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1 The Main Result

The purpose of these notes is to prove the famous Banach-Tarski Theorem.
We say that A, B ⊂ R

3 are equivalent if there are finite partitions into
disjoint pieces,

A = A1 ∪ . . . ∪ An; B = B1 ∪ . . . ∪ Bn,

and isometries I1, ..., In such that Ij(Aj) = Bj for all j. In this case, we write
A ∼ B. When A ∼ B it means, informally, that one can cut A into n pieces,
like a puzzle, and reassemble those pieces into B. The implied map A → B
is a piecewise isometric map.

The Banach-Tarski Theorem requires the Axiom of Choice. I’ll state the
precise version that is needed here.

Real Axiom of Choice (R.A.C.): Let {Xα} be a disjoint union of subsets
of R

3. Then there exists a set S ⊂
⋃

Xα such that S contains exactly one
element of Xα for each α.

Say that A is a fat set if A is bounded and A contains a ball.

Theorem 1.1 (Banach-Tarski) Assume the R.A.C. If A and B are arbi-

trary fat sets, then A ∼ B.

What makes this theorem amazing is that A could be a tiny ball and B
could be an enormous ball.
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2 Reduction to a Simpler Result

The goal in this section is to reduce the Banach-Tarski Theorem to a simpler
result that has a more direct proof.

We write A ≺ B if A ∼ B′ for some B′ ⊂ B. We write B ≻ A if there is
a partition B = B1∪ ...∪Bn and isometries I1, ..., In such that A ⊂

⋃

Ij(Bj).
The sets I1(B1), ..., In(Bn) need not be disjoint from each other. Below we
will prove the following three results.

1. If A ≺ B and B ≺ A then A ∼ B.

2. If B ≻ A then A ≺ B.

3. If A ∼ B and B ∼ C then A ∼ C.

Before proving these results, we use them to reduce the Banach-Tarski
Theorem to the following simpler result.

Theorem 2.1 (Doubling) Assume the R.A.C. Then there exist 3 disjoint

unit balls A, B1, B2 such that A ≻ B where B = B1 ∪ B2.

Let Br denote the unit ball of radius r centered at the origin.

Corollary 2.2 Assume the R.A.C. Then Br ∼ Bs for any r, s > 0.

Proof: By scaling, we can assume that 1 = r < s. Clearly B1 ≺ Bs. In light
of Statements 1 and 2 above, it suffices to prove that B1 ≻ Bs. There is some
n such that Bs can be covered by 2n translates of B1. Iterating the Doubling
Theorem n times, we see that B1 is equivalent to 2n disjoint translates of B1.
But then B1 ≻ Bs. ♠

By Statement 3, the relation ∼ is an equivalence relation. Hence, it suf-
fices to prove the Banach-Tarski Theorem when B = B1, the unit ball. But
Br ⊂ A ⊂ Bs for some pair of balls Br and Bs. Since Br ∼ Bs and A ⊂ Bs,
we have Br ≻ A. By Statement 2, we have A ≺ Br. But Br ≺ A. Hence
A ∼ Br. But Br ∼ B1. Hence A ∼ B1. This finishes the reduction.

Proof of Statement 1: This is basically the Schroeder-Bernstein Theorem.
We have injective and piecewise isometric maps f : A → B and g : B → A.
Say that an n-chain is a sequence of the form xn → ... → x0 ∈ A, where

2



• xk ∈ A if k > 0 is even. In this case f(xk) = xk−1

• xk ∈ B if k is odd. In this case g(xk) = xk−1.

For each a ∈ A let n(a) denote the length of the longest n-chain that ends in
a = x0. It might be that n(a) = ∞. Let An = {a ∈ A| n(a) = n}. Swapping
the roles of A and B, define Bn similarly.

Now observe that

• f(Ak) = Bk+1 for k = 0, 2, 4, ....

• g−1(Ak) = Bk−1 for k = 1, 3, 5.

• f(A∞) = B∞.

The restriction of f to

A′ = A0 ∪ A2 ∪ ... ∪ A∞

is an injective piecewise isometry and the restriction of g−1 to

A′′ = A − A′ = A1 ∪ A3 ∪ A5...

is also an injective piecewise isometry. (Note that A′′ does not include A∞.)
Define h(a) = f(a) if a ∈ A′ and h(a) = g−1(a) if a ∈ A′′. By construction
f(A′) ∩ g−1(A′′) = ∅. Hence h is an injection. Also, B = f(A′) ∪ g−1(A′′).
Hence h is a surjection. Hence h is a bijection. By construction h is a piece-
wise isometric map. ♠

Proof of Statement 2: Assume B ≻ A. Define

• A1 = A ∩ I1(B1).

• A2 = A ∩ I2(B2) − A1.

• A3 = A ∩ I3(B3) − A1 − A2, etc.

Then A = A1 ∪ ... ∪ An is a partition. Let B′

j = I−1
j Aj and let B′ =

⋃

B′

j .
Then B′

1 ∪ ...∪B′

n is a partition of B′. By construction A ∼ B′ ⊂ B. Hence
A ≺ B. ♠
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Proof of Statement 3: We have partitions

A = A1∪...∪An; B = B1∪...∪Bn = B′

1∪...∪B′

m; C = C ′

1∪...∪C ′

m

and isometries I1, ..., In and J1, ..., Jm such that Ij(Aj) = Bj and Jj(B
′

j) = C ′

j .
Define

Bij = Bi ∩ B′

j ; Aij = I−1
i (Bij); Cij = Jj(Bij),

and isometries Kij = Jj ◦ Ii. By construction {Aij} partitions A and {Cij}
partitions C and Kij isometrically carries Aij to Cij. Hence A ∼ C. ♠

3 Depleted Balls

We are left to prove the Doubling Theorem. Here we will reduce the Doubling
Theorem to another related result. Say that a depleted ball is a set of the
form B − X, where B is a unit ball and X is a countable union of lines
through the center of B.

Theorem 3.1 (Depleted Ball) Assume the R.A.C. Then there exists a de-

pleted ball Σ and a partition Σ = Σ1 ∪ Σ2 ∪ Σ3 such that

• Σi and Σj are isometric for all pairs i, j.

• Σ3 ≻ Σ1 ∪ Σ2.

Corollary 3.2 Assume the R.A.C. Then there are 9 disjoint depleted balls

A, B1, ..., B8 such that A ∼ B where B = B1 ∪ ... ∪ B8.

Proof: Iterating the conclusion of the Depleted Ball Theorem, we see that
Σ1 ≻ Y , where Y is any finite union of isometric copies of Σ1. Our Corollary
follows almost immediate from this. ♠

Lemma 3.3 Any unit ball can be covered by 4 isometric copies of any de-

pleted ball.
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Proof: Say that a punctured ball is a ball minus its center. It suffices to
prove that any punctured ball can be covered by two isometric copies of any
depleted ball. Applying isometries, it suffices to consider the case when all
the objects are subsets of the usual unit ball B. Let Cj = B−Xj for j = 1, 2.
Here Xj is a countable union of line through the origin. Let SO(3) denote
the rotation group of B. Let A(i, j) ⊂ SO(3) denote the set of rotations
which do not carry the ith line of X1 to the jth line of X2. Then A(i, j)
is open dense. By the Baire Category Theorem, the intersection

⋂

A(i, j) is
nonempty. Let I be some element of this intersection. We have X2 ⊂ I(C1).
Hence

B = C2 ∪ X2 ⊂ C2 ∪ I(C1) ⊂ B.

Hence B = I(C1) ∪ C2. ♠

The last two results combine in an obvious way to imply the Doubling
Theorem.

4 The Depleted Ball Theorem

It remains to prove the Depleted Ball Theorem. This is the interesting part
of the proof. Consider the countable group

Γ = 〈A, B|A3 = B2 = Identity〉.

In other words, Γ is the group of all words in A and B subject to the relations
that A3 and B2 are the identity word. Abstractly, Γ is the modular group.
We have a partition Γ = Γ1 ∪ Γ2 ∪ Γ3, where

• Γ1 consists of those words starting with A.

• Γ2 consists of those words starting with A2.

• Γ3 consists of the empty word and also those words starting with B.

We have the following structure:

AΓk = Γk+1; Γ1 ∪ Γ2 ⊂ BΓ3.

Indices are taken mod 3 for the first equation. These two algebraic facts are
quite close to the conclusion of the Depleted Ball Theorem. The trick is to
convert the algebra into geometry.
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Let B denote the unit ball in R
3 and let SO(3) denote the group of

rotations of B. Below we will prove the following technical lemma.

Lemma 4.1 There exists an injective homomorphism ρ : Γ → SO(3).

Essentially, a random homomorphism from Γ to SO(3) will be injective. We
identify A and B with their images under ρ. So, A is an order 3 rotation of
B and B is an order 2 rotation of B. In general, we identify elements of Γ
with their images under ρ.

A nontrivial element of SO(3) is a rotation about some line through the
origin. We say that a line in R

3 is bad if it is the line fixed by some element
of Γ. Since Γ is a countable group, there are only countable many bad lines.
We let X denote the union of these bad lines. We let Σ = B − X. Then Σ
is a depleted ball. Moreover, the group Γ acts freely on Σ in the following
sense. If γ(p) = p for some γ ∈ Γ and some p ∈ Σ, then γ is the identity
element.

We have an relation on Σ. We write p1 ∼ p2 if and only if p1 = γ(p2) for
some γ ∈ Γ. The fact that Γ is a group implies easily that ∼ is an equivalence
relation. This gives us an uncountable partition

Σ =
⋃

Σα

into the equivalence classes. By the Real Axiom of Choice, we can find a
new set S ⊂ Σ such that S has one member in common with each Sα.

Lemma 4.2 Let γ1, γ2 ∈ Γ be distinct elements. Then γ1(S) ∩ γ2(S) = ∅.

Proof: We argue by contradiction. Suppose that p ∈ γ1(S) ∩ γ2(S). Then
there is a point q ∈ S such that γ1(q) = γ2(q). But then γ−1

2 γ1(q) = q. But
Γ acts freely on Σ, giving a contradiction. ♠

Lemma 4.3
Σ =

⋃

γ∈Γ

γ(S).

Proof: choose p ∈ Σ. By construction, there is some q ∈ S such that p ∼ q.
This means that p = γ(q) for some γ ∈ Γ. Hence p ∈ γ(S). ♠
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Now define
Σk = Γk(S) :=

⋃

γ∈Γk

(S).

The previous two results show that Σ = Σ1 ∪Σ2 ∪Σ3 is a partition of Σ. At
the same time

A(Σk) = Σk+1; B(Σ3) = BΓ3(S) ⊃ (Γ1 ∪ Γ2)(S) = Σ1 ∪ Σ2.

The first part of this equation shows that Σi and Σj are isometric for all i, j.
The second part shows that Σ1 ∪ Σ2 is isometric to a subset of Σ3. Hence
Σ3 ≻ (Σ1 ∪ Σ2). This proves the Depleted Ball Theorem.

5 The Injective Homomorphism

It remains to produce an injective homomorphism ρ : Γ → SO(3). Let X
denote the set of all homomorphisms ρ. By stringing out the coordinates of
ρ(A) and ρ(B), we can identify X with a subset of R

18. The conditions on
ρ(A) and ρ(B) give polynomial conditions on the coordinates of points in X.
Hence X is an algebraic subvariety of R

18.
Let X(γ) ⊂ X denote the set of ρ such that ρ(γ) is trivial. Assume for

the moment that X(γ) is always nonempty. The condition that X(γ) = 0
gives a finite list of polynomial functions on X. Any polynomial function
on an algebraic variety either vanishes identically or vanishes on a nowhere
dense set. From this we see that X(γ) is open dense in X. But the countable
intersection of open dense subsets of an algebraic variety is non-empty, by
the Baire Category Theorem, and we choose ρ from this intersection.

It only remains to show that X(γ) is always nonempty. Our proof seems
more painful than necessary.

A Mobius transformation is a linear fractional transformation of C ∪∞.
Each Mobius transformation has two possible matrix representatives. Given
distinct z1, z2 ∈ C there is a unique Mobius transformation T (z1, z2) such
that T (z1, z2) has order 3 and T (z1, z2) rotates clockwise by 2π/3 about z1.
Of the two possibilities, we can continuously choose a matrix representative
M(z1, z2) for T (z1, z2).

Let N be a matrix representing the map z → −z. Assuming that we
have fixed the word γ, we let Fij(z1, z2) denote the (ij)th matrix entry of the
matrix obtained by substituting M(z1, z2) for A and N for B in the word γ.
Then Fij is a well-defined rational function on C

2.
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Lemma 5.1 Fij is nontrivial for some i, j.

Proof: We can choose (z1, z2) so that the matrices M(z1, z2) and N gen-
erate a group that is conjugate to the famous modular group from complex
analysis. The modular group is the image of an injective homomorphism
ρ : Γ → PSL2(R), the group of isometries of the hyperbolic plane. But then
ρ(γ) is not the identity matrix. Hence, the matrix coefficients of M(z1, z2)
are not all constant functions. ♠

We let F = Fij for the indices guaranteed by the previous result. Let

R∆ = {(z,−1/z)| z ∈ C − {0}}.

Lemma 5.2 F is nonconstant on R∆.

Proof: We will suppose not and derive a contradiction Consider the following
rational map on C

2.

θ(z1, z2) =
(

z1 + 1/z2, i(z1 − 1/z2)
)

.

By construction θ(R∆) is open in R
2. The function θ ◦ F ◦ θ−1 is a ratio-

nal function on C
2 that is constant on an open subset of R

2. This forces
θ◦F ◦θ−1 to be globally constant. But then F is globally constant as well. ♠

Now we finish our proof. We are trying to show that the set X(γ) is
nonempty. We conjugate our whole picture by stereographic projection

s : S2 → C ∪∞.

The maps ρ(A) and ρ(B) are then conjugated to Mobius transformations.
Choosing ρ(B) so that it fixes the vertical axes in R

3, we see that the Mobius
transformation sρ(B)s−1 is precisely the map z → −z. The map s carries
antipodal points to points of the form (z,−1/z). Hence sρ(A)s−1 is a map
of the form T (z, 1/z). By the previous lemma, we can choose z such that
sρ(γ)s−1 is nontrivial. But then ρ(γ) is nontrivial for the homomorphism ρ
corresponding to z.
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