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claims that {Oi, Oj} = {Oi, Ej} = {Ei, Ej} = 0 for all relevant indices i
and j. Here { , } is the Poisson bracket in [OST].

Description of the Bracket: Given monomials A and B, we form a bipar-
tite graph, where the top vertices and the bottom vertices are both indexed
by the set {1, ..., 2n}. We join the top vertices ai to the bottom vertices bi±2
iff xi appears in A and xi±2 appears in B. Indices are reckoned cyclically, as
usual. We label the edge joining ai to bi±2 with (±) if i is even and with (∓)
if i is odd. Then {A,B}/AB is the number of (+) signs minus the number
of (−) signs.

We prove first that {Oi, Oj} = 0. The only monomials which can appear
in {Oi, Oj} have exponents in the set {1, 2}. In our proof, we sometimes view
the monomial µ as a mapping µ : {1, ..., 2n} → {0, 1, 2}. Here µ(i) is the
exponent of xi in µ. The support of µ (as a map) is exactly the set of indices
of variables which appear in µ (as a monomial). We define {Oi, Oj;µ} to
be the coefficient of µ in {Oi, Oj}. We call µ good if {Oi, Oj, µ} = 0 for all
indices i, j. We will prove that all monomials are good.

We say that µ decomposes into µ1 and µ2 if (as monomials) µ = µ1µ2, and
(as maps) the supports of µ1 and µ2 are separated by at least 2 empty spaces,
in the cyclic sense. If we cannot factor µ this way, we call µ indecomposible.
Below we prove the following results.

Lemma 0.1 If µ decomposes into µ1 and µ2, and both µ1 and µ2 are good,
then µ is good.

Lemma 0.2 Suppose µ is indecomposible and (A,B) contributes nontrivially
to {Oi, Oj, µ}. Then A and B have the same weight.

Let µ be a monomial. By Lemma 0.1, it suffices to assume µ is indecom-
posible. If some (A,B) contributes nontrivially to {Oi, Oj, µ} then A and
B have the same weight. Hence (B,A) also contributes to {Oi, Oj, µ}. But
{A,B} = −{B,A} and the two contributions cancel. Hence µ is good.
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Proof of Lemma 0.1: For any monomial F , we let F1 (respectively F2)
denote the monomial obtained from F by setting to 1 all the variables having
indices in the support of µ2 (respectively µ1.) Consider the example when
µ = x1x5x7, which decomposes into µ1 = x1 and µ2 = x5x7. If F = x1x5
then F1 = x1 and F2 = x5.

Let S(i, j, µ) denote the set of pairs (A,B) contributing to the sum
O(i, j, µ). Here A has weight i and B has weight j and AB = µ. Let
S(i, j, µ, , i′, j′) ⊂ S(i, j, µ) denote the set of pairs (A,B) such that A1 has
weight i′ andB1 has weight j′. Continuing with our example, S(1, 2, x1x5x7, 0, 1)
contains the pairs (x5, x1x7) and (x7, x1x5).

By construction

O(i, j, µ) =
∑

i′≤i, j′≤j
O(i, j, µ, i′, j′), (1)

where

O(i, j, µ, i′, j′) =
∑

(A,B)∈S(i,j,µ,i′,j′)

{A,B}
AB

. (2)

There is a bijection

S(i′, j′, µ1)× S(i− i′, j − j′, µ2)→ S(i, j, µ, i′, j′) (3)

given by that map ((A1, B1), (A2, B2)) → (A1A2, B1B2). From the large
separation between the supports of A and B, we have {Ai, B3−i} = 0. Hence,
by Leibniz’s rule,

{A1A2, B1B2} = {A1, B1}A2B2 + {A2, B2}A1B1. (4)

Letting |S| denote the cardinarlity of a set S, we see from Equation 4
that

O(i, j;µ; i′, j′) = |S(i−i′; j−j′)|O(i′, j′;µ1)+|S(i′, j′;µ1)|O(i−i′, j−j′;µ2) = 0.
(5)

Summing over all i′, j′ gives O(i, j;µ) = 0. ♠

Proof of Lemma 0.2: This is trivial if the support of µ is at most 3 indices,
so we suppose otherwise. Say that µ has a1...ak if there are k consecutive
indices i1, ..., ik ∈ {1, ..., 2n} such that µ(ij) = aj for j = 1, ..., k. Call ij the
place of aj. We say that a unit of µ is a maximal string of nonzero digits
which µ has, in the sense just defined. Observe the following.
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1. µ cannot have 2 in an even place. Suppose µ(4) = 2. Then x3x4x5
appears in both A and B, and so neither A nor B contains xk for
k = 0, 1, 2, 6, 7, 8. Since the support of µ is not just {3, 4, 5}, we get µ
decomposible, a contradiction. Similarly, µ cannot have 020.

2. µ cannot 10 or 01 if the place of the 1 is even. Likewise, if µ has 111c or
c111 then c = 0. In both cases, the problem is that one of A or B would
have an even-indexed variable but not one of the adjacent odd-indexed
variables.

3. If µ has 2cd or dc2 then c = d = 0 or d = c = 1. The previous
observations rule out c = 2 and 210 and 012. The case d = 2 forces
c = 2, and d = 1 forces c = 1.

These observations imply that the only possible units are 1, 111, 211,
112, and 11211, and that adjacent units are separated by a single 0, and that
211 (respectively 112) cannot have an adjacent unit on its left (respectively
right).

If µ assigns 0 to two consecutive indices, then there is a canonical way to
define the leftmost unit; otherwise we choose arbitrarily. Scanning the units
from left to right, we create a word w(A,B), using letters a and b, as follows.
For each unit 211 we write ab (respectively ba) if the variables corresponding
to 111 belong to B (respectively A). We do the mirror image for 112. For
each unit 1 or 111 we write a (respectively b) if the corresponding variables
appear in A (respectively B). For each unit 11211 we write ab (respectively
ba) if the first 3 variables belong to A (respectively B). We can recover A
and B from µ and w(A,B). Here is the key point. Since A and B are both
admissible, the letters in w(A,B) alternate.

Suppose (A,B) is a minimal counterexample, in terms of weight. Suppose
µ has the unit 11211. Let µ′ denote the indecomposible monomial having
the same units as µ, in the same order, but with a single 11211 omitted. We
omit and collapse, so to speak. We define (A′, B′), uniquely, so that w(A′, B′)
is obtained from w(A,B) by omitting either ab or ba. It follows from our
description of the bracket that {A,B}/AB = {A′, B′}/A′B′. See the picture.
By construction A′ and B′ have the same weight as each other. In short,
(A′, B′) is a smaller counterexample. Similar arguments show that µ cannot
contain 112 or 211 or consecutive units from the set {1, 111}. Hence µ has 1
unit. But there are no 1-unit counterexamples. ♠
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collapse

Figure 1: Collapsing the unit 11211.

It follows from the odd case and symmetry that {Ei, Ej} = 0. To prove
{Oi, Ej} = 0, we use the same set-up as above. Lemma 0.1 works again, and
gets us to the indecomposible case.

Lemma 0.3 If µ is indecomposible and has 101 or 2 then no terms contribute
to {Oi, Ej, µ}.

Proof: Let (A,B) be a supposedly contributing pair. Suppose µ has 101.
If the 1s are in odd places, then B, an even admissible monomial, has the
variable xo but not xo−1 for some odd index o. This is a contradiction. A
similar contradiction obtains if the places of the 1s are even.

Suppose the place of 2 is odd, say µ(5) = 2. Then B contains x4x5x6 and
A contains x5, but not both x4 and x6. Suppose neither x4 nor x6 appears
in A. Then x3 and x7 appear in neither A nor B. Hence, µ(3) = µ(7) = 0.
Since µ indecomposible and the support is not contained in just {5}, we must
have µ(2) 6= 0 or µ(8) 6= 0. But, neither x2 nor x8 can belong to A or B.
This is a contradiction. Suppose x4 appears in A. Then x3 appears in A
and x6 does not. Since x2 does not appear in B, we have µ(2) = 0. As in
the previous case, µ(7) = 0. Since µ is indecomposible and its support is
more than just {4, 5}, either µ(1) 6= 0 or µ(8) 6= 0. Now we have the same
contradiction as previously. The proof is the same when A contains x6.

The same argument, with the roles of A and B reversed, works when the
place of 2 is even. ♠

Now we know that µ has a single unit, consisting of a string of 1s. When
we label each index in the support by an a or a b, indicating the mono-
mial which contains the corresponding variables, the pattern must be one of
∗aaabbbaaabbb...∗ or ∗bbbaaabbbaaa...∗, with ∗ being either empty or a sin-
gle a or b – the opposite of its neighbor. An inductive argument as above
shows that {A,B} = 0 unless µ has an odd number of 1s and the pattern
is not a palindrome. In the odd, non-palindromic case, the reversed pattern
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corresponds to a second, and different, term which cancels the first. For in-
stance the terms {x1x5x6x7, x2x3x4} and {x1x2x3x7, x4x5x6)}, corresponding
to abbbaaa and aaabbba, cancel each other. This completes the proof.
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