [8], and so forth. The zoo has many cages and sometimes
you have to get up on a tall ladder to see inside them.
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Figure 1.2: The (3, 1)-diagonal map acting on 8-gons.

The algebraic side of the pentagram zoo is extremely well developed, but
the geometric side is hardly developed at all. In spite of all the algebraic
results, we don’t really know, geometrically speaking, much about what the
pentagram map and its relatives really do to polygons.

Geometrically speaking, there seems to be a dichotomy between convexity
and non-convexity. The generic pentagram orbit of a projective equivalance
class of a convex polygon lies on a smooth torus, and you can make very
nice animations. What you will see, if you tune the power of the map and
pick suitable representatives of the projective classes, is a convex polygon
sloshing around as if it were moving through water waves. If you try the
pentagram map on a non-convex polygon, you see a crazy erratic picture no
matter how you try to normalize the images. The situation is even worse
for the other maps in the pentagram zoo, because these generally do not
preserve convexity. Figure 1.2 shows how the (3, 1)-diagonal map does not
necessarily preserve convexity, for instance. See [21], [22] for more details.

If you want to look at pentagram map generalizations, you have to aban-
don convexity. However, in this paper, I will show that sometimes there are
geometrically appealing replacements. The context for these replacements is
the (k+1, k)-diagonal map, which I call ∆k, acting on what I call k-birds . ∆k

starts with the polygon P and intersects the (k + 1)-diagonals which differ
by k clicks. (We will give a more formal definition in the next section.) ∆k

is well (but not perfectly) understood algebraically [6]. Geometrically it is
not well understood at all.
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1.2 The Maps and the Birds

The Maps: Given a polygon P , let Pa denote the (a)th vertex of P . Let
Pab be the line through Pa and Pb. The vertices of ∆k(P ) are

Pj,j+k+1 ∩ Pj+1,j−k. (1)

Here the indices are taken mod n. Figure 1.3 shows this for (k, n) = (2, 7).

The Birds: We call a polygon P planar if some projective transforma-
tion maps P to a bounded subset of R2, when it is considered as the affine
patch of the projective plane. Given an n-gon P , we let Pa,b denote the line
containing the vertices Pa and Pb. We call P k-nice if n > 3k, and P is
planar, and the 4 lines

Pi,i−k−1, Pi,i−k, Pi,i+k, Pi,i+k+1 (2)

are distinct for all i.
We call P a k-bird if P is the endpoint of a path of k-nice n-gons that

starts with the regular n-gon. We let Bk,n be the subspace of n-gons which
are k-birds. Note that Bk,n contains the set of convex n-gons, and the con-
tainment is strict when k > 1. As Figure 1.3 illustrates, a k-bird need not
be convex for k ≥ 2. We will show that k-birds are always star-shaped, and
in particular embedded. The homotopy part of our definition looks a bit
strange, but it is necessary. For instance, a 2n-gon that wraps twice around
a convex n-gon is 1-nice but not a 1-bird.

Figure 1.3 shows ∆2 acting on what we call 2-birds .

Figure 1.3: ∆2 acting on 2-birds.

For us, a polygon is both the vertices and the edges. ∆k only acts on the
vertices but, given the homotopical way we have defined birds, we automati-
cally have a way to define the edges of our birds. We just extend continuously
from the regular n-gon.
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1.3 The Main Result

Here is the main result.

Theorem 1.1 Let k ≥ 2 and n > 3k and P ∈ Bk,n. Then

1. P is strictly star-shaped.

2. ∆k(P ) lies in the interior of the region bounded by P .

3. ∆k(Bk,n) = Bk,n.

The statement that n > 3k is present just for emphasis. Bn,k is by
definition empty when n ≤ 3k. The restriction n > 3k is necessary. Figure
1.4 illustrates what would be a counter-example to Theorem 1.1 for the pair
(k, n) = (3, 9). The issue is that a certain triple of 4-diagonals has a common
intersection point. This does not happen for n > 3k. See Lemma 3.6.
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Figure 1.4: ∆3 acting on a certain convex 9-gon.
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1.4 The Energy

We will deduce Statements 1 and 2 of Theorem 1.1 in a geometric way. The
key to proving Statement 3 is a natural quantity associated to a k-bird. We
let σa,b be the slope of the line Pa,b and we define the cross ratio

χ(a, b, c, d) =
(a− b)(c− d)

(a− c)(b− d)
. (3)

We define

χk(P ) =

n∏
i=1

χ(i, k, P ), χ(i, k, P ) = χ(σi,i−k, σi,i−k−1, σi,i+k+1, σi,i+k) (4)

Here we are taking the cross ratio the slopes the lines involved in our defi-
nition of k-nice. When k = 1 this is the familiar invariant χ1 = OE for the
pentagram map ∆1. See [19], [20], [17], [18]. When n = 3k + 1, a suitable
star-relabeling of our polygons converts ∆k to ∆1 and χk to 1/χ1. So, in this
case χk ◦∆k = χk. Figure 1.4 illustrates this for (k, n) = (3, 10). Note that
the polygons suggested by the dots in Figure 1.4 are not convex. Were we to
add in the edges we would get a highly non-convex pattern.
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Figure 1.5: A star-relabeling converts ∆1 to ∆3 and 1/χ1 to χ3.

In general, χk is not as clearly related to χ1. Nonetheless, we will prove

Theorem 1.2 χk ◦∆k = χk.

Theorem 1.2 is meant to hold for all n-gons, as long as all quantities are
defined. There is no need to restrict to birds.
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1.5 The Collapse Point

When it is understood that P ∈ Bk,n it is convenient to write

P ` = ∆`
k(P ) (5)

We also let P̂ denote the closed planar region bounded by P . Figure 1.6
below shows P̂ = P̂ 0, P̂ 1, P̂ 2, P̂ 3, P̂ 4 for some P ∈ B4,13.

Figure 1.6: ∆4 and its iterates acting on a member of B4,13.

Define
P̂∞ =

⋂
`∈Z

P̂ `, P̂−∞ =
⋃
`∈Z

P̂ `. (6)

Theorem 1.3 If P ∈ Bk,n then P̂∞ is a point and P̂−∞ is an affine plane.

Our argument will show that P ∈ Bk,n is strictly star-shaped with respect

to all points in P̂ n. In particular, all polygons in the orbit are strictly star-
shaped with respect to the collapse point P̂∞. See Corollary 7.3.

As we remarked above, Bn,k contains the set of convex n-gons. Thus, if
we fix some convex n-gon, we get one collapse point for each k ∈ [1, ..., n/3).
(The case k = 1 gives the pentagram map collapse point.) I satisfied myself
that these collapse points are generally distinct from each other.

One might wonder if some version of Glick’s formula works for the P̂∞ in
general. I discovered experimentally that this is indeed the case for n = 3k+1
and n = 3k + 2. See §9.2.
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1.6 The Triangulations

In §7.1 we associate to each k-bird P a triangulation τP ⊂ P , the projective
plane. Here τP is an embedded degree 6 triangulation of P−∞ − P∞. The
edges are made from the segments in the δ-diagonals of P and its iterates for
δ = 1, k, k + 1.

Figure 1.7: The triangulation associated to a member of B5,16.

Figure 1.7 shows this tiling associated to a member of B5,16. In this figure,
the interface between the big black triangles and the big white triangles is
some ∆`

5(P ) for some smallish value of `. (I zoomed into the picture a bit to
remove the boundary of the initial P .) The picture is normalized so that the
line P−∞ is the line at infinity. When I make these kinds of pictures (and
animations), I normalize so that the ellipse of inertia of P is the unit disk.
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1.7 Paper Organization

This paper is organized as follows.

• In §2 we prove Theorem 1.2.

• In §3 we prove Statement 1 of Theorem 1.1.

• In §4 we prove Statement 2 of Theorem 1.1.

• In §5 we prove a technical result called the Degeneration Lemma, which
will help with Statement 3 of Theorem 1.1.

• In §6 we prove Statement 3 of Theorem 1.1.

• In §7 we introduce the triangulations discussed above. They help with
the proof of Theorem 1.3.

• In §8 we prove Theorem 1.3.

• In §9, an appendix, we sketch an alternate proof of Theorem 1.2 which
Anton Izosimov kindly explained. We also discuss Glick’s collapse for-
mula and star relabelings of polygons.

1.8 Visit the Flapping Bird Exhibit

Our results inject some more geometry into the pentagram zoo. Our results
even have geometric implications for the pentagram map itself. See §9.3.
There are different ways to visit the flapping bird exhibit in the zoo. You
could read the proofs here, or you might just want to to look at some images:
http://www.math.brown.edu/∼reschwar/BirdGallery
You can also download and play with the software I wrote:
http://www.math.brown.edu/∼reschwar/Java/Bird.TAR
The software has detailed instructions. You can view this paper as a justifi-
cation for why the nice images actually exist.

1.9 Acknowledgements

I would like to thank Misha Gekhtman, Max Glick, Anton Izosimov, Boris
Khesin, Valentin Ovsienko, and Serge Tabachnikov for many discussions
about the pentagram zoo. I would like to thank Anton, in particular, for
extensive discussions about the material in §9.
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2 The Energy

The purpose of this chapter is to prove Theorem 1.2. The proof, which
is similar to what I do in [19], is more of a verification than a conceptual
explanation. My computer program allows the reader to understand the
technical details of the proof better. The reader might want to just skim this
chapter on the first reading. In §9 I will sketch an alternate proof, which I
learned from Anton Izosimv. Izosimov’s proof also uses the first two sections
of this chapter.

2.1 Projective Geometry

Let P denote the real projective plane. This is the space of 1-dimensional
subspaces of R3. The projective plane P contains R2 as the affine patch.
Here R2 corresponds to vectors of the form (x, y, 1), which in turn define
elements of P .

Let P ∗ denote the dual projective plane, namely the space of lines in P .
The elements in P ∗ are naturally equivalent to 2-dimensional subspaces of
R3. The line in P such a subspace Π defines is equal to the union of all
1-dimensional subspaces of Π.

Any invertible linear transformation of R3 induces a projective transfor-
mation of P , and also of P ∗. These form the projective group PSL3(R).
Such maps preserve collinear points and coincident lines.

A duality from P to P ∗ is an analytic diffeomorphism P → P ∗ which
maps collinear points to coincidence lines. The classic example is the map
which sends each linear subspace of R3 to its orthogonal complement.

A PolyPoint is a cyclically ordered list of points of P . When there are n
such points, we call this an n-Point . A PolyLine is a cyclically ordered list
of lines in P , which is the same as a cyclically ordered list of points in P ∗.
A projective duality maps PolyLines to PolyPoints, and vice versa.

Each n-Point determines 2n polygons in P because, for each pair of con-
secutive points, we may choose one of two line segments to join them. As
we mentioned in the introduction, we have a canonical choice for k-birds.
Theorem 1.2 only involves PolyPoints, and our proof uses PolyPoints and
PolyLines.

Given a n-Point P , we let Pj be its jth point. We make a similar definition
for n-Lines. We always take indices mod n.
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2.2 Factoring the Map

Like the pentagram map, the map ∆k is the product of 2 involutions. This
factorization will be useful here and in later chapters.

Given a PolyPoint P , consisting of points P1, ..., Pn, we define Q = Dm(P )
to be the PolyLine whose successive lines are P0,m, P1,m+1, etc. Here P0,m

denotes the line through P0 and Pm, etc. We labed the vertices so that

Q−m−i = Pi,i+m. (7)

This is a convenient choice. We define the action of Dm on PolyLines in the
same way, switching the roles of points and lines. For PolyLines, P0,m is the
intersection of the line P0 with the line Pm. The map Dm is an involution
which swaps PolyPoints with PolyLines. We have the compositions

∆k = Dk ◦Dk+1, ∆−1
k = Dk+1 ◦Dk. (8)

The energy χk makes sense for n-Lines as well as for n-Points. The quanti-
ties χk◦Dk(P ) and χk◦Dk+1(P ) can be computed directly from the PolyPoint
P . Figure 2.1 shows schematically the 4-tuples associated to χ(0, k, Q) for
Q = P and Dk(P ) and Dk+1(P ). In each case, χk(Q) is a product of n cross
ratios like these. If we want to compute the factor of χk(Dk(P )) associated
to index i we subtract (rather than add) i from the indices shown in the
middle figure. A similar rule goes for Dk+1(P ).

Figure 2.1: Computing the k-energy.

Theorem 1.2 follows from the next two results.

Theorem 2.1 χk ◦Dk = χk.

Theorem 2.2 χk ◦Dk+1 = χk.

These results have almost identical proofs. We consider Theorem 2.1 in
detail and then explain the small changes needed for Theorem 2.2.
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2.3 Proof of the First Result

We study the ratio

R(P ) =
χk ◦Dk(P )

χk(P )
. (9)

We want to show that R(P ) equals 1 wherever it is defined. We certainly
have R(P ) = 1 when P is the regular n-Point.

Given a PolyPoint P we choose a pair of vertices a, b with |a − b| = k.
We define P (t) to be the PolyPoint obtained by replacing Pa with

(1− t)Pa + tPb. (10)

Figure 2.2 shows what we are talking about, in case k = 3. We have rotated
the picture so that Pa and Pb both lie on the X-axis.

t

Figure 2.2: Connecting one PolyPoint to another by sliding a point.

The two functions

f(t) = χk(P (t)), g(t) = χk ◦Dk(P (t)) (11)

are each rational functions of t. Our notation does not reflect that f and g
depend on P, a, b.

A linear fractional transformation is a map of the form

t→ αt+ β

γt+ δ
, α, β, γ, δ ∈ R, αδ − βγ 6= 0.

Lemma 2.3 (Factor I) If n ≥ 4k+2 and P is a generically chosen n-Point,
then f(t) and g(t) are each products of 4 linear fractional transformations.
The zeros of f and g occur at the same points and the poles of f and g occur
at the same points. Hence f/g is constant.
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The only reason we choose n ≥ 4k + 2 in the Factor Lemma is so that
the various diagonals involved in the proof do not have common endpoints.
The Factor Lemma I works the same way for all k and for all choices of
(large) n. We write P ↔ Q if we can choose indices a, b and some t ∈ R
such that Q = P (t). The Factor Lemma implies that when P,Q are generic
and P ↔ Q we have R(P ) = R(Q). The result for non-generic choices of P
follows from continuity. Any n-Point Q can be included in a finite chain

P0 ↔ P1 ↔ · · · ↔ P2n = Q,

where P0 is the regular n-Point. Hence R(Q) = R(P0) = 1. This shows that
Theorem 2.1 holds for (k, n) where k ≥ 2 and n ≥ 4k + 2. (The case k = 1
is a main result of [19], and by now has many proofs.)

Lemma 2.4 If Theorem 2.1 is true for all large values of n, then it is true
for all values of n.

Proof: If we are interested in the result for small values of n, we can
replace a given PolyPoint P with its m-fold cyclic cover mP . We have
χk(mP ) = χk(P )m and χk(Dk(mP )) = χk(Dk(p))

m. Thus, the result for
large n implies the result for small n. ♠

In view of Equation 4 we have

f(t) = f1(t)...fn(t), fj(t) = χ(j, k, P (t)). (12)

Thus f(t) is the product of n “local” cross ratios. We call an index j asleep
if none of the lines involved in the cross ratio fj(t) depend on t. In other
words, the lines do not vary at all with t. Otherwise we call j awake.

As we vary t, only the diagonals P0,h change for h = −k,−k− 1, k+ 1, k.
From this fact, it is not surprising that there are precisely 4 awake indices.
These indices are

j0 = 0, j1 = k + 1, j2 = −k − 1, j3 = −k. (13)

The index k is not awake because the diagonal P0,k(t) does not move with t.
We define a chord of P (t) to be a line defined by a pair of vertices of

P (t). The point P0(t) moves at linear speed, and the 4 lines involved in the
calculation of fcj(t) are distinct unless P0(t) lies in one of the chords of P (t).
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Thus fcj(t) only has zeros and poles at the corresponding values of t. It turns
out that only the following chords are involved.

−k
−k − 1

−k
k + 1

−k
1

−k
−2k − 1

−k − 1
−1

−k − 1
−2k − 1

k + 1
1

k + 1
2k + 1

(14)

We call these c0, ..., c7. For instance, c0 is the line through P−k and P−k−1.
Let tj denote the value of t such that P (tj) ∈ cj.

The PolyPoint Q(t) = Dk(P (t)) has the same structure as P (t). Up to
projective transformations Q(t) is also obtained from the regular PolyPoint
by moving a single vertex along one of the k-diagonals. The pattern of
zeros and poles is not precisely the same because the chords of Q(t) do not
correspond to the chords of P (t) in a completely straightforward way. The
k-diagonals of Q(t) correspond to the vertices of P (t) and vice versa. The
(k + 1) diagonals of Q(t) correspond to the vertices of ∆−1

k (P (t)). This is
what gives us our quadruples of points in the middle picture in Figure 2.1.

We now list the pattern of zeros and poles. We explain our notation by
way of example. The quadruple (f, 2, 4, 5) indicates that fc2 has a simple
zero at f4 and a simple pole at t5.

(f, 0, 0, 1), (f, 1, 6, 7), (f, 2, 4, 5), (f, 3, 2, 3). (15)

(g, 0, 6, 5), (g, 1, 0, 3), (g, 2, 2, 1), (g, 3, 4, 7). (16)

Since these functions have holomorphic extensions to C with no other zeros
and poles, these functions are linear fractional transformations. This pattern
establishes the Factor Lemma I.

Checking that the pattern is correct is just a matter of inspection. We
give two example checks.

• To see why fc2 has a simple zero at t4 we consider the quintuple

(−k − 1,−2k − 1,−2k − 2, 0,−1).

At t4 the two diagonals P−k−1,0 and P−k−1,−1 coincide. In terms of the
cross ratios of the slopes we are computing χ(a, b, c, d) with a = b. The
point P0(t) is moving with linear speed and so the zero is simple.

• To see why gc2 has a simple pole at t1 we consider the 4 points

P2k+2,k+2 ∩ P1,k+1, Pk+1, P1, P1,k+1 ∩ P−k,0. (17)
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These are all contained in the k-diagonal P1,k+1, which corresponds to
the vertex (−k − 1) of Dk(P ). At t = t1 the three points P0(t) and
P−k and Pk+1 are collinear. This makes the 2nd and 4th listed point
coincided. In terms of our cross ratio χ(a, b, c, d) we have b = d. This
gives us a pole. The pole is simple because the points come together
at linear speed.

The other explanations are similar. The reader can see graphical illustra-
tions of these zeros and poles using our program.

2.4 Proof of the Second Result

The proof of Theorem 2.2 is essentially identical to the proof of Theorem
2.1. Here are the changes. The Factor Lemma II has precisely the same
statement as the Factor Lemma I, except that

• When defining P (t) we use points Pa and Pb with |a− b| = k + 1.

• We are comparing P (t) with Dk+1(P (t)).

This changes the definition of the functions f and g. With these changes
made, the Factor Lemma I is replaced by the Factor Lemma II, which has
an identical statement. This time the chords involved are as follows.

−k − 1
−k

−k − 1
k

−k − 1
−1

−k − 1
−2k − 1

−k
1

−k
−2k − 1

k
−1

k
2k + 1

(18)

This time the 4 awake indices are:

j0 = 0, j1 = k, j2 = −k − 1, j3 = −k. (19)

Here is the pattern of zeros and poles.

(f, 0, 1, 0), (f, 1, 7, 6), (f, 2, 3, 2), (f, 3, 5, 4). (20)

(g, 0, 5, 6), (g, 1, 3, 0), (g, 2, 7, 4), (g, 3, 1, 2). (21)

The pictures in these cases look almost identical to the previous case. The
reader can see these pictures by operating my computer program. Again, the
zeros of f and g are located at the same places, and likewise the poles of f
and g are located at the same places. Hence f/g is constant. This completes
the proof the Factor Lemma II, which implies Theorem 2.2.
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3 The Soul of the Bird

3.1 Goal of the Chapter

Given a polygon P ⊂ R2, let P̂ be the closure of the bounded components
of R2 − P and let P I be the interior of P̂ .

Suppose now that P (t) for t ∈ [0, 1] is a path in Bn,k starting at the
regular n-gon P (0). We can adjust by a continuous family of projective
transformations so that P (t) is a bounded polygon in R2 for all t ∈ [0, 1].
We orient P (0) counter-clockwise around P I(0). We extend this orientation
choice continuously to P (t). We let Pab(t) denote the diagonal through ver-
tices Pa(t) and Pb(t). We orient Pa,b(t) so that it points from Pa(t) to Pb(t).
We take indices mod n.

When P is embedded, we say that P is strictly star shaped with respect
to x ∈ P I if each ray emanating from x intersects P exactly once.

0

1
2

3

4

5

6

7

8 9

Figure 3.1: The soul of a 3-bird

Each such (k + 1)-diagonal defines an oriented line that contains it, and
also the (closed) distinguished half plane which lies to the left of the oriented
line. These n half-planes vary continuously with t. The soul of P (t), which
we denote S(t), is the intersection of the distinguished half-planes. Figure
3.1 shows the an example.
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The goal of this chapter is to prove the following result.

Theorem 3.1 Let P be a bird and let S be its soul. Then:

1. S is has non-empty interior.

2. S ⊂ P I .

3. P is strictly star-shaped with respect to any point in S.

Theorem 3.1 immediately implies Statement 1 of Theorem 1.1.
We are going to give a homotopical proof of Theorem 3.1. We say that

a value t ∈ [0, 1] is a good parameter if Theorem 3.1 holds for P (t). All
three conclusions of Theorem 3.1 are open conditions. Finally, 0 is a good
parameter. For all these reasons, it suffices to prove that the set of good
parameters is closed. By truncating our path at the first supposed failure,
we reduce to the case when Theorem 3.1 holds for all t ∈ [0, 1).

3.2 The Proof

For ease of notation we set X = X(1) for any object X associated to P (1).

Lemma 3.2 If P is any k-bird, then P0 and P2k+1 lie to the left of Pk,k+1.
The same goes if all indices are cyclically shifted by the same amount.

Proof: Consider the triangle with vertices P0(t) and Pk(t) and Pk+1(t).
The k-niceness condition implies that this triangle is non-degenerate for all
t ∈ [0, 1]. Since P0(t) lies to to the left of Pk,k+1(t), the non-degeneracy
implies the same result for t = 1. The same argument works for the triple
(2k + 1, k, k + 1). ♠

Lemma 3.3 S is non-empty and contained in P I .

Proof: By continuity, S is nonempty and contained in P ∪ P I . By the k-
niceness property and continuity, P1 lies strictly to the right of P0,k+1. Hence
the entire half-open edge [P0, P1) lies strictly to the right of P0,k+1. Hence
[P0, P1) is disjoint from S. By cyclic relabeling, the same goes for all the
other half-open edges. Hence S ∩ P = ∅. Hence S ⊂ P I . ♠
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Lemma 3.4 P is strictly star-shaped with respect to any point of S(1).

Proof: Since P (t) is strictly star-shaped with respect to all points of S(t)
for t < 1, this lemma can only fail if there is an edge of P (1) whose extending
line contains a point x ∈ S. We can cyclically relabel so that the edge of
P0P1.

01x

k+1

01x

k+1

or

Figure 3.2: The diagonal P0,k+1 does not separate 1 from x.

Since x 6∈ P , either P1 lies between P0 and x or P0 lies in between x and
P1. In the first case, both P1 and x lie on the same side of the diagonal P0,k+1.
This is a contradiction: P1 is supposed to lie on the right and x is supposed
to lie on the left. In the second case we get the same kind of contradiction
with respect to the diagonal P−k,1. ♠

We say that P has opposing (k + 1)-diagonals if it has a pair of (k + 1)-
diagonals which lie in the same line and point in opposite directions. In this
case, the two left half-spaces are on opposite sides of the common line.

Lemma 3.5 P does not have opposing (k + 1)-diagonals.

Proof: We suppose that P has opposing diagonals and we derive a contra-
diction. In this case S, which is the intersection of all the associated left
half-planes, must be a subset of the line L containing these diagonals. But
then P intersects L in at least 4 points, none of which lie in S. But then
P cannot be strictly star-shaped with respect to any point of S. This is a
contradiction. ♠

We call three (k + 1)-diagonals of P (t) interlaced if the intersection of
their left half-spaces is a triangle. See Figure 3.3.
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a1

b1

a2

a3

b2

b3

Figure 3.3: Interlaced diagonals on P (t).

Given interlaced (k + 1)-diagonals, and a point x in the intersection, the
circle of rays emanating from x encounters the endpoints of the diagonals in
an alternating pattern: a1, b3, a2, b1, a3, b2, where a1, a2, a3 are the tail points
and b1, b2, b3 are the head points. Here a1 names the vertex Pa1(t), etc.

Lemma 3.6 P (t) cannot have interlaced diagonals for t < 1.

Proof: Choose x ∈ S(t). The n-gon P (t) is strictly star-shaped with respect
to x. Hence, the vertices of P are encountered in order (mod n) by a family
of rays that emanate from x and rotates around full-circle. Given the order
these vertices are encountered, we have aj+1 = aj + ηj, where ηj ≤ k. Here
we are taking the subscripts mod 3 and the vertex values mod n. This tells
us that n = η1 + η2 + η3 ≤ 3k. This contradicts the fact that n > 3k. ♠

It only remains to show that S has non-empty interior. A special case
of Helly’s Theorem says the following: If we have a finite number of convex
subsets of R2 then they all intersect provided that every 3 of them inter-
sect. Applying Helly’s Theorem to the set of interiors of our distinguished
half-planes, we conclude that we can find 3 of these open half-planes whose
triple intersection is empty. On the other hand, the triple intersection of the
closed half-planes contains x. Since P has no opposing diagonals, this is only
possible if the 3 associated diagonals are interlaced for t sufficiently close to
1. This contradicts Lemma 3.6. Hence S has non-empty interior.
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4 The Feathers of the Bird

4.1 Goal of the Chapter

Recall that P I is the interior of the region bounded by P . We call the union
of shaded triangles in Figure 4.1 the feathers of the bird. the black region in
the center is the soul.

e

v

Figure 4.1 The feathers of a 3-bird.

Each feather F of a k-bird P is the convex hull of its base, an edge e of
P , and its tip, a vertex of ∆k(P ).

The goal of this chapter is to prove the following result, which says that
the simple topological picture shown in Figure 4.1 always holds.

Theorem 4.1 The following is true.

1. Let F be an feather with base e. Then F − {e} ⊂ P I .

2. Distinct feathers can only intersect at a vertex of P .

3. The line segment connecting two consecutive feather tips lies in P I .

When we apply ∆k to P we are just specifying the points of ∆k(P ).
We define the polygon ∆k(P ) so that the edges are the bounded segments
connecting the consecutive tips of the feathers of P . With this definion,
Statement 2 of Theorem 1.1 follows immediately from Theorem 4.1.
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4.2 The Proof

There is one crucial idea in the proof of Theorem 4.1: The soul of P lies in
the sector F ∗ opposite any of its feathers F . See Figure 4.2.

F*

F

S

e
v

Figure 4.2 The soul lies in the sectors opposite the feathers.

We will give a homotopical proof of Theorem 4.1. By truncating our path
of birds, we can assume that Theorem 4.1 holds for all t ∈ [0, 1). We then
want to rule out the various ways that Theorem 4.1 can fail for t = 1. As in
the previous chapter we set P = P (1), etc. Figure 4.3 shows the 2 ways that
Statement 1 could fail:

1. The tip v of the feather F could coincide with some p ∈ P .

2. Some p ∈ P could lie in the interior point of ∂F − e.

Figure 4.3: Case 1 (left) and Case 2 (right).
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For all x ∈ F ∗, the ray −→xp intersects P both at p and at a point p′ ∈ e.
This contradicts the fact that for any x ∈ S ⊂ F ∗, the polygon P is strictly
star-shaped with respect to x. This establishes Statement 1 of Theorem 4.1.

Let F1 and F2 be two feathers of P , having bases e1 and e2. For Statement
2, it suffices to prove that F1 − e1 and F2 − e2 are disjoint.

The same homotopical argument as for Statement 1 reduces us to the
case when F1 and F2 have disjoint interiors but ∂F1 − e1 and ∂F2 − e2 share
a common point x. If ∂F1 and ∂F2 share an entire line segment then, thanks
to the fact that all the feathers are oriented the same way, we would have two
(k+1) diagonals of P lying in the same line and having opposite orientation.
Lemma 3.5 rules this out.

In particular x must be the tip of at least one feather. Figure 4.4 shows
the case when x = v1, the tip of F1, but x 6= v2. The case when x = v1 = v2

has a similar treatment.

F
1

F
2

Figure 4.4: Opposiing sectors are disjoint

In this case, the two sectors F ∗1 and F ∗2 are either disjoint or intersect in
a single point. This contradicts the fact that S ⊂ F ∗1 ⊂ F ∗2 has non-empty
interior. This contradiction establishes Statement 2 of Theorem 4.1.

Recall that P̂ = P ∪P I . Let F1 and F2 be consecutive feathers with bases
e1 and e2 respeectively. Let f be the edge connecting the tips of F1 and F2.
Our homotopy idea reduces us to the case when f ⊂ P̂ and f∩P 6= ∅. Figure
4.5 shows the situation.
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F
1 F

2

2

e1 e2

Figure 4.5: The problem a common boundary point

Note that f∩P must be strictly contained in the interior of f because (by
Statement 1 of Theorem 4.1) the endpoints of f lie in P I . But then, f ∩P is
disjoint from F ∗1 ∩F ∗2 , which is in turn contained in the shaded region G. For
any x ∈ G and each vertex p of f , the ray the ray −→xp also intersects P at a
point p′ ∈ e1 ∪ e2. This gives the same contradiction as above when we take
x ∈ S ⊂ F ∗1 ∩ F ∗2 ⊂ G. This completes the proof of Statement 3 of Theorem
4.1.
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5 The Degeneration of Birds

5.1 Statement of the Result

Let k ≥ 2 and n > 3k. Let Bk,n denote the space of n-gons which are k-birds.
Let χk denote the k-energy. In this chapter we will prove a technical result
which will help us prove, in the next chapter, that ∆k(Bk,n) = Bk,n. The
reader should probably just use the statement as a black box on the first
reading. Our argument is a pretty tedious case-by-case analysis.

We say that a degenerating path is a path Q(t) of n-gons such that

1. Q(t) ∈ Bk,n for all t ∈ [0, 1) but Q(1) 6∈ Bk,n.

2. χk(Q(t)) > ε0 > 0 for all t ∈ [0, 1].

3. Qj(1) 6= Qj+k(1) for all j = 1, ..., n.

4. Qj(1) 6= Qj+k+1(1) for all j = 1, ..., n.

Lemma 5.1 (Degeneration) If Q(·) is a degenerating path, then all but at
most one vertex of Q(1) lies in a line segment.

Let us first explain that this kind of degeneration can actually occur.
Consider the case where Q(t) is projectively eqivalent to the regular n-gon
for all t ∈ [0, 1). That is Q(t) = Tt(P ) where P is the regular n-gon and
Tt is some projective transformation that depends on t. We can choose Tt
to be quite drastic, so that the points Q−1(t), Q0(t), Q1(t) are the vertices
of a triangle and the remaining vertices converge to the line segment joining
Q±1(t). The limit Q(1) will have the shape of an equilateral triangle, with
all the vertices distinct and all but one vertex contained in the same line.

Remarks: (1) For our application of the Degeneration Lemma, all the ver-
tices of Q(1) are distinct. However, for a later application to Theorem 1.3
we prove the result under the weaker hypotheses we have stated.
(2) The Degeneration Lemma also works, with the same proof, in case we
have a sequence {Q`} ⊂ Bk,n, rather than a path, which converges to some
Q∞ 6∈ Bk,n and has the uniform lower bound on χk. We will invoke the
sequence case of the result when we prove Theorem 1.3.
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5.2 Distinguished Diagonals

We orient Q(t) so that it goes counter-clockwise around the region it bounds.
We orient the diagonal Qab so that it points from Qa to Qb. For t < 1 the
vertices Q1(t) and Qk(t) lie to the right of the diagonal Q0,k+1(t), in the sense
that a person walking along this diagonal according to its orientation would
see that points in the right. This has the same proof as Lemma 3.2. The
same rule holds for all cyclic relabelings of these points. The rule holds when
t < 1. Taking a limit, we get a weak version of the rule: Each of Q1(1) and
Qk(1) either lies to the right of the diagonal Q0,k+1(1) or on it. The same
goes for cyclic relabeings. We call this the Right Hand Rule.

Say that a distinguished diagonal of Q(t) is either a k-diagonal or a (k+1)-
diagonal. There are 2n of these, and they come in a natural cyclic order:

Q0,k(t) Q0,k+1(t), Q1,k+1(t), Q1,k+2(t), ... (22)

The pattern alternates between k and (k + 1)-diagonals. We say that a
diagonal chain is a consecutive list of these.

We say that one oriented segment L2 lies ahead of another one L1 if we
can rotate L1 by θ ∈ (0, π) radians counter-clockwise to arrive at a segment
parallel to L2, In this case we write L1 ≺ L2. We have

Q0,k+1(t) ≺ Q1,k+1(t) ≺ Q1,k+2(t) ≺ Q2,k+2(t). (23)

0

k+1

1

k+2

2

Figure 5.1: The turning rule

This certainly holds when t = 0. By continuity and the Right Hand Rule,
this holds for all t < 1. Taking a limit, we see that the k-diagonals of
Q(1) weakly turn counter-clockwise in the sense that either L1 ≺ L2 for
consecutive diagonals or else L1 and L2 lie in the same line and point in
the same direction. Moreover, the total turning is 2π. If we start with one
distinguished diagonal and move through the cycle then the turning angle
increases by jumps in [0, π] until it reaches 2π. We call these observations
the Turning Rule.
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5.3 Subdivision into Cases

We set X = X(1) for each object X associated to Q(1). The situation
is that Q(t) is k-nice for all t < 1 but Q is not. Figure 5.2 shows the
distinguished diagonals incident to Q0. We always take indices mod n. Thus
−k − 1 = n− k − 1 mod n.

Figure 5.2: The 4 distinguished diagonals incident to Q0(t).

We say that Q has collapsed diagonals at Qk if the 4 distinguished diag-
onals incident to Qk do not all lie on distinct lines.

Lemma 5.2 If Q has collapsed diagonals at Q0 then Q−k−1,0 and Q0,k+1

point in opposite directions or Q−k,0 and Q0,k point in the same direction.

Proof: Associated to each diagonal incident to Q0 is the ray which starts at
Q0 and goes in the direction of the other endpoint of the diagonal. (Warning:
The ray may have the opposite orientation than the diagonal it corresponds
to.) If the angle between any of the rays tends to π as t→ 1 then the angle
between the outer two rays tends to π. In this case Q−k,0 and Q0,k point in
the same directions. If the angle between non-adjacent rays tends to 0 then
Q−k−1,0 and Q0,k+1 are squeezed together and point in opposite directions.

Suppose that the angle between adjacent rays tends to 0. If the two adja-
cent rays are the middle ones, we have the case just considered. Otherwise,
either the angle between the two left rays tends to 0 or the angle between
the two right rays tends to 0. In either case, the uniform lower bound on the
cross ratio forces a third diagonal to point either in the same or the opposite
direction as these adjacent diagonals when t = 1. Any situation like this
leads to a case we have already considered. ♠
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5.4 The Case of Aligned Diagonals

We say that Q has aligned diagonals if there are 2 parallel distinguished
diagonals of Q such that both diagonal chains which start and stop with
these have length at least 2k. The is one of the cases of Lemma 5.2.

Lemma 5.3 If Q has aligned diagonals, then 2k+ 1 consecutive points of Q
are collinear.

Proof: The total turning of the diagonals is 2π, so one of the two chains
defined by our diagonals turns 2π and the other turns 0. Hence, we can find
2k consecutive parallel distinguished diagonals. We will suppose that our
chain starts with Q−k,0 and ends with Q0,k. The proof is essentially the same
if the chain starts with a (k + 1)-diagonal rather than a k-diagonal.

Given that Q−k,0 and Q−k,1 are parallel, Q−k, Q0, Q1 are collinear. In
other words, (−k, 0, 1) is a triple of indices for collinear points. Likewise
(−k,−k+1, 0) is such an index. Continuing this way, we get collinear triples

(−k, 0, 1), (−k,−k + 1, 1), (−k + 1, 1, 2), ..., (−1, 0, k).

This implies that the points Q−k, ..., Q0, ..., Qk are all collinear. ♠

Now we forget about the aligned diagonals and we just use the property
that Q has a consecutive run of 2k + 1 collinear points. Let L be the line
containing these points. If all points of Q lie in L, we are done. Otherwise
there is some smallest index i > k such that Qi 6∈ L but the preceding 2k+ 1
points are in L. Cyclically relabelling, we can assume that i = k + 1. Once
we make this relabeling, we lose control over where our aligned diagonals are.
Now we regain some control.

Lemma 5.4 The length 2k-diagonal chain Q−k,0 → ... → Q0,k consists en-
tirely of parallel diagonals. There is no turning at all.

Proof: The diagonals Q−k,0 and Q0,k. are either parallel or anti-parallel. If
they are anti-parallel, then the angle between the corresponding rays incident
Q0(t) tends to 0 as t→ 1. But these are the outer two rays. This forces the
angle between all 4 rays incident to Q0(t) to tend to 0. The whole picture
just folds up like a fan. But one or these rays corresponds to Q0,k+1(t). This
picture forces Qk+1 ∈ L. But this is not the case.
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Now we know that Q−k,0 and Q0,k are parallel. All the diagonals in our
chain are either parallel or anti-parallel to the first and last ones in the chain.
If we ever get an anti-parallel pair, then the diagonals in the chain must turn
2π around. But then none of the other distinguished diagonals outside our
chain turns at all. That is, Q0,k, Q1,k+1, ..., Qn−k,n are all parallel. In this situ-
ation the argument proving Lemma 5.3 shows that Q ⊂ L, a contradiction. ♠

We rotate the picture so that L coincides with the X-axis and so that
Q0,k points in the positive direction. Since we are already using the words
left and right for another purpose, we say that p ∈ L is forward of of q ∈ L
if p has larger X-coordinate. Likewise we say that q is backwards of p in
this situation. We say that Q0,k points forwards . We have established that
Q−k,0, ..., Q0,k all point forwards.

Lemma 5.5 Qk+2 ∈ L and both Q1,k+2 and Q2,k+2 point backwards.

Proof: Let us first justify the fact that Qk+1 lies above L. This follows from
Right Hand Rule applied to Q0,k+1 and Qk and the fact that Q0,k points
forwards. Since Q−k−1, Q−k, Q1 are collinear, Q has collapsed diagonals at
Q1. But Q cannot have aligned diagonals because Q1,k+1 is not parallel to
Q−k,1. Hence Q has folded diagonals at 1. Since Q−k,1 points forwards Q1,k+2

points backwards.
We have Q2 ∈ L because 2 ≤ k. Suppose Q2,k+2 points forwards. We

consider the 3 distinguished diagonals

Q0,k, Q1,k+2, Q2,k+2.

These diagonals respectively point forwards, backwards, forwards. But then,
in going from Q0,k to Q2,k+2, the diagonals have already turned 2π. Since
the total turn is 2π, the diagonals Q2,k+2, Q3,k+3, ..., Qn,n+k are all parallel.
But then Q2, ..., Qn ∈ L. This contradicts the fact that Qk+1 6∈ L. ♠

Lemma 5.6 For at least of the two indices j ∈ {2k + 2, 2k + 3} we have
Qj ∈ L and Qk+2,j points forwards.

Proof: Since Q1, Q2, Qk+2 are collinear, Q has collapsed diagonals at Qk+2.
So, by Lemma 5.2, we either have folded diagonals at Qk+2 or aligned diag-
onals at Qk+2. The aligned case gives Q2k+2 ∈ L and the folded case gives
Q2k+3 ∈ L. We consider the cases in turn.
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Consider the aligned case. Suppose Qk+2,2k+2 points backwards, as shown
in Figure 5.3.

k+2

k+1

2k+2

Figure 5.3: Violation of the Right Hand Rule

This violates the Right Hand Rule for Qk+2 and Qk+1,2k+2 because Qk+1

lies above L.
Consider the folded case. Since Qk+2,2k+3 and Q1,k+2 point in opposite

directions, and Q1,k+2 points backwards (by the previous lemma), Qk+2,2k+3

points forwards. ♠

Let j ∈ {2k + 2, 2k + 3} be the index from Lemma 5.6. Consider the 3
diagonals

Q0,k, Q1,k+1, Qk+2,j.

These diagonals are all parallel to L and respectively point in the forwards,
backwards, forwards direction. This means that the diagonals in the chain
Q0,k → ... → Qk+2,j have already turned 2π radians. But this means that
the diagonals

Qk+2,2k+3, Qk+3,2k+3, Qk+3,2k+4, ... Q0,k = Qn,n+k

are all parallel and point forwards along L. Hence Qk+2, Qk+3, ..., Qn ∈ L.
Hence all points but Qk+1 lie in L.

5.5 Separating the Soul from the Polygon

Recall that Q = Q(1) and Q0 = Q0(1), etc. It remains to analyze the
case of folded diagonals, but before doing that we discuss some properties
of the limiting soul. We define S to be the set of all accumulation points of
sequences {p(tn)} where p(tn) ∈ S(tn) and tn → 1. Since S(t) is non-empty
and closed for all t < 1, we see by compactness that S is also a non-empty
closed subset of the closed region bounded by Q. Also, S lies to the left of
all the half-planes defined by the oriented (k + 1) diagonals.
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Lemma 5.7 The Degeneration Lemma is true for Q if S ∩Q 6= ∅.

We prove this result through several smaller results.

Lemma 5.8 The Degeneration Lemma is true for Q if S ∩ Q contains a
point in the interior of an edge of Q.

Proof: Suppose this happens. We relabel so that S contains an interior point
of the edge Q0Q1. We rotate and scale so that Q0 = (0, 0) to Q1 = (1, 0). So
(x, 0) ∈ S for some x ∈ (0, 1). By the Right Hand Rule, the vertex Qk+1 lies
either on or above the X-axis. The only way for (x, 0) to lie on or to the left
of Q0,k+1 is if Qk+1 = (x0, 0) for some x0 > 0. Similar considerations show
that Q−k = (x1, 0) for some x1 < 1. Figure 5.4 shows the relevant points of
Q(t) for t very near 1.

0 1

k+1-k
the soul

Figure 5.4: The relevant points and lines.

The diagonals Q−k,1 and Q0,k+1 are parallel. Given the indices involved,
they are aligned. The proof in §5.4 finishes the proof. ♠

Lemma 5.9 The Degeneration Lemma is true for Q if S ∩ Q contains a
vertex of Q.

Proof: We again relabel so that Q0 ∈ S. We first give the proof when
Q−1, Q0, Q1 are all distinct. Figure 5.5 below shows the situation. This
picture is meant to depict Q(t) for t near 1. Figure 5.5 shows two cases,
depending on whether the interior angle of Q at Q0 is acute or obtuse. The
interior angle of Q could also be 0 or 2π. We explain the various degenerate
cases at the end. The shaded region in Figure 5.5 contains the soul, though
this fact is not relevant to our argument.

The same analysis as in the previous lemma shows that Q1, Q0, Q−k are
collinear and Q1 is an extreme point. In other words, Q1 is not between Q0

and Q−k. Likewise Q−1, Q0, Qk are collinear and Q−1 is an extreme point.
We have drawn the cases when Q0 is between Q±1 and Q∓k. This is not
essential for the argument.
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Figure 5.5: two pairs of folded diagonals

Since Q−1, Q0, Qk are collinear, Q has collapsed diagonals at Qk. If Q
has aligned diagonals at Qk then the proof in §5.4 finishes the job. So, we
can assume Q has folded diagonals at Qk. Likewise Q has folded diagonals
at Q−k. Now we look at the diagonal chain. We have

Q−1,k −→ Qk,2k+1 −→ Q−2k−1,−k −→ Q−k,1. (24)

If n = 3k + 1 then the inner two diagonals in Equation 24 coincide, and we
have an impossible situation. So, we must have n > 3k + 1 in this case.
But then these diagonals come in order in the diagonal chain. In going fron
successive diagonals on our list we turn respectively by π, θ, π degrees, where
θ > 0. This gives us 2π + θ turning before we have completed the chain,
violating the Turning Rule.

We now deal with the degenerate cases. When Q−1, Q0, Q1 are distinct
and lie in order on a single line, we have θ = 0 above, and now we observe
that the diagonals in the chain Q−2k−1, ..., Qk,2k+1 are all parallel. This gives
us more than 2k + 1 consecutive parallel points on L, and the proof in §5.4
finishes the job.

if Q−1 = Q0 then we directly see that the diagonals at Qk are collapsed.
This gives us our folded diagonals at Qk. The same goes for Q−k if Q0 = Q1.
So, in all cases, we get the chain in Equation 24. Either we have θ > 0 and
an outright contradiction, or we have θ = 0 and the proof finishes as above. ♠
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5.6 Confining the Soul

We need one more lemma about the soul S of Q. This time we use the
assumption about the folded diagonals. The diagonals Q−k−1,0 and Q0,k+1

point in opposite directions. We normalize, as above, so that both are con-
tained in the X-axis and Q0,k+1 points forwards. We treat the case when
Qk+1 does not lie forwards of Q−k−1. (The points could coincide.) We can
always get to this case by dihedrally relabeling and then reflecting.

Lemma 5.10 Suppose that Q does not have aligned diagonals. Then S is a
subset of the closed line segment joining Q0 to Qk+1.

Proof: Since S lies to the left of (or on) each (k+ 1) diagonal, S is a subset
of the line L common to the folded diagonals.

Now we consider the picture for t < 1. We rotate so that Q0,k+1(t) is
horizontal and points forwards. We make a counter-clockwise turn of less

than π to get from the ray
−−−−−−−−−→
Q0(t)Qk+1(t) to the ray

−−−−−−−−−−→
Q0(t)Q−k−1(t). Hence

Q−k−1(t) lies above L, as drawn in Figure 5.6.
Let e(t) be the edge joining Qk(t) to Qk+1(t). The vertex Qk(t) lies below

Q0,k+1(t) by the Right Hand Rule. Let F (t) be the feather based at e(t).
The tip v(t) of F (t) lies on Q0,k+1(t), and S(t) lies in the sector opposite
F (t) across v(t).

e

F

v

S

-k-1

Figure 5.6: S(t) is trapped in a triangle.

Hence S(t) lies in the triangle ∆(t) bounded the lines

Qk(t)v(t), Q0(t)Qk+1(t), Q0(t)Q−k−1(t).

This structure gives us the claim of the lemma. The only way ∆(t) can ac-
cumulate on points not on 0, k + 1 as t → 1 is when Qk,2k+1 is parallel to
Q0,k+1 in the limit. But then Q has aligned diagonals. ♠
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5.7 Folded Edges

We say Q(1) has a fold if two consecutive edges of Q(1) are on the same line.

Lemma 5.11 (Folding) Q(1) cannot have a fold.

Proof: Consider the lines extending the edges of Q(t) incident to Qa(t).
These lines bound 4 acute sectors. We let C(t) be the sector which locally
intersects Q(t), as shown in Figure 5.7

C(t)

C(t)

Figure 5.7: The cone

It follows from the k-niceness property and continuity that the (k + 1)
diagonals incident to Qa(t) lie in C(t) for all t < 1. This is true even when
the interior angle of Q(t) at Qa(t) exceeds π. If this interior angle tends to
either 0 or 2π then the angle of C(t) tends to 0. This forces our two (k + 1)
diagonals to lie in the same line, violating the k-niceness of Q(1). ♠

5.8 Good Folded Diagonals

Henceforth we assume that Q does not have aligned diagonals and also that
we have S ∩Q = ∅.

We say that the folded diagonals Q−k−1,0 and Q0,k+1 are good if all the
points Qk+1, Qk+2, ..., Qn−k−1 are collinear. We make a similar definition for
other folded diagonals. Note that there are n−2k−1 of these points. If n ≥
4k+ 2 then Q has at least 2k+ 1 consecutive collinear points, and the proof
in Lemma 5.4 finishes this case. However, we might have 3k < n < 4k + 2.
In that case, we need the following lemma.

Lemma 5.12 If n > 3k + 2 and some pair of folded diagonals of Q is good,
then the Degeneration Lemma is true for Q.
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Proof: We normalize as in the previous section, so that Q−k−1,0 and Q0,k+1

are folded, and good.
Suppose Q1 ∈ L. Since Q0, Q1, Qk+1 are collinear, Q has collapsed diag-

onals at Qk+1. To avoid the proof in §5.4, we can assume that Q has folded
diagonals at Qk+1. Since Q0,k+1 points forwards, Qk+1,2k+2 points backwards.
Hence Q−k−1,0 and Qk+1,2k+2 are parallel. Since n > 3k + 2 these two diago-
nals are aligned. This is a contradiction.

So, to finish the proof of this lemma, we show that Q1 ∈ L. We first
give the proof when all edges between Qk+1 and Qn−k−1 are nontrivial. We
claim that Qk+2 is fowards of Qk+1. Suppose not. Then there is some index
a ∈ {k + 2, ...,−k − 2} such that Qa is backwards of Qa±1. This gives us
folded edges at Qa.

By Lemma 5.11, we have folded diagonals at Qa. But then Qa,a+k+1

points forwards. Hence Q0,k+1 and Qa,a+k+1 are parallel. Given the indices,
these diagonals are aligned. This is a contradiction.

Now we know that Qk+2 is forwards of Qk+1. Suppose Q1 6∈ L. by the
Right Hand Rule applied to the diagonal Q0,k+1, the point Q1 lies beneath
L, as shown in Figure 5.8.

0

k+1

-k-1L

k+2

1

Figure 5.8: A contradiction involving Q1.

But then Qk+1 lies to the left of the diagonal Q1,k+2. This violates the Right
Hand Rule. Now we know that Q1 ∈ L.

Now we give the proof that Q1 ∈ L when some edges are collapsed. That
is, there is an index a ∈ {k + 2, ..., n − k − 2} such that Qa = Qa+1. Then
the diagonals at Qa−k−1 are collapsed. In order to avoid the proof in §5.4 we
must have folded diagonals at Qa−k−1. Let L′ be the line containing these
folded diagonals. The proof in Lemma 5.10 shows that S ⊂ L′. But S ⊂ L.
If L′ 6= L then S = L ∩ L′ = {Qa−k−1}. But then S contains a vertex of S.
This is a contradiction. Hence L′ = L.

Since S ∩ Q = ∅, the point Qa lies forwards of Q0. If both Qa+k+1

and Qa−k−1 lie forwards of Qa then Lemma 5.10 says that does not S lie
backwards of Qa. This is not the case. Hence Qa−k−1 lies backwards of Qa.
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Hence Q0,k+1 and Qa−k−1,a are parallel. Consider the diagonal chain

Q0,k+1 → ...→ Qa−k−1,a.

This chain either consists of parallel diagonals or else it twists 2π radians.
The latter does not happen because the complementary diagonal chain con-
tains a diagonal that is not parallel to Q0,a, namely Q−k−1,0. Hence Q0,k+1

and Q1,k+1 are parallel. Hence Q1 ∈ L in this case as well. ♠

Lemma 5.13 If n = 3k+ 2 and all folded diagonals of Q are good, then the
Degeneration Lemma is true for Q.

Proof: Suppose n = 3k + 2. We have all the same arguments as in the
previous lemma. In particular, Q1 ∈ L and hence Q0,k+1 and Qk+1,2k+2 are
folded. We need a different endgame because now the parallel diagonals
Q−k−1,0 are Qk+1,2k+2 are not sufficiently well separated to be called aligned.

Again, Q0,k+1 and Qk+1,2k+2 are folded diagonals. Since these folded di-
agonals are good, the points Q2k+2, Q2k+3, ..., Q0 are collinear. We already
know that Q2k+2, Q0 ∈ L. The collinearity gives Q2k+2, ..., Q0 ∈ L. Since
n = 3k + 2 we have (2k + 2) = (−k) mod n we get Qk+1, ..., Q0 ∈ L, which
is a run of more than 2k + 1 collinear points. The proof in §5.4 now shows
that the Degeneration Lemma is true for Q. ♠

Lemma 5.14 If n = 3k+ 1 and all folded diagonals of Q are good, then the
Degeneration Lemma is true for Q.

Proof: We have the same set-up as in the previous result but this time all
we can say is that the points

Qk+1, ..., Q2k, Q2k+2, ..., Q0 ∈ L.

Note that Q has collapsed diagonals at all these points except perhaps for
Q0 and Qk+1. In order to avoid the proof in §5.4, we see that Q must have
folded diagonals at all these points. Since all these folded diagonals are good,
this suffices to show Q1, ..., Qk ∈ L. ♠

35



5.9 Ungood Folded Diagonals

The only case left to consider is when Q has a pair of folded diagonals which
are not good. Also, we can assume that Q has no aligned diagonals and
S ∩ Q = ∅. We normalize as above, so that Q0, Qk+1, Q−k−1 lie in forward
order on L, which is the X-axis. Here we list some information we have.

• Not all of Qk+1, ..., Q−k−1 lie in L.

• Not all of Q−k−1, ..., Q0, ..., Qk+1 lie in L. Otherwise we’d have 2k + 1
consecutive collinear points, and the proof in §5.4 would finish the job.

• Q−k−1 and Qk+1 divide Q into 2 arcs, both of which start and end on
L to the right of x ∈ S. This point x does not lie in Q.

We call an edge of Q escaping if e ∩ L is a single point. We call two
different edges of Q, in the labeled sense, twinned if they are both escaping
and if they intersect in an open interval. Even if two distinctly labeled edges
of Q coincide, we consider them different as labeled edges.

Lemma 5.15 Q cannot have twinned escaping edges.

Proof: Consider Q(t) for t near 1. This polygon is strictly star shaped with
respect to a point x(t) near x.

L

the twinned 

edges of Q
part

of Q(t)

D

Figure 5.9: Rays intersecting the twinned segments

There is a disk D about x such that every p ∈ D contains a ray which
intersects the twinned edges in the middle third portion of their intersection.
Figure 5.11 shows what we mean. Once t is sufficiently near 1, the soul S(t)
will intersect D, and for all points p ∈ D there will be a ray which intersects
Q(t) twice. This contradicts the fact that Q(t) is strictly star-shaped with
respect to all points of S(t). ♠

We say that an escape edge rises above L if it intersects the upper half
plane in a segment.
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Lemma 5.16 Q cannot have two escape edges which rise above L and in-
tersect Q on the same side of the point x.

Proof: This situation is similar to the previous proof. In this case, there is a
small disk D about x such that every point p ∈ D has a ray which intersects
both rising escape edges transversely, and in the middle third of each of the
two subsegments of these escape edges that lie above L. Figure 5.10 shows
this situation.

L

part

of Q(t)

D

the 

rising

edges

Figure 5.10: Rays intersecting the rising segments.

In this case, some part of Q(t) closely shadows our two escape edges for t
near 1. But then, once t is sufficiently near 1, each ray we have been talking
about intersects Q(t) at least twice, once by each escaping edge. This gives
the same contradiction as in the previous lemma. ♠

We define falling escape segments the same way. The same statement as
in Lemma 5.16 works for falling escape segments. Since x 6∈ Q we conclude
that Q can have at most 4 escaping segments total.

But Q = Q+ ∪Q−, where Q± is an arc of Q that starts at Qk+1 and ends
at Q−k−1. Since both these arcs start and end on L, and since both do not
remain entirely on L, we see that each arc has at least 2 escape edges. and
none of these are twinned. This means that both Q+ and Q− have exactly
two escape edges.

Now for the moment of truth: Consider Q+. Since Q+ just has 2 escape
edges, they both have to be either rising or falling. Also, since Q+ starts and
ends on the same side of x, and cannot cross x (By Lemma 3.1) we see that
Q+ has 2 of the same kind of escape arc on the same side of x. This is a
contradiction. The same argument would work for Q− but we don’t need to
do it twice.
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6 The Persistence of Birds

In this chapter we prove Statement 3 of Theorem 1.1, namely the fact that
∆k(Bn,k) = Bn,k. First we use the Degeneration Lemma to prove that
∆k(Bn,k) ⊂ Bn,k. Then we deduce the opposite containment from projec-
tive duality and the factoring we discussed in §2.2.

6.1 Containment

Suppose for the sake of contradiction that there is some P ∈ Bk,n such that
∆(P ) 6∈ Bk,n. Recall that there is a continuous path P (t) for t ∈ [0, 1] such
that P (0) is the regular n-gon.

Define Q(t) = ∆k(P (t)). There is some t0 ∈ [0, 1] such that Q(t0) 6∈ Bk,n.
We can truncate our path so that t0 = 1. In other words, Q(t) ∈ Bn,k for
t ∈ [0, 1) but Q(1) 6∈ Bk,n.

Lemma 6.1 Q(·) is a degenerating path.

Proof: Note that Q(·) satisfies Property 1 for degenerating paths. The
energy χk is well-defined and continuous on Bk,n. Hence, by compactness,
χk(P (t)) > ε0 for some ε0 > 0 and all t ∈ [0, 1]. Now for the crucial step: We
have already proved that

χk ◦∆k = χk. (25)

Hence χk(Q(t)) > ε0 for all t ∈ [0, 1]. That is, Q(·) satisfies Property 2 for
degenerating paths. Finally, if any two vertices of Q(1) coincide, we violate
Theorem 4.1 for the k-bird P (1). Hence Q(·) satisfies Properties 3 and 4 for
degenerating paths. In short, Q(·) is a degenerating path. ♠

We conclude that all but at most 1 vertex of Q(1) lies in a line L. Stating
this in terms of P (1), we can say that all but at most one of the feathers of
P (1) have their tips in a single line L. Call an edge of P (1) ordinary if the
feather associated to it has its tip in L. We call the remaining edge, if there
is one, special . Thus, all but at most one edge of P is ordinary.

Let S(t) be the soul of P (t). We know that S(1) has non-empty inte-
rior by Theorem 3.1. The contradiction in our argument is to be that the
arrangement of tips of P (1) is going to force S(1) to either be empty or to
have empty interior.
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Lemma 6.2 P (1) cannot have ordinary edges e1 and e2 that lie on opposite
sides of L and are disjoint from L.

Proof: Suppose this happens. Let F1 and F2 be the two associated feathers.
Then the opposite sector F ∗1 lies above L, and the opposite sector F ∗2 lies
below L and the two tips are distinct. But then S(1) is empty. ♠

Lemma 6.3 P (1) cannot have more than 2 ordinary edges crossing L.

Proof: As we trace along L in one direction or the other we encounter the
first crossing edge and then the last one. Let v and v′ be the tips of the
corresponding feathers. Then the line segment from v to v′ crosses all the
other edges crossing L. But this contradicts Statement 3 of Theorem 4.1. ♠

We know that P (1) cannot have ordinary edges on both sides of L and
disjoint from L. We know also that at most 2 ordinary edges can cross L by
Lemma 6.3. Finally, an ordinary edge cannot lie in L because then the tip
would not. Hence, all but at most 2 of the ordinary edges of P (1) lie on one
side of L. Call this the abundant side of L. Call the other side the barren side.
From this structure, we see that P (1) has at most 2 vertices on the barren
side of L that are not contained in L. At the same time, each ordinary edge
on the abundant side contributes two vertices to the barren side: We just
follow the diagonals comprising the corresponding feather. These diagonals
cross L from the abundant side into the barren side. Two different ordinary
edges contribute at least 3 distinct vertices to the barren side. This is a
contradiction.

We have ruled out all possible behavior for P (1) assuming that Q(1) is
degenerate. Hence, Q(1) is not degenerate. This means that Q(1) is a bird.
This completes the proof that

∆k(Pk,n) ⊂ Pk,n. (26)

6.2 Equality

Now we show that ∆k(Bk,n) = Bk,n. We follow the setup and notation from
§2.2. A polygon is a PolyPoint together with additional data specifying an
edge in P joining each consecutive pair of points. Dually, we get a polygon
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from a PolyLine by specifying, for each pair of consecutive lines Lj, Lj+1, an
arc of the pencil of lines through the intersection point which connects Lj to
Lj+1.

Equation 8 implies that

∆−1
k = Dk+1 ◦∆k ◦Dk+1. (27)

Since the dual projective plane P ∗ is an isomorphic copy of P , it makes sense
to define B∗k.n. This space is just the image of Bk,n under any projective
duality. Below we prove

Theorem 6.4 Dk+1(Bk,n) ⊂ B∗k,n.

It follows from Theorem 6.4 and projective duality that Dk+1(B∗k,n) ⊂ Bk,n.

This combines with Equation 27 and Equation 26 to show ∆−1
k (Bk,n) ⊂ Bk,n.

Implicit in the statement that Dk+1(Bk,n) ⊂ B∗k,n is that statement that
we have a way to enhance Dk+1 so that it maps polygons to polygons. We
will explain this below. Theorem 6.4 combines with what we know already
to prove that ∆(Bk,n) = Bk,n.

Remark: In view of Equation 8, an alternate way of proving Statement
3 of Theorem 1.1 would be to show that Dk(Bk,n) ⊂ B∗k,n. If we knew this,
we could bypass the painful Degeneration Lemma. I couldn’t see how to
prove directly that Dk(Bk,n) ⊂ Bk,n.

Lemma 6.5 Dk+1 maps a member of Bk,n to an n-gon which is k-nice.

Proof: Let Q = Dk+1(P ). A (k + 1)-diagonal of Q is just a vertex of P .
A k diagonal of Q is a vertex of ∆k(p). Thus, to check the k-nice property
for Q we need to take n-collections of 4-tuples of points and check that they
are distinct. In each case, the points are collinear because the lines of Q are
coincident.

a
b

c

d

Figure 6.1 One of the n different 4-tuples we need to check.
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Once we make this specification, there is really combinatorially only pos-
sibility for which collections we need to check. Figure 6.1 shows one such
4-tuple, a, b, c, d. The shaded triangles are the two feathers of P whose tips
are b, c. But a, b, c, d are distinct vertices of P ∪∆k(P ) and so they are dis-
tinct. That is all there is to it. ♠

Lemma 6.6 If P ∈ Bk,n, then we can enhance Dk+1(P ) in such a way that
Dk+1(P ) is a planar polygon in P ∗. The enhancement varies continuously.

Proof: Specifying an enhancement of Dk+1(P ) is the same as specifing, for
each consecutive pair L1, L2 of (k + 1) diagonals of P , an arc of the pencil
through their intersection that connects L1, L2. There are two possible arcs.
One of them avoids the interior of the soul of P and the other one sweeps
through the soul of P . We choose the arc that avoids the soul interior. Figure
6.2 shows that we mean for a concrete example.

Figure 6.2: Enhancing a PolyLine to a polygon: Avoid the soul.

Since the soul of P has non-empty interior, there exists a point x ∈ P
which is disjoint from all these pencil-arcs. Applying duality, this exactly
says that there is some line in P ∗ which is disjoint from all the edges of our
enhanced Dk+1(P ). Hence, this enhancement makes Dk+1(P ) planar. Our
choice also varies continuously on Bn,k. ♠

To show that Q = Dk+1(P ) is a k-bird, we consider a continuous path
P (t) from the regular n-gon P (0) to P = P (1). We set Q(t) = P (t). By
construction, Q(0) is a copy of the regular n-gon in P ∗, and Q(t) is k-nice
for all t ∈ [0, 1], and Q(t) is a planar polygon for all t ∈ [0, 1]. By definition
Q = Q(1) is a k-bird.

This completes the proof that Dk+1(Bk,n) ⊂ B∗k,n, which in turn completes
the proof that ∆k(Bk,n) = Bk,n. Our proof of Theorem 1.1 is done.
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7 The Triangulation

7.1 Basic Definition

In this section we gather together the results we have proved so far and
explain how we construct the triangulation τP associated to a bird P ∈ Bk,n.

Since ∆k(Bk,n) ⊂ Bk,n, we know that ∆k(P ) is also a k-bird. Combin-
ing this with Theorem 3.1 and Theorem 4.1 we can say that ∆k(P ) is one
embedded n-gon contained in P I , the interior of the region bounded by the
embedded P . The region between P and ∆k(P ) is a topological annulus.
Moreover, ∆k(P ) is obtained from P by connecting the tips of the feathers
of P . The left side Figure 7.1 shows how this region is triangulated. The
black triangles are the feathers of P and each of the white triangles is made
from an edge of ∆k(P ) and two edges of adjacent feathers.

Figure 7.1: The triangulation of the annulus

Lemma 7.1 For every member P ∈ Bk,n, the associated 2n triangles have
pairwise disjoint interiors, and thus triangulate the annular region between
P and ∆k(P ).

Proof: As usual, we make a homotopical argument. If this result is false
for some P , then we can look at path which starts at the regular n-gon (for
which it is true) and stop at the first place where it fails. Theorem 4.1 tells
us that nothing goes wrong with the feathers of P . The only thing that can
go wrong is ∆k(P ) fails to be an embedded polygon. Since this does not
happen, we see that in fact there is no counter-example at all. ♠
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We can now iterate, and produce 2n triangles between ∆k(P ) and ∆2
k(P ),

etc. The right side of Figure 7.1 shows the result of doing this many times.
The fact that ∆k(Bk,n) = Bk,n allows us to extend outward as well. When
we iterate forever in both directions, we get an infinite triangulation of a
(topological) cylinder that has degree 6 everywhere. This is what Figure 1.6
is showing. We call this bi-infinite triangulation τP .

7.2 Some Structural Results

Theorem 7.2 Let P ∈ Bn,k. Let S be the soul of B. Then for ` ≥ n we
have ∆`

k(P ) ⊂ S.

Proof: We first note the existence of certain infinite polygonal arcs in τP .
We start at a vertex of P and then move inward to a vertex of ∆k(P ) along
one of the edges. We then continue through this vertex so that 3 triangles
are on our left and 3 on our right. Figure 7.2 below shows the two paths like
this that emanate from the same vertex of P .

e1 e2

Figure 7.2: The spiral paths.
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The usual homotopical argument establishes the fact that the spiral paths
are locally convex. One can understand their combinatrics, and how they
relate to the polygons in the orbit, just by looking at the case of the regular
n-gon. We call the two spiral paths in Figure 7.2 partners . In the regular
n-gon the partners intersect infinitely often. So this is true in general. Each
spiral path has an initial segment joining the initial endpoint on P to the
first intersection point with the partner. We define a petal to be the region
bounded by the initial paths of the two partners.

It is convenient to write P ` = ∆`
k(P ). In the regular case, P ` is con-

tained in the petal for ` > n − 1.. Hence, the same goes in the general
case. Because the initial segments are locally convex, the petal lies to the
left of the lines extending the edges e1 and e2 when these edges are oriented
according to the (k + 1)-diagonals of P . But this argument works for ev-
ery pair of partner spiral paths which start at a vertex of P . We conclude
that for ` ≥ n, the polygon P ` lies to the left of all the (k + 1)-diagonals of
P . But the soul of P is exactly the intersection of all these left half planes. ♠

Theorem 7.2 in turn gives us information about the nesting properties of
birds within an orbit. Let S` denote the soul of P `. Let

S∞ =
⋂
`∈Z

S`, S−∞ =
⋃
`∈Z

S`. (28)

It follows from Theorem 7.2 that P̂∞ = S∞ and P̂−∞ = S−∞, because

S`+n ⊂ P `+n ⊂ S` ⊂ P `. (29)

Hence these sets are all convex subsets of an affine plane.

Corollary 7.3 Any P ∈ Bk,n is strictly star-shaped with respect to all points
in the convex hull of ∆n

k(P ).

Proof: Since P `+n ⊂ S`, and P ` is strictly star shaped with respect to all
points of S`, we see that P ` is strictly star shaped with respect to all points
of P `+n. Since S` is convex, we can say more strongly that P ` is strictly star-
shaped with respect to all points of the convex hull of P `+n. Now we just set
` = 0 and recall the meaning of our notation, we get the exact statement of
the result. ♠

An immediate corollary is that P is strictly star-shaped with respect to
P̂∞. (Theorem 1.3 says that this is a single point.)
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8 Nesting Properties of Birds

In this chapter we prove Theorem 1.3. We just keep peeling away cases until
the proof is done.

8.1 Discussion

This discussion is not part of our proof, but some people who are used to the
pentagram map and its connection to projective geometry might appreciate
it. Other readers can safely ignore this discussion.

Usually when one studies the pentagram map, say on convex polygons,
one takes the quotient by the group of projective transformations. One can
also take the quotient by the group of affine transformations, but this seems
like a somewhat different thing. I want to relate the two concepts.

There is an asymptotic sense in which the affine quotient and projective
quotient are quite closely related. Let ∆1 be the pentagram map. We start
with a convex polygon P and look at P ` = ∆`

1(P ) for very large ` > 0.
Suppose we choose an affine transformation T` so that Q` = T`(P

`) remains
bounded and in some sense uniformly fat. For instance, we could normalize
so that a certain three vertices make an equilateral triangle. For large `, the
map T ` has projective significance and not just affine significance.

Recall that as `→∞ the union
⋃
P̂−` converges to an affine plane P̂−∞.

Here P̂−` is the closure of the region bounded by P−`. The projective sig-
nificance is that T `(P̂∞) is very nearly the affine patch of P . Making such a
normalization is usually something you would do with a projective transfor-
mation, but here we are doing it in an automatic way with an affine transfor-
mation. In the asymptotic forward direction, the best affine normalization
really coincides with the best projective normalization.

To put this another way, the compactness of the full orbit {P `, ` ∈ Z}
modulo projective transformations is very closely related to the compactness
of the forward orbit modulo affine transformations. In the case of convex
polygons, we can freely convert between one kind of compactness and the
other. For the birds, I do not know how to do this and I find it easier to
work with affine transformations.

For our proof, we will concentrate on Statement 1 of Theorem 1.3, and
then bring back the projective geometry, in the form of projective duality, to
deduce Statement 2 from Statement 1.
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8.2 The Compact Case

Suppose that S1 ⊂ S2 are two compact convex sets. The ratio of diameters,
diam(S1)/diam(S2), is not affine invariant. We come up with a replacement
notion. For each direction v in the plane, we let ‖S‖v denote the maximum
length of L ∩ S where L is a straight line parallel to v. We then define

δ(S1, S2) = sup
v

‖S1‖v
‖S2‖v

∈ [0, 1]. (30)

The quantity δ(S1, S2) is affine invariant, and (choosing a direction µ which
realizes the diamater of S1) we have

diam(S1)

diam(S2)
≤ ‖S1‖µ
‖S2‖µ

≤ δ(S1, S2). (31)

Let P ∈ Bn,k and suppose that P is normalized so as to be a subset of
R2. Let P ` = ∆`

k(P ). We define

δ(P ) = δ(S(P n), S(P )). (32)

Here S(P ) is the soul of P . By Theorem 5.8, we have S(P n) ⊂ P n ⊂ S(P ),
so our definition makes sense. Also, δ(P ) < 1 because S(P n) is contained in
the interior of P n.

We equip the space of compact convex subsets of R2 with the Hausdorff
metric: The distance between two such subsets A0, A1 is the infimal ε such
that Aj is contained in the ε-tubular neighborhood of A1−j for j = 0, 1. This
metric lets us talk about the convergence in an easy way. The function δ(·, ·)
is continuous with respect to this metric.

Suppose we have a sequence {Q`} of k-birds which converges to some
other bird Q` in the sense that the vertices and edges converge. Then ∆n

k(Q`)
converges to ∆n

k(Q∞) and the corresponding souls converge in the Hausdorff
metric. This means that δ(Q`)→ δ(Q∞) = δ0 < 1 for some δ0. We conclude
that there is some δ1 < 1 so that δ(Q`) < δ1 < 1 for all ` > 0.

If our forward orbit {P `} is compact modulo affine transformations, then
we can find a sequence of affine tranformations {T`} such that Q` = T`(P

`)
converges to another bird Q∞. The affine invariance of δ then tells us that
δ(P `) < δ1 < 1. But then

diam(S(P `+n)) < δ1 diam(S(P `)).

This shows that P̂∞ =
⋂
S(P `) is a single point.
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8.3 Normalizing by Affine Transformations

Henceforth we assume that the forward orbit {P `} of P under ∆k is not
compact modulo affine transformations. Our first step is to normalize as
much as we can.

Lemma 8.1 There is a sequence {T`} of affine transformations such that

1. T`(P
`) has (the same) 3 vertices which make a fixed equilateral triangle.

2. T` expands distances on P ` for all `.

3. T`(P
`) is contained in a uniformly bounded subset of R2.

Proof: To P ` we associate the triangle τ` made from 3 vertices of P ` and
having maximal area. The diameter of τ` is uniformly small, so we can find a
single equilateral triangle T and an expanding affine map T` : τ` → T . Let d
be the side length of T . Every vertex of T`(P

`) is within d of all the sides of
T , because otherwise we’d have a triangle of larger area. The sequence {T`}
has the advertised properties. ♠

Let Q` = T`(P
`). By compactness we can pass to a subsequence so

that the limit polygon Q exists, in the sense that the vertices and the edges
converge. Note that some vertices might collapse in the limit. This does not
bother us. Let Q0, Q1, etc. be the vertices of Q.

Each distinguished diagonal of Q` defines the unit vector which is parallel
to it. Thus Q` defines a certain list of 2n unit vectors. We can pass to a sub-
sequence so that all these unit vectors converge. Thus, to each distinguished
diagonal of Q we still have a well-defined direction, even if the diagonal is
trivial. We are keeping track of the 1-jet. Given a point and a unit direction,
we have a well-defined oriented line which contains the point and is oriented
along the direction, and a corresponding left half-plane. Thus we associate
to each (k + 1)-diagonal, trivial or not, a left-half plane. We define Ŝ to be
the intersection of all these half-planes.

We also define the limiting souls. We set S` = S(Q`). We define the soul
S of Q just as we defined it in §5.5: It is the set of accumulation points of
sequences {p`} with p` ∈ S`. We will see that S ⊂ Ŝ.
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8.4 The Limiting Soul

Lemma 8.2 S ⊂ Ŝ.

Proof: Fix ε > 0. If this is not the case, then by compactness we can find a
convergent sequence {p`}, with p` ∈ S`, which does not converge to a point

of Ŝ. But p` lies in every left half plane associated to Q`. But then, by
continuity, the accumulation point p lies in every left half plane associated
to Q. Hence p ∈ Ŝ. This is a contradiction. ♠

Corollary 8.3 Suppose that P̂∞ is not a single point. Then δ(S,HQ) = 1.
Here HQ is the convex hull of Q.

Proof: Suppose not. Note that HQ` ⊂ S`−n by Theorem 7.2 and convexity.
Then for ` large we have

δ(Q`−n) = δ(S`, S`−n) ≤ δ(S`, HQ`) < δ(S,HQ) + ε,

and we can make ε as small as we like. This gives us a uniform δ < 1 such
that δ(Q`) < δ once ` is large enough. The argument in the compact case

now shows that P̂∞ is a single point. ♠

Corollary 8.3 gives us a powerful structural result. It says in particular
that S and Q have the same diameter. Hence there is a chord S∗ ⊂ S which
has the same diameter as Q. Since Q is a polygon, this means that Q must
have vertices at either endpoint of S∗. We normalize so that S∗ is the unit
segment joining (0, 0) to (1, 0).

Lemma 8.4 Let Q′ ⊂ Q be an arc of Q that joins (0, 0) to (1, 0).

1. The vertices of Q′ must have non-decreasing x-coordinates.

2. If consecutive vertices of Q′ have the same x-coordinate, they coincide.

3. Either Q′ ⊂ S∗ or Q′ intersects S∗ only at (0, 0) and (1, 0).
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Proof: Suppose the Statement 1 is false. Then we can find a vertical line
Λ which intersects S∗ at a relative interior point and which intersects Q′

transversely at 3 points. But then once ` is sufficiently large, Q` will intersect
all vertical lines sufficiently close to Λ in at least 3 points and moreover some
of these lines will contain points of S`. This contradicts the fact that Q` is
strictly star-shaped with respect to all points of Q`.

For Statement 2, we observe that Q′ does not contain any point of the
form (0, y) or (1, y) for y 6= 0. Otherwise Q has larger diameter than 1.
This is to say that once Q′ leaves (0, 0) it immediately moves forward in
the X-direction. Likewise, once Q′ (traced out the other way) leaves (1, 0)
it immediately moves backward in the X-direction. If Statement 2 is false,
ten we can find a non-horizontal line Λ′ which intersects S∗ in a relative
interior point and which intersects Q′ transversely at 3 points. The slope is
Λ′ depends on which of the two vertices of Q′ lies above the other. Once we
have Λ′ we play the same game as for the first statement, and get the same
kind of contradiction.

Suppose Statement 3 is false. We use the kind of argument we had in
§5.9. By Statements 1 and 2 together, Q′ must have an escape edge which
touches S∗ in a relative interior point. Moreover, this one escape edge is
paired with another escape edge. Thus we can find a point x ∈ S∗ which
strictly lies on the same side of both of these same-type escape edges. The
argument in §5.9 now shows that Q` is not strictly star-shaped with respect
to points of S` very near x. ♠

Corollary 8.5 Up to adding repeated indices, Q is embedded.

Proof: Lemma 8.4 implies that up to adding repeated vertices, Q is the
union of two embedded arcs which connect (0, 0) to (1, 0), both of which are
graphs of functions on [0, 1]. Call these functions f and g. Since Q 6⊂ S∗,
at least one of these functions is strictly nonzero. If it ever happens that
f(p) = g(p) for p ∈ (0, 1), then the two arcs intersect at some point not on
S∗. But then some vertical ray through a relative interior point of S∗ inter-
sects Q transversely at two points, giving the same contradiction. Hence our
two arcs are disjoint. ♠

Corollary 8.6 Suppose 0 ≤ a < b < n and Qa = Qb. Then either we have
Qa = Qa+1 = ... = Qb or else we have Qb = Qb+1 = ... = Qa+n.
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8.5 The Triangular Limit Case

Here we prove a more general result that covers the triangular limit case.
Suppose that there is a line L such that Q0 6∈ L and Qj ∈ L unless j ∈
{−k + 1, ..., 0, ..., k − 1}. This is a run of 2k − 1 consecutive indices.

L

0

-k

-k-1 k+1

k

Figure 8.1: The triangular limit Q.

The cross ratio of the lines

Q0,k, Q0,k+1, Qn−k−1,0, Qn−k,0

is at least ε0. Also, these lines are cyclically ordeded about 0 as indicated in
Figure 8.1, thanks to the k-niceness property and continuity. Also, the two
lines containing Q0,k and Q−k,0 are not parallel because Q0 6∈ L. Hence S is
contained in the shaded region in Figure 8.1, namely the triangle with vertices
Q0 and Q±(k+1). But this shaded region has diameter strictly smaller than the
triangle τ with vertices Q0 and Q±k. Hence diam(S) < diam(τ) ≤ diam(Q).
This is a contradiction.

8.6 The Case of Folded Diagonals

In this section we suppose Q has a pair of folded diagonals. We relabel so
that the folded diagonals are Q−k−1,0 and Q0,k+1.

The left half planes defined by these folded diagonals intersect in a line.
Hence Ŝ is contained in a line L. Since S ⊂ Ŝ, we see that S ⊂ L. Indeed,
we must have S∗ = S, where S∗ is as in §8.4. We will repeatedly use the fact
that S realizes the diameter of Q, so that points of Q not in S do not lie in
the line L containing S. There are 3 cases.

50



Case 1: Suppose that Qk+1 is not an endpoint of S. Then by Lemma 3.6 the
arc Q0 → ... → Qk+1 lies in S. Likewise the arc Qk+1 → ... → Qn−k−1 also
lies in S. Hence Qj ∈ L unless j ∈ {−k, ...,−1}. We can cyclically relabel
so that this case is covered by the result in §8.5. Exactly the same argument
works when Q−k−1 is not an endpoint of S.

Case 2: Suppose Qk+1 and Q−k−1 are the same endpoint of S and that
Q0 6= Qk+1. In this case, Corollary 8.6 says that Qk+1 = ... = Q−k−1 ∈ S. If
Q±k ∈ S then the case in §8.5 would cover us. So, one of these points does
not lie in S. We consider the case when Qk 6∈ S. The other case has the
same treatment.

Suppose n > 3k + 1. Then 2k, 2k + 1 ∈ {k + 1, ..., .n − k − 1}. Hence
Qk,2k and Qk,2k+1 are nontrivial and contained in some line L′ 6= L. The
notions of collapsed diagonals, folded diagonals, and aligned diagonals from
§5 make sense for Q because the concepts just involve the directions of the
diagonals. Likewise, Lemmas 5.2 and 5.3 hold for Q. By construction Q has
collapsed diagonals at Qk. If Q has folded diagonals at Qk then S ⊂ L′,
a contradiction. Hence Q has aligned diagonals at Qk. Lemma 5.3 applies
either to the short diagonal chain and gives us Q0, ..., Q2k ∈ L′ or else it
applies to the long diagonal chain and gives us all points of Q in L′. In either
case Q0 ⊂ L′. But then L′ contains both Q0 and Q2k+1 = Qk+1 6= Q0. So
does L. Hence L = L′. This is a contradiction.

Suppose n = 3k + 1. In the next section we will show that when Q has
a folded diagonal, Q always has a run of k + 1 repeating points (which is
stronger than the k repeating points we could get from the argument above
in this case.) We cyclically relabel so that Qk+1 = ... = Q2k+1. If Qk ∈ S
then §8.5 covers the case. Otherwise Qk 6∈ S and we can run the argument
as above.

Case 3: Suppose that Qk+1 and Q−k−1 are each endpoints of S. Either
Qk+1 = Q−k−1 or Q0 = Qk+1 or Q0 = Q−k−1. We cannot have Q0 strictly
between these points because then Q−k−1,0 and Q0,k+1 are not folded. If
Qk+1 = Q−k−1 then to avoid Case 2 we have Q0 = Qk+1 = Q−k−1. In all
cases, Lemma 8.6 then gives us at least k + 1 consecutive points of Q which
coincide. So, we have some index a such that ν := Qa = ... = Qa+k ∈ S.
Using Lemma 3.6 we can assume that either Qa−1 6∈ L or Qa+k+1 6∈ L. Again
L is the line containing S. We consider the second case. The first case has
the same treatment.
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Let L′ 6= L denote the line containing ν and Qa+k+1. Two of the dis-
tinguished diagonals connect Qa+k+1 to ν and hence point along L′. Hence
Q has collapsed diagonals at Qa+k+1. If Q has folded diagonals at Qa+k+1

then S ⊂ L′. This is contradiction. Hence Qa+1,a+k+1 and Qa+k+1,a+2k+1 are
aligned and point along L′. The same argument as in Case 2 now tells gives
us 2k parallel diagonals Qa+1,a+k+1, ..., Qa+k+1,a+2k+1 which point along L′.

Let us now cyclically relabel so that a = 0. This means that our parallel
diagonal chain is Q0,k, ..., Qk,2k. This is all we are going to use in our proof
for the rest of this case. Lemma 5.3 tells us that Q0, ..., Q2k ∈ L′.

The two diagonals Q0,k+1 and Q1,k+1 are on our list and hence parallel.
Hence Q has collapsed diagonals at Qk+1. To avoid S ⊂ L′, as in Case 2,
we must have Q1,k+1 and Qk+1,2k+1 parallel to each other and also parallel to
the 2k diagonals we already have. this extends our parallel diagonal chain
from length 2k to length 2k + 2. We now repeat this argument indefinitely,
showing that all distinguished diagonals point along L′. Hence Q ⊂ L′, a
contradiction.

8.7 No Folded Diagonals

If Q has a trivial distinguished diagonal, then after relabeling, we can say
that Q0 = Qk+i for one of i = 0, 1. In all cases, Lemma 8.6 gives us a run
of k + 1 repeated points. Cyclically relabeling again, if necessary, we can
arrange that Q0 = ... = Qk but Qk+1 6= Q0. The only case we have not
considered is when Q has no folded diagonals. Let L′ be the line through Q0

and Qk+1. Then Q has collapsed diagonals at Qk+1. Since Q has no folded
diagonals, Q has aligned diagonals at Qk+1. These diagonals point along L′.
As in Case 3 above, we get a parallel diagonal chain of length 2k. Since we
have no folded diagonals, we can repeat the argument at the end of Case 3
indefinitely to show Q ⊂ L′, a contradiction.

8.8 Applying Duality

We have finished proving that P̂∞ is a point. Now we prove that P̂−∞ is an
affine plane. We take ` ≥ 0 and consider P−` = ∆−`k (P ).

Lemma 8.7 There is a line L ⊂ P which is disjoint from P̂−` for all `.

Proof: Let Ω` be the set of lines in P which are disjoint from the interior
of P−`. Since P−` is planar, this set is nonempty. The sets {Ω`} are nested
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and hence have a non-empty intersection. Let L be a line in the intersection.
Since the interior of the region bounded by P−`−1 contains P−` we see that
L is actually disjoint from P−` as well. ♠

We normalize so that L is the line at infinity and P∞ is the origin. Let

Π` = ∆`
k(Dk+1(P )). (33)

Then P ` is planar polygon that is strictly star-shaped with respect to the
origin. The map Dk+1 conjugates ∆k to ∆−1

k and maps k-birds to k-birds.
{Π`} shrinks to a point in the dual projective plane P ∗. Because the vertices
of Π` shrink to a single point, all the (k + 1)-diagonals of P−` converge to

a single line L′. This is enough to prove that P̂−∞ is either all of R2 or an
infinite strip in R2.

To rule out the strip case we note that the edges of Π` shrink to a point as
well. We rotate so that the supposed strip is vertical. Then L′ is a vertical
line. Consider the soul S−` of P−`. Let v` be the vertex of S−` with the
largest y-coordinate. Let Υ` be the set of lines through v` which avoid the
interior of S−`. Compare Figure 6.6. This set corresponds to an edge of
Π`. Hence Υ` converges to L′ as well. But Υ` always contains a horizontal
line. This horizontal line either converges on a subsequence to the line L at
infinity or else to some horizontal line in R2. In either case we get a limiting
line that does not equal L′. This is a contradiction.

This completes the proof of Statement 2 of Theorem 1.3. Our proof of
Theorem 1.3 is done.
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9 Appendix

9.1 The Energy Invariance Revisited

In this section we sketch Anton Izosimov’s proof that χk ◦ ∆k = χk. This
proof is more conceptual than the one in §2 but it is not self-contained. It
requires the machinery from [6]. (The perspective comes from [8], but the
needed result for ∆k is in the follow-up paper [6].)

Let P be an n-gon. We let V1, ..., Vn be points in R3 representing the
consecutive vertices of P . Thus the vertex Pj is the equivalence class of Vj.
We can choose periodic sequences {ai}, {bi}, {ci}, {di} such that

aiVi + biVi+k + ciVi+k+1 + diVi+2k+1 = 0, ∀i. (34)

Recall from §2.2 that ∆k = Dk ◦Dk+1.

Lemma 9.1 One of the cross ratio factors of χk ◦Dk+1 is (a0d−k)/(c0b−k).

Proof: One of the factors is the cross ratio of P0, y, x, Pk+1, where

x = P0,k+1 ∩ Pk,2k+1, y = P−k,1 ∩ P0,k+1.

(Compare the right side of Figure 2.1, shifting all the indices there by k+ 1.)
The points x and y respectively are represented by vectors

X = a0V0 + c0Vk+1 = −b0Vk − d0V2k+1,

Y = −a−kV−k − c−kV1 = b−kV0 + d−kVk+1.

The point here is that the vector X lies in the span of {V0, Vk+1} and in
the span of {Vk, V2k+1} and projectively this is exactly what is required. A
similar remark applies to Y .

Setting Ω = V0 × Vk+1, we compute the relevant cross ratio as

V0 × Y
V0 ×X

· X × Vk+1

Y × Vk+1

=
d−kΩ

c0Ω
× a0Ω

b−kΩ
=
d−ka0

b−kc0

, (35)

which is just a rearrangement of the claimed term. ♠
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The other cross ratio factors are obtained by shifting the indices in an
obvious way. As an immediate corollary, we see that

χk(Dk+1(P )) =
n∏
i=1

aidi
bici

. (36)

Let us call this quantity µk(P ).

Lemma 9.2 If µk ◦∆k = µk then χk ◦∆k = χk.

Proof: If µk ◦∆k = µk then µk ◦∆−1
k = µk. Equation 36 says that

χk ◦Dk+1 = µk, µk ◦Dk+1 = χk. (37)

The first equation implies the second because Dk+1 is an involution. Since
Dk+1 conjugates ∆k to ∆−1

k we have

χk ◦∆k = χk ◦Dk+1 ◦∆−1
k ◦Dk+1 = µk ◦∆−1

k ◦Dk+1 = µk ◦Dk+1 = χk.

This completes the proof. ♠

Let P̃ = ∆k(P ). Let {ãi}, etc., be the sequences associated to P̃ . We
want to show that

n∏
i=1

aidi
bici

=
n∏
i=1

ãid̃i

b̃ic̃i
. (38)

This is just a restatement of the equation µk ◦∆k = µk.
Now we use the formalism from [6] to establish Equation 38. We associate

to our polygon P operator D on the space V of bi-infinite sequences {Vi} of
vectors in R3. The definition of D is given coordinate-wise as

D(Vi) = aiVi + biT
k(Vi) + ciT

k+1(Vi) + diT
2k+1(Vi). (39)

Here T is the shift operator, whose action is T (Vi) = Vi+1. If we take {Vi}
to be a periodic bi-infinite sequence of vectors corresponding to our polygon
P , then D maps {Vi} to the 0-sequence.

Next, we write D = D+ +D− where coordinate-wise

D+(Vi) = aiVi + ciT
k+1(Vi), D−(Vi) = biT

k(Vi) + diT
2k+1(Vi). (40)
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The pair (D+, D−) is associated to the polygon P .

Let D̃ and (D̃+, D̃−) be the corresponding operators associated to P̃ . One
of the main results of [6] is that the various choices can be made so that

D̃+D− = D̃−D+. (41)

This is called refactorization. Equating the lowest (respectively highest)

terms of the relation in Equation 41 gives us the identity ãibi = b̃iai+k (re-

spectively c̃idi+k+1 = d̃ici+2k+1.) These relations hold for all i and together
imply Equation 38.

9.2 Extensions of Glick’s Formula

Let me first review Glick’s formula for ∆1, the pentagram map. Let P be
a convex n-gon. Let (x∗, y∗) denote the accumulation point of the forward

iterates of P under ∆1. Let P̂∞ = (x∗, y∗, 1) be the collapse point. In
somewhat different notation, Glick introduces the operator

TP = nI3 −GP , GP (v) =
n∑
i=1

|Pi−1, v, Pi+1|
|Pi−1, Pi, Pi+1|

Pi. (42)

Here |a, b, c| denotes the determinant of the matrix with rows a, b, c and I3

is the 3 × 3 identity matrix. It turns out TP is a ∆1-invariant operator, in
the sense that T∆0(P ) = TP . Moreover P∞ is an eigenvector of TP . This

is Glick’s formula for P̂∞. Actually, one can say more simply that GP is
a ∆0-invariant operator and that P̂∞ is an eigenvector of GP . The more
complicated expression nI3 −GP is easier to work with geometrically.

Define GP,a,b by the formula

GP,a,b(v) =
n∑
i=1

|Pi−a, v, Pi+b|
|Pi−a, Pi, Pi+b|

Pi. (43)

Let P̂∞,k be the limit point of the forward iterates of P under ∆k. It seems
that when k ≥ 1 and n = 3k + 1 the operator GP,k,k is ∆k invariant and

has P̂∞,k for an eigenvector. It seems that when k ≥ 1 and n = 3k + 2 the

operator GP,k+1,k+1 is ∆k invariant and has P̂∞,k for an eigenvector. I was
not able to find any similar formulas when n > 3k + 2.

Anton Izosimov kindly explained the following lemma.
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Lemma 9.3 These operators are ∆k-invariant.

Proof: These operators are Glick’s operator in disguise. When n = 3k+1 we
can relabel our n-gons in a way that converts ∆k to the pentagram map. The
corresponding space of birds Bn,k corresponds to some strange set of “rela-
beled k-birds”. This relabeling converts GP,k,k respectively to Glick’s original
operator. This proves the invariance of GP,k,k under ∆k when n = 3k+ 1. A
similar thing works for n = 3k + 2, but this time the relabeling converts ∆k

to the inverse of the pentagram map. ♠

This result does not explain why the collapse point P̂∞ is an eigenvector,
but there is plenty of food for thought here. Glick’s formula is an analytic
expression for the collapse point, and perhaps what is going on here is some
kind of analytic continuation. I wonder if this means that the collapse point
exists for all starting points of the pentagram map. Even if the iterations
go completely crazy under the map, perhaps they still collapse to the point
predicted by Glick’s operator. The idea of a completely general collapse point
has always seemed absurd to me, but maybe it is not. Nobody knows. Even
though the algebra of the pentagram is quite well understood, the geometry
is not.

9.3 Star Relabelings

Let us further take up the theme in the proof of Lemma 9.3. Given an n-gon
P and and some integer r relatively prime to n, we define a new n-gon P ∗r

by the formula
P ∗rj = Prj. (44)

Figure 1.5 shows the P ∗(−3) when P is the regular 10-gon.
As we have already mentioned, the action of ∆1 on the P ∗(−k) is the same

as the action of ∆k on P when n = 3k + 1. So, when n = 3k + 1, the
pentagram map has another nice invariant set (apart from the set of convex
n-gons), namely

B
∗(−k)
k,n = {P ∗(−k)| P ∈ Bk,n}.

The action of the pentagram map on this set is geometrically nice. If we
suitably star-relabel, we get star-shaped (and hence embedded) polygons. A
similar thing works when n = 3k + 2.
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