
A Hyperbolic View of the Seven Circles

Theorem

Kostiantyn Drach and Richard Evan Schwartz ∗

October 4, 2019

1 Introduction

Cecil John Alvin Evelyn, or simply “Jack” to friends, was born in 1904 in
the United Kingdom in the aristocratic Evelyn family.

Figure 1: Cecil John Alvin Evelyn

A true “gentleman of leisure”, he had hobbies rather than jobs. Among
those hobbies was a genuine passion for elementary geometry. Jack and some
friends, also gentlemen of leisure, often spent time in a cafe hand-plotting
various lines and circles on large sheets of paper in pursuit of new configu-
ration theorems. These plots, which today might be routine manipulations
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with modern geometry software, back then were acts of scientific inquiry.
One result of these meetings was a self-published book “The Seven Circles
Theorem and other new theorems”, [EMCT]. (He also co-authored several
papers in number theory; see the bibliography in [Tyr].) This book did in-
deed contain a new theorem about a configuration of touching circles, the
Seven Circles Theorem. This theorem reads as follows:

Theorem 1.1 For every chain H1, ..., H6 of consequently touching circles in-

scribed in and touching the unit circle the three main diagonals of the hexagon

comprised of the points at which the chain touches the unit circle intersect at

a common point.

Figure 2 shows the Seven Circles Theorem in action.

Figure 2: The Seven Circles Theorem

There are several proofs of this result. See, for instance [Cu], [EMCT],
or [Ra]. We noticed that the Seven Circles Theorem fits naturally into
the setting of hyperbolic geometry because everything in sight takes place
inside the unit disk, and the open unit disk is a common model for the
hyperbolic plane. What is interesting is that actually the open unit disk
is a model for hyperbolic plane in two ways, as the Klein model and as
the Poincaré model. The key to decoding the Seven Circles Theorem is
understanding the conversion between these two models. In this note, we will
explain the connection between the Seven Circles Theorem and hyperbolic
geometry, then prove a stronger result about hyperbolic geometry hexagons
which implies the Seven Circles Theorem as a special case.
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2 Hyperbolic Geometry without Distances

On the simplest level, the hyperbolic plane is a system of points and lines
which satifies the first 4 of Euclid’s axioms and not the 5th axiom – the
parallel postulate. About 180 years ago, Bolyai, Gauss, and Lobachevsky all
discovered that one really can make a system like this. Here we discuss 3
models for the hyperbolic plane. The first two models are quite common and
the third one is specially introduced in order to better examine the relation-
ship between the first two models. Let ∆ be the open unit disk x2+y2 < 1 in
the plane and let Σ denote the open northern hemisphere in the unit sphere
x2 + y2 + z2 = 1.

The Klein model: In this model, the points are the points of ∆ and the
lines are the intersections of straight lines with ∆.

The Poincaré model: In this model, the points are the points of ∆, and
the lines are the intersections of circles with ∆, provided that the circle in-
tersects the boundary of ∆ at right angles.

The Hemisphere model: In this model, the points are the points of Σ
and the lines are intersections of vertical planes with Σ.

Consider the maps f : Σ → ∆ and f−1 : ∆ → Σ given by the formulas

f(x, y, z) = (x, y), f−1(x, y) = (x, y,
√

1− x2 − y2).

Geometrically, the map f is just vertical projection. The map f carries lines
in the Hemisphere model to lines in the Klein model, and the map f−1 does
the reverse. As the notation suggests, f and f−1 are inverse maps. So, f and
f−1 give the conversion between the Klein and Hemisphere models.

Now consider the maps g : Σ → ∆ and g−1 : ∆ → Σ given by the formulas

g(x, y, z) =
( x

1 + z
,

y

1 + z

)

, g−1(x, y) =
1

1 + x2 + y2
(2x, 2y, 1− x2 − y2).

Geometrically, the points (0, 0,−1) and (x, y) and g(x, y) are collinear. That
is, we get g(x, y) by taking the line through the south pole of the unit sphere
and (x, y) and intersecting it with Σ. This map is known as Stereographic

Projection. So, g and g−1 give the conversion between the Poincaré and
Hemisphere models.
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The maps gf−1 and fg−1 give an equivalence between the Klein and
Poincaré models. Rather than write formulas for this maps we explain what
they do geometrically. The map from the one model to the other just replaces
each line of one kind with the line of the other kind that has the same
“endpoints” on the unit circle. What is miraculous about this description
is that there are underlying maps, on the level of points, which do the right
things to the lines. So, if we have 3 Klein-lines all containing the same
triple point , as we do in the conclusion of the Seven Circles Theorem, the
corresponding Poincaré-lines also intersect in a triple point. With this in
mind, we show what Figure 2 looks like when we replace the three relevant
Klein-lines with the three relevant Poincaré-lines.

Figure 3: The Seven Circles Theorem translated to the Poincaré model

Let H
2 denote the Poincaré model of the hyperbolic plane. We hereby

call Poincaré-lines geodesics , as is commonly done. Second, we denote the
unit circle as ∂H2 and call it the ideal boundary of H2, as is commonly
done. The points of ∂H2 are known as ideal points , even though technically
they are not points of H2. Finally, we say that a disk contained in H

2,
except for a single ideal point, is a horodisk . We will explain the geometric
significance of such horodisks below. In Figure 3, the 6 points where the
horodisks intersect ∂H2 are ideal points. The figure made by connecting the
6 ideal points by geodesics is known as an ideal hexagon. This ideal hexagon
is shown in black. Here is our first (but not last) reformulation of the Seven
Circles Theorem.
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Theorem 2.1 Let P be an ideal hexagon. Suppose that there are horodisks

H1, ..., H6 placed at the ideal vertices of P in such a way that every two

consecutive horodisks are tangent. Then the hyperbolic geodesics connecting

opposite vertices of P meet at a triple point.

Once we make the conversion to the Poincaré model, our first reformu-
lation is mostly an exercise in using new terminology. However, after we go
more deeply into hyperbolic geometry, we will prove a different reformulation
that actually says something new.

3 Hyperbolic Geometry with Distances

Like the Euclidean plane, the hyperbolic plane is not only a system of points
and lines but also a metric space.

The Hyperbolic Metric: The distance between two points b, c ∈ H
2

is computed as follows. The geodesic containing b and c intersects ∂H2 in
points a, d. These points are labeled so that a, b, c, d occur in order. The
quantity

dist(b, c) = log
(a− c)(b− d)

(a− b)(c− d)
. (1)

is known as the hyperbolic distance between b and c. Here we are taking
advantage of the fact that we can represent points in the plane as complex
numbers. Thus (a − c)(b − d) is the product of the complex numbers a − c

and b− d. Conveniently, the quantity inside the log function is always a real
number greater than or equal to 1.

Hyperbolic Isometries: Just as the Euclidean distance function, typically
defined in terms of sums of squares, exhibits a surprising rotational symmetry,
so does the hyperbolic distance function. A linear fractional transformation

of the complex plane C is a map of the form

T (z) =
az + b

cz + d
, ad− bc 6= 0 (2)

Such a map is called a hyperbolic isometry when both T and T−1 map H
2 to

itself. The reason for the name, in this case, is that T preserves hyperbolic
distances: dist(T (b), T (c)) = dist(b, c) for all points b, c ∈ H

2. One can verify
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this claim with a straightforward algebraic manipulation. One can map any
point of H2 to any other point by such a hyperbolic isometry. For instance,
the map

T (z) =
z − r

rz − 1

is a hyperbolic isometry which has the property that T (±1) = ±1 and
T (r) = 0. The rotations about the origin are also hyperbolic isometries.
Using these two kinds of maps, you can probably convince yourself of our
claim that one can map any point of H2 to any other point using a hyper-
bolic isometry.

Hyperbolic Disks: A hyperbolic disk in H
2 any set of the form

B(z0, r) = {z| dist(z, z0) ≤ r}.

Here z0 is a point of H2, called the hyperbolic center of the hyperbolic disk.
The boundary of the hyperbolic disk is called a hyperbolic circle. The bound-
ary of a horodisk is a horocircle.

The hyperbolic disks centered at the origin are round Euclidean disks, by
symmetry. Also, the hyperbolic isometries map Euclidean disks to Euclidean
disks. Since these hyperbolic isometries also preserve the hyperbolic distance,
we see that as sets the hyperbolic disks and circles are exactly the same as
the Euclidean disks and circles contained in H

2. Note, however, that the
hyperbolic and Euclidean center of a disk are typically distinct, as are the
hyperbolic and Euclidean radii. If we keep the Euclidean size of a disk
the same and start shifting it over until it becomes tangent to ∂H2, the
hyperbolic center moves to the tangency point and the radius tends to ∞.
So, one can view a horodisk as a disk of infinite radius centered at an ideal
point. The first two pictures in Figure 4 show hyperbolically concentric
circles, and the last picture shows hyperbolically concentric horocircles.

Figure 4: Hyperbolically concentric circles and horocircles.
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Alternating Perimeter: A hyperbolic polygon has the same definition as
a Euclidean polygon except that everything takes place in H

2. Namely,
it is a closed loop made by connecting together finitely many hyperbolic
geodesic segments. The endpoints of these segments are the vertices and
the segments themselves are the edges . A hyperbolic polygon always has a
perimeter, namely the sum of the hyperbolic distances between the vertices.
Equivalently, we could say that the perimeter is the sum of the lengths of
the edges. When the polygon has an even number of sides, it also has an
alternating perimeter . This is defined to be alternating sum of the lengths
of the edges, namely (S1 + S3 + S5 + ...)− (S2 + S4 + S6 + ...).

An ideal polygon has the same definition as above, except that the ver-
tices are all ideal points. Surprisingly, the alternating perimeter of an ideal
polygon makes sense, even though the individual terms in the sum are in-
finite. To see this for hexagons (which is the case we care about) imagine
that we have a sequence {Pn} of hyperbolic hexagons converging to some
ideal hexagon P∞. We place disks at the vertices of Pn, in such a way that
consecutive ones do not overlap, and we compute the alternating perimeter
instead as

(S ′

1 + S ′

3 + S ′

5)− (S ′

2 + S ′

4 + S ′

6) (3)

where S ′

k is the length of the portion of the kth side of Pn that lies outside
the two disks centered at its endpoints. If we replace one of our disks by
another one with the same center, we are adding some amount to some S ′

k

and subtracting the same amount to S ′

k+1
. So, the modified sum does not

depend on which disks we choose. Taking a limit as n → ∞, we see that the
alternating perimeter of P∞ can be defined as the same kind of sum as in
Equation 3, except that S ′

k denotes the (finite!) length of the portion of the
kth side of P∞ that lies outside the two horodisks centered at its endpoints.

3.1 The Main Result

An ideal hexagon P determines a small triangle TP , the geodesic triangle
bounded by the three geodesics connecting opposite sides of P . In Figure 5
below, the red triangle is TP . Here is the main result.

Theorem 3.1 For any ideal hexagon P , the alternating perimeter of P is,

up to sign, twice the perimeter of TP .
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Proof: Define a semi-ideal triangle to be a hyperbolic triangle with two
ideal vertices and one vertex in H

2. The yellow triangles Y1, Y2, Y3 on the
left side in Figure 5 are semi-ideal triangles. The green triangles G1, G2, G3

on the right side in Figure 5 are also semi-ideal triangles. Note that the green
triangles overlap. They all contain TP .

TP

P P

Y

Y

1

Y3

2

G2

G1

G3

Figure 5: The ideal hexagon P and the small triangle TP .

Let L1, L2, L3 denote the sides of a semi-ideal triangle V , with the con-
vention that L3 connects the two ideal vertices of V . We delete disjoint
horodisks from the two ideal vertices of V and define

A(V ) = L′

1 + L′

2 − L′

3, (4)

Where L′

j is the length of the portion of Lj outside the two horodisks. This
definition is very similar to the definition of the alternating perimeter above,
and it does not depend on which horodisks we remove.

Note that Gk and Yk share a vertex for k = 1, 2, 3. We have a hyperbolic
isometry Ik such that Ik(Yk) = Gk. This is most easily seen if we normalize
the picture so that the vertex Yk ∩Gk is the Euclidean origin; in this case IK
is just reflection in the origin. Hence A(Yk) = A(Gk). Summing up, we have

A(Y1) + A(Y2) + A(Y3)− (A(G1) + A(G2) + A(G3)) = 0. (5)

The terms in the sum on the left side of Equation 5 can be divided into two
types: Those which come from geodesics connecting ideal points, and the
rest. When we sum up the terms of the first kind, we get A(P ) (up to sign)
When we sum up the rest of the terms, we get twice the perimeter of TP

because, so to speak, the lengths of the rest of the geodesics bounding TP

are counted in pairs with opposite signs. ♠

8



Now that we have Theorem 3.1, we can give our final reformulation of the
Seven Circles Theorem. Say that a hexagon P has point reflection symmetry

if there is a nontrivial hyperbolic isometry T , which has a single fixed point,
such that T (P ) = P and T 2 is the identity. We call T a point reflection. The
map T swaps the opposite vertices of P . Here is our final reformulation of
the Seven Circles Theorem.

Theorem 3.2 The following are equivalent for an ideal hexagon P .

1. The geodesics connecting opposite vertices of P meet at a triple point.

2. P has point reflection symmetry.

3. The alternating perimeter of P is 0.

Proof: (1 → 2): Suppose that the first condition holds. The conditions
above are unchanged if we move the picture by a hyperbolic isometry. We
do this in such a way that the triple point lies at the origin of the unit
disk. But then, in the Poincaré model, the three geodesics connecting the
opposite vertices of P are all Euclidean diameters of the unit disk. This
means that the Euclidean symmetry z → −z is a symmetry of P . But
this particular symmetry is also a hyperbolic isometry. Hence P has point
reflection symmetry.

(2 → 3): We choose the horidisks H1, H2, H3 arbitrarily, then afterwards
we set Hk+3 = T (Hk) for k = 1, 2, 3. This makes all of Figure 3 invariant
under the point reflection T . But then, referring to Equation 3, we have
S ′

k+3
= S ′

k for k = 1, 2, 3. Hence the sum in Equation 3 is 0.
(3 → 1): If P has alternating perimeter 0 then, by Theorem 3.1, the

triangle TP has perimeter 0. This means that TP is actually a single point.
♠

If we have an ideal hexagon as in Theorem 2.1, then its alternating perime-
ter is 0 because in Equation 3 we gave S ′

1 = ... = S ′

6 = 0. So, Theorem 3.2
implies Theorem 2.1, and hence the Seven Circles theorem. Theorem 3.2
also reveals that all the instances of the Seven Circles Theorem involve ideal
hexagons having point reflection symmetry, and this makes the Seven Circles
Theorem obvious.
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