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Abstract

The pentagram map is a discrete dynamical system defined on the moduli space of poly-
gons in the projective plane. This map has recently attracted a considerable interest, mostly
because its connection to a number of different domains, such as: classical projective geom-
etry, algebraic combinatorics, moduli spaces, cluster algebras and integrable systems.

Integrability of the pentagram map was conjectured in [19] and proved in [15] for a larger
space of twisted polygons. In this paper, we prove the initial conjecture that the pentagram
map is completely integrable on the moduli space of closed polygons. In the case of convex
polygons in the real projective plane, this result implies the existence of a toric foliation on
the moduli space. The leaves of the foliation carry affine structure and the dynamics of the
pentagram map is quasi-periodic. Our proof is based on an invariant Poisson structure on
the space of twisted polygons. We prove that the Hamiltonian vector fields corresponding
to the monodoromy invariants preserve the space of closed polygons and define an invariant
affine structure on the level surfaces of the monodromy invariants.
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1 Introduction

The pentagram map is a geometric construction which carries one polygon to another. Given an
n-gon P , the vertices of the image T (P ) under the pentagram map are the intersection points
of consecutive combinatorially shortest diagonals of P . The left side of Figure 1 shows the basic
construction. The right hand side shows the second iterate of the pentagram map. The second
iterate has the virtue that it acts in a canonical way on a labeled polygon, as indicated. The
first iterate also acts on labeled polygons, but one must make a choice of labeling scheme; see
Section 2.2. The simplest example of the pentagram map for pentagons was considered in [13].
In the case of arbitrary n, the map was introduced in [17] and further studied in [18, 19].

The pentagram map is defined on any polygon whose points are in general position, and
also on some polygons whose points are not in general position. One sufficient condition for
the pentagram map to be well defined is that every consecutive triple of points is not collinear.
However, this last condition is not invariant under the pentagram map.

The pentagram map commutes with projective transformations and thereby induces a (gener-
ically defined) map

T : Cn → Cn (1.1)

where Cn is the moduli space of projective equivalence classes of n-gons in the projective plane.
Mainly we are interested in the subspace C0n of projective classes of convex n-gons. The penta-
gram map is entirely defined on C0n and preserves this subspace.
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Figure 1: The pentagram map and its second iterate defined on a convex 7-gon

Note that the pentagram map can be defined over an arbitrary field. Usually, we restrict
our considerations to the geometrically natural real case of convex n-gons in RP2. However, the
complex case represents a special interest since the moduli space of n-gons in CP2 is a higher
analog of the moduli spaceM0,n (the moduli space of stable curves of genus zero with n distinct
marked points). Unless specified, we will be using the general notation P2 for the projective
plane and PGL3 for the group of projective transformations.

1.1 Integrability problem and known results

The maps T : C5 → C5 and T : C6 → C6 are periodic. Indeed, there are maps T ′ : C5 → C5 and
T ′ : C6 → C6, which differ from T only by composition with a cyclic relabelling, so that T ′ is
the identity on C5 and an involution on C6. See [17]. (These alternate labeling schemes are only
convenient for the cases n = 5, 6 so we do not use them below.)

The conjecture that the map (1.1) is completely integrable was formulated roughly in [17]
and then more precisely in [19]. This conjecture was inspired by computer experiments in the
case n = 7. Figure 2 presents (a two-dimensional projection of) an orbit of a convex heptagon
in RP2. (In the example, the bilateral symmetry of the initial heptagon causes the orbit to have
2-dimensional closure, rather than a 3-dimensional closure, as one would expect from our main
result below.)

The first results regarding the integrability of the pentagram map were proved for the pen-
tagram map defined on a larger space, Pn, of twisted n-gons. A series of T -invariant functions
(or first integrals) called the monodromy invariants, was constructed in [19]. In [15] (see also
[14] for a short version), the complete integrability of T on Pn was proved with the help of a
T -invariant Poisson structure, such that the monodromy invariants Poisson-commute.
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Figure 2: An orbit of the pentagram map on a heptagon

In [22], F. Soloviev found a Lax representation of the pentagram map and proved its algebraic-
geometric integrability. The space of polygons (either Pn or Cn) is parametrized in terms of a
spectral curve with marked points and a divisor. The spectral curve is determined by the
monodromy invariants, and the divisor corresponds to a point on a torus – the Jacobi variety
of the spectral curve. These results allow one to construct explicit solutions formulas using
Riemann theta functions (i.e., the variables that determine the polygon as explicit functions
of time). Soloviev also deduces the invariant Poisson bracket of [15] from the Krichever-Phong
universal formula.

Our result below has the same dynamical implications as that of Soloviev, in the case of
real convex polygons. Soloviev’s approach is by way of algebraic integrability, and it has the
advantage that it identifies the invariant tori explicitly as certain Jacobi varieties. Our proof is
in the framework of Liouville-Arnold integrability, and it is more direct and self-contained.

1.2 The main theorem

The main result of the present paper is to give a purely geometric proof of the following result.

Theorem 1. Almost every point of Cn lies on a T -invariant algebraic submanifold of dimension

d =

{
n− 4, n is odd
n− 5, n is even.

(1.2)

that has a T -invariant affine structure.

Recall that an affine structure on a d-dimensional manifold is defined by a locally free action
of the d-dimensional Abelian Lie algebra, that is, by d commuting vector fields linearly inde-
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pendent at every point. (The vector fields, but not the canonical affine structure, depend on a
choice of a basis for the Lie algebra.)

In the case of convex n-gons in the real projective plane, thanks to the compactness of the
space established in [18], our result reads:

Corollary 1.1. Almost every orbit in C0n lies on a finite union of smooth d-dimensional tori,
where d is as in equation (1.2). This union of tori has a T -invariant affine structure.

Hence, the orbit of almost every convex n-gon undergoes quasi-periodic motion under the penta-
gram map. The above statement is closely related to the integrability theorem in the Liouville–
Arnold sense [1].

Let us also mention that the dimension of the invariant sets given by (1.2) is precisely a half
of the dimension of Cn, provided n is odd, which is a usual, generic, situation for an integrable
system. If n is even, then d = 1

2 dim Cn − 1 so that one can talk of “hyper-integrability”. Also,
we remark that the cases n = 5, 6 are special in that the maps are periodic and hence the orbits
are just finite sets of points.

Our approach is based on the results of [19] and [15]. We prove that the level sets of the mon-
odromy invariants on the subspace Cn ⊂ Pn are algebraic subvarieties of Cn of dimension (1.2).
We then prove that the Hamiltonian vector fields corresponding to the invariant functions are
tangent to Cn (and therefore to the level sets). Finally, we prove that the Hamiltonian vector
fields define an affine structure on a generic level set. The main calculation, which establishes
the needed independence of the monodromy invariants and their Hamiltonian vector fields, uses
a trick that is similar in spirit to tropical algebra.

One point that is worth emphasizing is that our proof does not actually produce a symplectic
(or Poisson) structure on the space Cn. Rather, we use the Poisson structure on the ambient
space Pn, together with the invariants, to produce enough commuting flows on Cn in order to
fill out the level sets.

1.3 Related topics

The pentagram map is a particular example of a discrete integrable system. The main motiva-
tion for studying this map is its relations to different subjects, such as: a) projective differential
geometry; b) classical integrable systems and symplectic geometry; c) cluster algebras; d) alge-
braic combinatorics of Coxeter frieze patterns. All these relations may be beneficial not only
for the study of the pentagram map, but also for the above mentioned subjects. Let us mention
here some recent developments involving the pentagram map.

• The relation of T to the classical Boussinesq equation was essential for [15]. In particular,
the Poisson bracket was obtained as a discretization of the (first) Adler-Gelfand-Dickey
bracket related to the Boussinesq equation. We refer to [23, 24] and references therein for
more information about different versions of the discrete Boussinesq equation.
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• In [20], surprising results of elementary projective geometry are obtained in terms of the
pentagram map, its iterations and generalizations.

• In [21], special relations amongst the monodromy invariants are established for polygons
that are inscribed into a conic.

• In [2], the pentagram map is related to Lie-Poisson loop groups and to dimer models.

• The paper [11] concerns discretizations of Adler-Gelfand-Dickey flows as multi-dimensional
generalizations of the pentagram map.

• A particularly interesting feature of the pentagram map is its relation to the theory of
cluster algebras developed by Fomin and Zelevinsky, see [3]. This relation was noticed
in [15] and developed in [7], where the pentagram map on the space of twisted n-gons
is interpreted as a sequence of cluster algebra mutations, and an explicit formula for the
iterations of T is calculated1.

• Extending Glick’s approach and developing the connection with cluster algebras, [6] intro-
duces higher pentagram maps and proves their complete integrability using the machinery
of weighted directed networks on surfaces.

• The structure of cluster manifold on the space Cn and the related notion of 2-frieze pattern
are investigated in [12].

• The singularities of the pentagram map are studied in [8]. A typical singularity disappears
after a finite number of iterations (a confinement phenomenon).

• A version of higher-dimensional pentagram map is introduced and studied in [9].

2 Integrability on the space of twisted n-gons

In this section, we explain the proof of the main result in our paper [15], the Liouville-Arnold
integrability of the pentagram map on the space of twisted n-gons. While we omit some technical
details, we take the opportunity to fill a gap in [15]: there we claimed that the monodromy
invariants Poisson commute, but our proof there had a flaw. Here we present a correct proof of
this fact.

2.1 The space Pn
We recall the definition of the space of twisted n-gons.

1This can be understood as a version of integrability or “complete solvability”.
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A twisted n-gon is a map φ : Z→ P2 such that

vi+n = M ◦ vi, (2.1)

for all i ∈ Z and some fixed element M ∈ PGL3 called the monodromy. We denote by Pn
the space of twisted n-gons modulo projective equivalence. The pentagram map extends to a
generically defined map T : Pn → Pn. The same geometric definition given for ordinary polygons
works here (generically), and the construction commutes with projective transformations.

In the next section we will describe coordinates on Pn. These coordinates identify Pn as
an open dense subset of R2n. Sometimes we will simply identify Pn with R2n. The space Cn is
much more complicated; it is an open dense subset of a codimension 8 subvariety of R2n.

Remark 2.1. If n 6= 3m, then it seems useful to impose the simple condition that vi, vi+1, vi+2

are in general position for all i. With this condition, Pn is isomorphic to the space of difference
equations of the form

Vi = ai Vi−1 − bi Vi−2 + Vi−3, (2.2)

where ai, bi ∈ C or R are n-periodic: ai+n = ai and bi+n = bi, for all i. Therefore, Pn is just a
2n-dimensional vector space, provided n 6= 3m. Let us also mention that the spectral theory of
difference operators of type (2.2) is a classical domain (see [10] and references therein).

2.2 The corner coordinates

Following [19], we define local coordinates (x1, . . . , x2n) on the space Pn and give the explicit
formula for the pentagram map.

Recall that the (inverse) cross ratio of 4 collinear points in P2 is given by

[t1, t2, t3, t4] =
(t1 − t2) (t3 − t4)
(t1 − t3) (t2 − t4)

, (2.3)

In this formulation, the line containing the points is identified with R ∪ ∞ by a projective
transformation so that ti ∈ R for all i. Any identification yields the same final answer.

We define

x2i−1 = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))]

x2i = [vi+2, vi+1, ((vi+2, vi+1) ∩ (vi, vi−1)) , ((vi+2, vi+1) ∩ (vi−1, vi−2))]
(2.4)

where (v, w) stands for the line through v, w ∈ P2, see Figure 3. The functions (x1, . . . , x2n)
are cyclically ordered: xi+2n = xi. They provide a system of local coordinates on the space Pn
called the corner invariants, cf. [19].

7



i

i+2

v
i+1v

i−1

v
i−2

v

v

Figure 3: Definition of the corner invariants

Remark 2.2. a) The right hand side of the second equation is obtained from the right hand
side of the first equation just by swapping the roles played by (+) and (−). In light of this
fact, it might seem more natural to label the variables so that the second equation defines x2i+1

rather than x2i+0. The corner invariants would then be indexed by odd integers. In Section 5
we will present an alternate labelling scheme which makes the indices work out better.

b) Continuing in the same vein, we remark that there are two useful ways to label the
corner invariants. In [19] one uses the variables x1, x2, x3, x4, ... whereas in [15, 21] one uses
the variables x1, y1, x2, y2, .... The explicit correspondence between the two labeling schemes
is x2i−1 → xi, x2i → yi. We call the former convention the flag convention whereas we call
the latter convention the vertex convention. The reason for the names is that the variables
x1, x2, x3, x4 naturally correspond to the flags of a polygon, as we will see in Section 5. The
variables xi, yi correspond to the two flags incident to the ith vertex.

Let us give an explicit formula for the pentagram map in the corner coordinates. Follow-
ing [15], we will choose the right labelling2 of the vertices of T (P ), see Figure 4. One then has
(see [19]):

T ∗x2i−1 = x2i−1
1− x2i−3 x2i−2
1− x2i+1 x2i+2

, T ∗x2i = x2i+2
1− x2i+3 x2i+4

1− x2i−1 x2i
, (2.5)

where T ∗xi stands for the pull-back of the coordinate functions.

2.3 Rescaling and the spectral parameter

Equation (2.5) has an immediate consequence: a scaling symmetry of the pentagram map.

2To avoid this choice between the left or right labelling one can consider the square T 2 of the pentagram map.
.
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Consider a one-parameter group R∗ (or C∗ in the complex case) acting on the space Pn
multiplying the coordinates by s or s−1 according to parity:

Rt : (x1, x2, x3 . . . , x2n)→ (s x1, s
−1 x2, s x3, . . . , s

−1x2n). (2.6)

It follows from (2.5), that the pentagram map commutes with the rescaling operation.
We will call the parameter s of the rescaling symmetry the spectral parameter since it defines

a one-parameter deformation of the monodromy, Ms. Note that the notion of spectral parameter
is extremely useful in the theory of integrable systems.

2.4 The Poisson bracket

Recall that a Poisson bracket on a manifold is a Lie bracket {., .} on the space of functions
satisfying the Leibniz rule:

{F,GH} = {F,G}H +G{F,H},

for all functions F,G and H. The Poisson bracket is an essential ingredient of the Liouville-
Arnold integrability [1].

Define the following Poisson structure on Pn. For the coordinate functions we set

{xi, xi+2} = (−1)i xi xi+2, (2.7)

and all other brackets vanish. In other words, the Poisson bracket {xi, xj} of two coordinate
functions is different from zero if and only if |i − j| = 2. The Leibniz rule then allows one to
extend the Poisson bracket to all polynomial (and rational) functions. Note that the Jacobi
identity obviously holds. Indeed, the bracket (2.7) has constant coefficients when considered in
the logarithmic coordinates log xi.
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Action on Monomials: Here is a more explicit description of how the bracket acts on mono-
mials. Given monomials A and B, we form a bipartite graph, where the top vertices and the
bottom vertices are both indexed by the set {1, ..., 2n}. We join the top vertices ai to the bottom
vertices bi±2 iff xi appears in A and xi±2 appears in B. Indices are taken cyclically, as usual. We
label the edge joining ai to bi±2 with (±) if i is even and with (∓) if i is odd. Then {A,B}/AB is
the number of (+) signs minus the number of (−) signs. One derives this description by induc-
tion and Leibniz’s rule. Figure 5 illustrates this for n = 6 and A = x3x4x5x9 and B = x1x5x6x7.
In this case {A,B}/AB = 1. The thick lines are labelled with (−) and thin ones with (+).

101 2 3 4 6 95 7 8

1 2 3 4 6 95 7 8 10 11 12

1211

Figure 5: Graphical calculation of {x3x4x5x9, x1x5x6x7}

Alternatively, one may orient the graph according to the sign of the bracket between the
respective variables: the thin edges are oriented downward and the thick one upward. The
coefficient {A,B}/AB is the intersection number of this oriented graph with the horizontal line
separating the top and bottom parts.

Note that the above definition is valid in the case of monomials with powers of variables.
One then obtains multiple edges with multiplicity given by the product of the corresponding
powers.

Proposition 2.3. The pentagram map preserves the Poisson bracket (2.7).

Proof. This is an easy consequence of formula (2.5), see [15] (Lemma 2.9), for the details. 2

Recall that a Poisson structure is a way to associate a vector field to a function. Given a
function f on Pn, the corresponding vector field Xf is called the Hamiltonian vector field defined
by Xf (g) = {f, g} for every function g. In the case of the bracket (2.7), the explicit formula is
as follows:

Xf =
∑
i−j=2

(−1)
i+j
2 xi xj

(
∂f

∂xi

∂

∂xj
− ∂f

∂xj

∂

∂xi

)
. (2.8)

Note that the definitions of the Poisson structure in terms of the bracket of coordinate functions
(2.7) and in terms of the Hamiltonian vector fields (2.8) are equivalent.

Geometrically speaking, Hamiltonian vector fields are defined as the image of the map

X : T ∗x Pn → Tx Pn (2.9)
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at arbitrary point x ∈ Pn. The kernel of X at a generic point is spanned by the differentials of
the Casimir functions, that is, the functions that Poisson commute with all functions.

Remark 2.4. The cluster algebra approach of [7] also provides a Poisson bracket, invariant with
respect to the pentagram map (see the book [5]). It can be checked that this cluster Poisson
bracket is induced by the bracket (2.7).

2.5 The rank of the Poisson bracket and the Casimir functions

The corank of a Poisson structure is the codimension of the generic symplectic leaves. In other
words, this is the dimension of the kernel of the map X in (2.9), that is, the dimension of
the space generated by the differentials of the Casimir functions. In our situation, in which
everything in sight is algebraic, the corank is generically constant.

Proposition 2.5. The Poisson bracket (2.7) has corank 2 if n is odd and corank 4 if n is even;
the functions

On = x1x3 · · ·x2n−1, En = x2x4 · · ·x2n (2.10)

for arbitrary n and the functions

On
2

=
∏

1≤i≤n
2

x4i−1 +
∏

1≤i≤n
2

x4i+1, En
2

=
∏

1≤i≤n
2

x4i +
∏

1≤i≤n
2

x4i+2, (2.11)

for even n, are the Casimirs of the Poisson bracket (2.7).

Proof. First, one checks that the functions (2.10) and (2.11) are indeed Casimir functions (for
arbitrary n and for even n, respectively). To this end, it suffices to consider the brackets of
(2.10) and (2.11), if n is even, with the coordinate functions xi.

Second, one checks that the corank of the Poisson bracket is equal to 2, for odd n and 4,
for even n. The corank is easily calculated in the coordinates log xi, see [15], Section 2.6 for the
details. 2

It follows that the Casimir functions are of the form F (On, En), if n is odd, and of the form
F (On/2, En/2, On, En), if n is even. In both cases the generic symplectic leaves of the Poisson
structure have dimension 4[(n− 1)/2].

Remark 2.6. If n is even, then the Casimir functions can be written in a more simple manner:{ ∏
1≤i≤n

2

x4i−1,
∏

1≤i≤n
2

x4i+1,
∏

1≤i≤n
2

x4i,
∏

1≤i≤n
2

x4i+2

}
instead of (2.10) and (2.11).
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2.6 Two constructions of the monodromy invariants

The second main ingredient of the Liouville-Arnold theory is a set of Poisson-commuting invari-
ant functions. In this section, we recall the construction [19] of a set of first integrals of the
pentagram map

O1, . . . , O[n2 ], On, E1, . . . , E[n2 ], En

called the monodromy invariants. In other words, we will define n+ 1 invariant function on Pn,
if n is odd, and n + 2 invariant function on Pn, if n is even. The monodromy invariants are
polynomial in the coordinates (2.4). Algebraic independence of these polynomials was proved
in [19]. Note that On and En are the Casimir functions (2.10) and, for even n, the functions On

2

and En
2

are as in (2.11).
The indexing of the function Oi, Ej corresponds to their weight. More precisely, we define

the weight of the coordinate functions by

|x2i+1| = 1, |x2i| = −1. (2.12)

Then, |Ok| = k and |Ek| = −k. We give two definitions of the monodromy invariants. In [19] it
is proved that the two definitions are equivalent.

A. The geometric definition. Given a twisted n-gon (2.1), the corresponding monodromy
has a unique lift to SL3. By slightly abusing notation, we again denote this matrix by M . The
two traces, tr(M) and tr(M−1), are preserved by the pentagram map (this is a consequence
of the projective invariance of T ). These traces are rational functions in the corner invariants.
Consider the following two functions:

Ω̃1 = tr(M)O
2
3
n E

1
3
n , Ω̃2 = tr(M−1)O

1
3
n E

2
3
n .

It turns out that Ω̃1 and Ω̃2 are polynomials in the corner invariants (see [19]). Since the
pentagram map preserves the monodromy, and On and En are invariants, the two functions Ω̃1

and Ω̃2 are also invariants. We then have:

Ω̃1 =

[n/2]∑
k=0

Ok, Ω̃2 =

[n/2]∑
k=0

Ek, (2.13)

where Ok has weight k and Ek has weight −k and where we set

O0 = E0 = 1,

for the sake of convenience. The pentagram map preserves each homogeneous component indi-
vidually because it commutes with the rescaling (2.6).
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Notice also that, if n is even, then On
2

and En
2

are precisely the Casimir functions (2.11).
However, the invariants On and En do not enter the formula (2.13).

B. The combinatorial definition. Together with the coordinate functions xi, we consider the
following “elementary monomials”

Xi := xi−1 xi xi+1, i = 1, . . . , 2n. (2.14)

Let O(X,x) be a monomial of the form

O = Xi1 · · ·Xis xj1 · · ·xjt ,

where i1, . . . , is are even and j1, . . . , jt are odd. Such a monomial is called admissible if the
following conditions hold for all relevant indices a, b:

• |ia − ib| > 4.

• |ja − jb| > 2.

• |ia − jb| > 3.

It turns out that this is equivalent to the statement that there are no repeated factors (of the
form Xk

i or xkj with k > 1), and furthermore that the Poisson brackets {Xir , Xiu} and {Xir , xju}
and {xjr , xju} of all the elementary monomials entering O vanish.

The weight of the above monomial is

|O| = s+ t,

see (2.12). For every admissible monomial, we also define the sign of O via

sign(O) := (−1)t.

The invariant Ok is defined as the alternated sum of all the admissible monomials of weight k:

Ok =
∑
|O|=k

sign(O)O, k ∈
{

1, 2, . . . ,
[n

2

]}
. (2.15)

It is proved in [19] that this definition of Ok coincides with (2.13).

Example 2.7. The first two invariants are:

O1 =
n∑
i=1

(X2i − x2i+1) , O2 =
∑
|i−j|≥2

(x2i+1 x2j+1 −X2i x2j+1 +X2iX2j+2) ,

for n = 5 the above formulas simplify, see [15].

The definition of the functions Ek is exactly the same, except that the roles of even and odd
are swapped.

Remark 2.8. There is an elegant way to define the monodromy invariants in terms of deter-
minants. See [21].
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2.7 The monodromy invariants Poisson commute

The goal is this section is to prove the following result.

Theorem 2. {Oi, Oj} = {Oi, Ej} = {Ei, Ej} = 0 for all relevant indices i and j. Hence, the
corresponding Hamiltonian vector fields commute.

We prove first that {Oi, Oj} = 0. The only monomials which can appear in {Oi, Oj} have
exponents (of Xi and xj) in the set {1, 2}. In our proof, we sometimes view the monomial µ as
a mapping µ : {1, ..., 2n} → {0, 1, 2}. Here µ(i) is the exponent of xi in µ. The support of µ (as
a map) is exactly the set of indices of variables which appear in µ (as a monomial).

For a polynomial P and a monomial µ, we define P |µ as the monomial µ times its coefficient
in P . We call µ good if {Oi, Oj}|µ = 0 for all indices i, j. We will prove that all monomials are
good.

We say that µ decomposes into µ1 and µ2 if (as monomials) µ = µ1µ2, and (as maps) the
supports of µ1 and µ2 are separated by at least 2 empty spaces, in the cyclic sense. It follows
that the Poisson bracket of a variable with the index in support of µ1 and a variable with the
index in support of µ2 vanishes. If we cannot factor µ this way, we call µ indecomposable.

Lemma 2.9. If µ decomposes into µ1 and µ2, and both µ1 and µ2 are good, then µ is good.

Proof. For any monomial F whose support is contained in the support of µ, we have a unique
decomposition F = F1F2 where F1 (respectively F2) denotes the monomial obtained from F by
setting to 1 all the variables having indices in the support of µ2 (respectively µ1). For example,
µ = x1x5x7 decomposes into µ1 = x1 and µ2 = x5x7. If F = x1x5 then F1 = x1 and F2 = x5.

Assume that the support of F is contained in the support of µ. Note that F is an admissible
monomial in Oi if and only if F1 and F2 are admissible monomials in Oi1 and Oi2 , respectively,
where i1 + i2 = i. Furthermore, sign(F ) = sign(F1)sign(F2).

Let Ōi be the sum of the terms in Oi whose support is contained in the support of µ, and
likewise for Ōj :

Ōi =
∑

sign(A)A, Ōj =
∑

sign(B)B.

Then
{Oi, Oj}|µ = {Ōi, Ōj}|µ =

∑
sign(A)sign(B){A,B}|µ =∗∑

sign(A1)sign(B1)sign(A2)sign(B2) ({A1, B1}|µ1(A2B2)|µ2 + (A1B1)|µ1{A2, B2}|µ2) =∑
i1+i2=i, j1+j2=j

(
{Ōi1 , Ōj1}|µ1(Ōi2Ōj2)|µ2 + (Ōi1Ōj1)|µ1{Ōi2Ōj2}|µ2

)
=

∑
i1+i2=i, j1+j2=j

({Oi1 , Oj1}|µ1(Oi2Oj2)|µ2 + (Oi1Oj1)|µ1{Oi2Oj2}|µ2) ,
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where the starred equality is due to the large separation between the supports of A and B and
Leibniz’s rule. The last term vanishes because µ1 and µ2 are assumed to be good. We conclude
that µ is good as well. 2

Let us record how the Poisson bracket interacts with the elementary monomials. We have

{Xi, Xi+2} = (−1)i+1XiXi+2, {Xi, Xi+4} = (−1)i+1XiXi+4, (2.16)

and

{xi, Xj} =

{
(−1)i xiXj , j = i+ 1, i+ 2, i+ 3,

(−1)i+1 xiXj , j = i− 3, i− 2, i− 1,
(2.17)

All other brackets {Xi, Xj}, as well as {Xi, xj}, vanish.
The Poisson bracket {Oi, Oj} is a sum of monomials of the form

µ = Xi1 · · ·Xisxj1 · · ·xjt , (2.18)

where i1, . . . , is are even and j1, . . . , jt are odd. Using Lemma 2.9, we assume that µ is inde-
composable, and we want to prove that µ is good.

If µ contains x2a then either µ = x2a or µ is decomposable. (This follows from the admissibility
condition.) Likewise, if µ contains X2

a then either µ = X2
a or µ is decomposable. These two

“singleton” cases are trivial, so henceforth we will assume that µ does not contain the square of
an elementary monomial.

Define an oriented graph Γµ whose vertex set is {Xi1 , . . . , Xis , xj1 , . . . , xjt}, the elementary
monomials which appear in µ. Join vertex v1 with v2 by an oriented edge from v1 to v2 if
{v1, v2} = v1v2. Recall that all the non-zero brackets of elementary monomials are listed in
(2.16) and (2.17), and they all have coefficients ±1.

Note that if Γµ is disconnected then µ is decomposable. Hence Γµ is a connected graph.

Lemma 2.10. Γµ has no 3-cycles (i.e., triangles), no cycles of odd length, and no vertices
having in-degree, or out-degree, greater than 1.

Proof. (i) Assume there is a triangle (a, b, c) of elementary monomials. Then two of the three
involved elementary monomials belong to the decomposition of the same polynomial, either
Oi or Oj ; assume that a, b ∈ Oi. The monomials a and b are joined by an arrow, thus their
Poisson bracket does not vanish. This leads to a contradiction since all the monomials in Oi are
admissible (see Section 2.6, definition B).

(ii) The argument for odd cycles is the same as in (i): the monomials in the cycle should
alternate between Oi or Oj , and since the cycle is odd, two adjacent monomials will land on the
same Oi.

(iii) We will show that no vertex of Γµ has out-degree greater than 1. The in-degree case
is similar. Suppose that some vertex Xi has at least 2 outgoing arrows. Since the indices i
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are even and the indices j are odd, Xi can be joined by an outgoing arrow to the following
vertices (provided they belong to the graph): Xi−2, Xi−4, xi−1, xi−3. Indeed, the coefficient of
the bracket in all these cases is +1. However, any two vertices from this list, would also be
joined together by an edge. This would give us a triangle, which we have already ruled out. A
similar (but simpler) consideration applies to a vertex xi: it can be joined by outgoing arrows
to Xi−1 and Xi−1 which are connected by an edge. The argument for two incoming arrows is
similar. 2

It follows that Γµ is of the form:

a1 −−−−→ a2 −−−−→ a3 −−−−→ · · · −−−−→ a`, (2.19)

or Γµ is a cycle of even length; here ai are elementary monomials appearing in (2.18).
Suppose ` is odd and assume that i > j. Let A and B be admissible monomials in Oi and

Oj , respectively, such that AB is a scalar multiple of µ (otherwise, trivially, {A,B}|µ = 0). By
the admissibility condition, A = a1a3 . . . a` and B = a2a4 . . . a`−1. By the Leibniz rule,

{A,B} =

(
{a1, a2}
a1a2

+
{a3, a2}
a2a3

+
{a3, a4}
a3a4

+ · · ·
)
AB = (1− 1 + 1∓ · · · )AB = 0 (2.20)

since the number of terms is even. Alternatively, one notices that the intersection number of Γµ
with the separating line of the bibartite graph is zero; see Section 2.4.

Suppose now that ` is even. Again let A be an admissible monomial in Oi and B that in
Oj such that AB is a scalar multiple of µ. Then either A = a1a3 . . . a`−1 and B = a2a4 . . . a`,
or the other way around. In both cases, i = j = `/2, contradicting the assumption that i > j.
The same argument works if Γµ is a cycle of even length: the vertices must alternate between
A and B, hence the weights of A and B are equal and thus i = j, a contradiction.

The same proof (or symmetry) shows that {Ei, Ej} = 0 as well.

To prove that {Oi, Ej} = 0, we will start out with the same set-up as above. Lemma 2.9
works again, and gets us to the indecomposable case. This time we will analyze the structure
of an indecomposable µ without the aid of the bipartite graph. As above, we sometimes think
of µ as a map from {1, ..., 2n} to {0, 1, 2}.

Lemma 2.11. No terms contribute to {Oi, Ej}|µ unless µ has the form

xαi (Xi+3Xi+6Xi+9 · · ·Xi+3`)x
β
i+3`+2, (2.21)

where α, β ∈ {0, 1}. (This way of expressing µ is not necessarily unique.)
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Proof. Let (A,B) be a supposedly contributing pair. Suppose µ contains the variables xa−1
and xa+1 but not xa. If a is even (respectively odd), then B (respectively A), has an odd-indexed
(respectively even-indexed) variable but not both the adjacent even-indexed (respectively odd-
indexed) variables. This is a contradiction. This shows that the support of µ is a consecutive
string of indices.

Now suppose that µ has the square of some variable. If the support of µ is contained in
3 indices, the result is trivial, so we suppose otherwise. Suppose that µ contains the square
of an odd-indexed variable. Say µ contains x25. Then B contains x4x5x6 but not xk when
k ∈ {1, 2, 3, 7, 8, 9}. Moreover, A contains x5, but not both x4 and x6. If neither x4 nor x6
appears in A, then xk does not appear in A for k ∈ {2, 3, 4, 6, 7, 8}. But then µ does not contain
xk for k = 2, 3, 7, 8. Hence µ is decomposable. If x4 appears in A, then x3x4x5 appears in A and
µ does not contain xk for k ∈ {0, 1, 2, 6, 7, 8}. But then xk does not appear in µ for k = 1, 2, 7, 8
and µ is decomposable. The proof is the same when A contains x6. A similar argument works
when, µ contains the square of an even-indexed variable.

Now we know that µ is a consecutive string of indices and µ takes on the value 1 on any index
in its support. The admissibility of A and B now forces the structure claimed in the lemma. 2

Just as in the odd-odd case, the way the elementary monomials are assigned to A and B
alternates – this follows from parity considerations. Using Leibniz’s rule, we see that {A,B} = 0
unless α + β = 1. In this case, there are exactly two ways to express µ as in Equation 2.21
and correspondingly there are exactly two terms contributing to {Oi, Oj}|µ and they cancel. To
illustrate this principle, we will consider the example where i = 2 and j = 1 and ` = 2. After
suitably shifting the indices, we have

µ = x1x2x3x4x5x6x7 = x1X3X6 = X2X5x7,

the two terms {x1X6, X3} and {X2x7, X5} cancel.
This completes the proof that {Oi, Ej} = 0.

In [19] it is proved that the monodromy invariants are algebraically independent. The argu-
ment is rather complicated, but it is very similar in spirit to the related independence proof we
give in Section 4. The algebraic independence result combines with Theorem 2 to establish the
integrability of the pentagram map on the space Pn. Indeed, the Poisson bracket (2.7) defines a
symplectic foliation on Pn, the symplectic leaves being locally described as levels of the Casimir
functions, see Proposition 2.5. The number of the remaining invariants is exactly half of the
dimension of the symplectic leaves. The classical Liouville-Arnold theorem [1] is then applied.

3 Integrability on Cn modulo a calculation

The general plan of the proof of Theorem 1 is as follows.
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1. We show that the Hamiltonian vector fields on Pn corresponding to the monodromy in-
variants are tangent to the subspace Cn,

2. We restrict the monodromy invariants to Cn and show that the dimension of a generic level
set is n− 4 if n is odd and n− 5 if n is even.

3. We show that there are exactly the same number of independent Hamiltonian vector fields.

In this section, we prove the first statement and also show that the dimension of the level sets
is at most n− 4 if n is odd and n− 5 if n is even, and similarly for the number of independent
Hamiltonian vector fields. The final step of the proof that this upper bound is actually the
lower one will be done in the next two sections. This final step is a nontrivial calculation that
comprises the bulk of the paper.

3.1 The Hamiltonian vector fields are tangent to Cn
The space Cn is a subvariety of Pn having codimension 8. It turns out that one can give explicit
equations for this variety. See Lemma 5.3. (These equations do not play a role in our proof, but
they are useful to have.)

The following statement is essentially a consequence of Theorem 2. This is an important
step of the proof of Theorem 1.

Proposition 3.1. The Hamiltonian vector field on Pn corresponding to a monodromy invariant
is tangent to Cn.

Proof. The space Pn is foliated by isomonodromic submanifolds that are generically of codi-
mension 2 and are defined by the condition that the monodromy has fixed eigenvalues. Hence
the isomonodromic submanifolds can be defined as the level surfaces of two functions, tr(M)
and tr(M−1). This foliation is singular, and Cn is a singular leaf of codimension 8. We note
that the versal deformation of Cn is locally isomorphic to SL(3) partitioned into the conjugacy
equivalence classes.

Consider a monodromy invariant, F (= Oi or Ei), and its Hamiltonian vector field, XF .
We know that the Poisson bracket {F, tr(M)} = 0, since all monodromy invariants Poisson
commute and tr(M) is a sum of monodromy invariants. Hence XF is tangent to the generic
leaves of the isomonodromic foliation on Pn. Let us show that XF is tangent to Cn as well.

In a nutshell, this follows from the observation that the tangent space to Cn at a smooth
point x0 is the intersection of the limiting positions of the tangent spaces to the isomonodromic
leaves at points x as x tends to x0. Assume then that XF is transverse to Cn at point x0 ∈ Cn.
Then XF will be also transverse to an isomonodromic leaf at some point x close to x0, yielding
a contradiction.

More precisely, we can apply a projective transformation so that the vertices V1, V2, V3, V4
of a twisted n-gon V1, V2, . . . become the vertices of a standard square. This gives a local
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identification of Pn with the set of tuples (V5, . . . , Vn;M) where M is the monodromy, the
projective transformation that takes the quadruple (V1, V2, V3, V4) to (Vn+1, Vn+2, Vn+3, Vn+4).
The space of closed n-gons is characterized by the condition that M is the identity. Thus we
have locally identified Pn with Cn × SL(3). In particular, we have a projection Pn → SL(3),
and the preimage of the identity is Cn. The isomonodromic leaves project to the conjugacy
equivalent classes in SL(3).

Thus our proof reduces to the following fact about the group SL(3) (which holds for SL(n)
as well).

Lemma 3.2. Consider the singular foliation of SL(3) by the conjugacy equivalence classes, and
let TX be the tangent space to this foliation at X ∈ SL(3). Then the intersection, over all X, of
the limiting positions of the spaces TX , as X → 11, is trivial (here 11 ∈ SL(3) is the identity).

Proof. Let B ∈ SL(3), and let B + εC be an infinitesimal deformation within the conjugacy
equivalence class. Then

tr (B + εC) = tr(B), tr
(
(B + εC)2

)
= tr

(
B2
)
,

hence tr(C) = 0 and tr(BC) = 0, and also tr(B−1C) = 0 since det(B + εC) = 1. Thus the
tangent space to a conjugacy equivalent class of B is given by

tr(C) = tr(BC) = tr(B−1C) = 0.

Now let B = 11 + εA, a point in an infinitesimal neighborhood of the identity 11; we have
tr(A) = 0. Then our conditions on C implies tr(C) = tr(AC) = 0. Since tr(AC) is a non-
degenerate quadratic form, an element C ∈ sl(3) satisfying tr(AC) = 0 for all A ∈ sl(3) has to
be zero. 2

In view of what we said above, this implies the proposition. 2

3.2 Identities between the monodromy invariants

In this section, we consider the restriction of the monodromy invariants from the space of all
twisted n-gons to the space Cn of closed n-gons. We show that these restrictions satisfy 5
non-trivial relations, whereas their differentials, considered as covectors in Pn whose foot-points
belong to Cn, satisfy 3 non-trivial relations. These relations are also mentioned in [15] and [22].
In Sections 4 and 5, we will prove that there are no other relations between the monodromy
invariants on Cn and their differentials along Cn.

We remark that, strictly speaking, the identities established in this section are not needed
for the proof of our main result. For the main result, all we need to know is that there are
enough commuting flows to fill out what could be (a priori , without the results in this section)
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a union of level sets of the monodromy invariants. Thus, the reader interested only in the main
result can skip this section.

Theorem 3. (i) The restrictions of the monodromy integrals to Cn satisfy the following five
identities:

[n/2]∑
j=0

Oj = 3E
1
3
n O

2
3
n ,

[n/2]∑
j=0

Ej = 3E
2
3
n O

1
3
n ,

[n/2]∑
j=1

j Oj = nE
1
3
n O

2
3
n ,

[n/2]∑
j=1

j Ej = nE
2
3
n O

1
3
n ,

E
1
3
n

[n/2]∑
j=1

j2Oj = O
1
3
n

[n/2]∑
j=1

j2Ej .

(3.1)

(ii) The differentials of the monodromy integrals along Cn satisfy the three identities:

[n/2]∑
j=1

dOj = 2E
1
3
n O

− 1
3

n dOn + E
− 2

3
n O

2
3
n dEn,

[n/2]∑
j=1

dEj = 2E
− 1

3
n O

1
3
n dEn + E

2
3
n O

− 2
3

n dOn,

O
1
3
n

( [n/2]∑
j=1

j dEj

)
+ E

1
3
n

( [n/2]∑
j=1

j dOj

)
= nE

2
3
nO

2
3
n

(
E−1n dEn +O−1n dOn

)
.

(3.2)

Proof. Recall that the monodromy invariants Oj are the homogeneous components of the

polynomial O
2/3
n E

1/3
n tr(M) with respect to the rescaling (2.6), where s = et for convenience.

Likewise, the monodromy invariants Ej are homogeneous components of O
1/3
n E

2/3
n tr(M−1).

Recall also that O0 = E0 = 1.
Denote for simplicity O

1/3
n E

2/3
n = U, O

2/3
n E

1/3
n = V . Notice that the monodromy matrix M

has the unit determinant. Let eλ1 , eλ2 , eλ2 be the eigenvalues of M . One has

λ1 + λ2 + λ3 ≡ 0. (3.3)

We consider a one-parameter family of n-gons depending on the rescaling parameter t, such that
for t = 0, the n-gon belongs to Cn. The monodromy M = Mt also depends on t so that we
think of λi as functions of the corner coordinates (x1, . . . , x2n) and of t. For t = 0, one has:
λi = 0, i = 1, 2, 3 since M0 = Id.
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The eigenvalues of M−1 are e−λ1 , e−λ2 , e−λ2 . Since the weights of Oi and Ej are j and −j
respectively, the definition of the integrals writes as follows:

e
nt
3 V

(
eλ1 + eλ2 + eλ2

)
=

[n/2]∑
j=0

etj Oj , e−
nt
3 U

(
e−λ1 + e−λ2 + e−λ2

)
=

[n/2]∑
j=0

e−tj Ej .

which we rewrite as

V
(
eλ1 + eλ2 + eλ2

)
=

[n/2]∑
j=0

et(j−
n
3
)Oj , U

(
e−λ1 + e−λ2 + e−λ2

)
=

[n/2]∑
j=0

e−t(j−
n
3
)Ej . (3.4)

Setting t = 0 in these formulas yields the first two identities in (3.1). Next, differentiate
these equations in t :

V
3∑
i=1

λ′i e
λi =

[n/2]∑
j=0

(
j − n

3

)
etj Oj ,

where λ′i = dλi/dt, and similarly for Ej . Set t = 0, then the left-hand-side vanishes because∑
λ′i = 0 due to (3.3). Hence

[n/2]∑
j=0

j Oj =
n

3

[n/2]∑
j=0

Oj = nV

due to the first identity in (3.1) and similarly for Ej . One thus obtains the third and the fourth
identity in (3.1).

To obtain the fifth equation in (3.1), differentiate the equations (3.4) with respect to t twice
to get

V
( 3∑
i=1

(λ′′i + λ′2i ) eλi
)

=

[n/2]∑
j=0

(
j − n

3

)2
etj Oj ,

U
( 3∑
i=1

(
−λ′′i + λ′2i

)
eλi
)

=

[n/2]∑
j=0

(
j − n

3

)2
e−tj Ej .

Divide the first equality by V , the second by U , subtract one from another, and set t = 0:

2
3∑
i=1

λ′′i = V −1
[n/2]∑
j=0

(
j − n

3

)2
Oj − U−1

[n/2]∑
j=0

(
j − n

3

)2
Ej .

The left hand side vanishes, due to (3.3), so

V −1
[n/2]∑
j=0

(
j − n

3

)2
Oj = U−1

[n/2]∑
j=0

(
j − n

3

)2
Ej . (3.5)
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Therefore

V −1
[n/2]∑
j=0

j2Oj −
2n

3
V −1

[n/2]∑
j=0

j Oj + V −1
n2

9

[n/2]∑
j=0

Oj =

U−1
[n/2]∑
j=0

j2Ej −
2n

3
U−1

[n/2]∑
j=0

j Ej + U−1
n2

9

[n/2]∑
j=0

Ej .

The second and the third terms on the left and the right hand sides are pairwise equal, due to
the first four identities in (3.1). This implies the fifth identity (3.1).

To prove (3.2), take differentials of (3.4):

V

3∑
i=1

eλi dλi +
( 3∑
i=1

eλi
)
dV =

( [n/2]∑
j=0

(
j − n

3

)
et(j−

n
3
)Oj

)
dt+

[n/2]∑
j=0

et(j−
n
3
) dOj ,

and

−U
3∑
i=1

e−λi dλi +
( 3∑
i=1

e−λi
)
dU =

−
( [n/2]∑
j=0

(
j − n

3

)
e−t(j−

n
3
)Ej

)
dt+

[n/2]∑
j=0

e−t(j−
n
3
) dEj .

Set t = 0: the first terms on the right hand sides vanish due to (3.3), and the first parentheses
on the right hand sides vanish due to (3.1). We get

[n/2]∑
j=0

dOj = 3 dV,

[n/2]∑
j=0

dEj = 3 dU,

the first two identities in (3.2).
Finally, differentiate the above equations with respect to t and set t = 0 to obtain:

V
3∑
i=1

λ′i dλi + V
3∑
i=1

d(λ′i) +
( 3∑
i=1

λ′i

)
dV =

( [n/2]∑
j=0

(
j − n

3

)2
Oj

)
dt+

[n/2]∑
j=0

(
j − n

3

)
dOj ,

U
3∑
i=1

λ′i dλi − U
3∑
i=1

d(λ′i) +
( 3∑
i=1

λ′i

)
dU =

( [n/2]∑
j=0

(
j − n

3

)2
Ej

)
dt−

[n/2]∑
j=0

(
j − n

3

)
dEj .
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Once again, the second and the third sums on the left hand sides vanish, due to (3.3). Divide
the first equation by V , the second by U , and subtract one from another, using (3.5):

V −1
[n/2]∑
j=0

(
j − n

3

)
dOj + U−1

[n/2]∑
j=0

(
j − n

3

)
dEj = 0.

Hence

V −1
[n/2]∑
j=0

j dOj + U−1
[n/2]∑
j=0

j dEj =
n

3

(
V −1

[n/2]∑
j=0

dOj + U−1
[n/2]∑
j=0

dEj

)
.

Due to the first two identities in (3.2), the right-hand-side equals n (O−1n dOn +E−1n dEn). This
yields the third identity in (3.2). Theorem 3 is proved. 2

Remark 3.3. a) Let E be the Euler vector field that generates the scaling. Then

E(Oj) = j Oj , E(Ej) = −j Ej .

If one evaluates the differentials in the identities (3.2) on E , one obtains the last three identities
in (3.1). This is a check that (3.1) and (3.2) are consistent with each other.

b) Equivalently, (3.2) can be rewritten as

3 dOn = 2E
− 1

3
n O

1
3
n

(∑[n/2]
j=1 dOj

)
− E−

2
3

n O
2
3
n

(∑[n/2]
j=1 dEj

)
,

3 dEn = 2E
1
3
n O

− 1
3

n

(∑[n/2]
j=1 dEj

)
− E

2
3
n O

− 2
3

n

(∑[n/2]
j=1 dOj

)
,

0 = O
1
3
n

(
3

[n/2]∑
j=1

j dEj − n
[n/2]∑
j=1

dEj

)
+ E

1
3
n

(
3

[n/2]∑
j=1

j dOj − n
[n/2]∑
j=1

dOj

)
.

c) The identities (3.1) and (3.2) are satisfied in a larger subspace than Cn, consisting of
twisted polygons whose monodromy has equal eigenvalues. This subspace has codimension 2
in Pn.

d) In both cases, n odd and n even, the kernel of the Poisson map X (2.9) (spanned by the
differentials of the Casimir functions) has zero intersection with the subspace of T ∗Pn spanned
by the relations 3.2.

3.3 Reducing the proof to a one-point computation

For ease of exposition, we will give our proof only in the odd case, and we set n ≥ 7 odd. Modulo
changing some of the indices, the even case is similar. We will explain everything in terms of
the odd case and, at the end of this section, briefly explain what happens in the even case.
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Let M denote the algebra generated by the monodromy invariants. In the Section 4 we
make the following calculations.

1. There exist elements F1, ..., Fn−2 ∈ M and a point p ∈ Cn such that the differentials
dF1, ..., dFn−2 are linearly independent at p. Therefore, dF1, ..., dFn−2 are linearly inde-
pendent at almost all q ∈ Cn.

2. There exist elements G1, ..., Gn−4 ∈ M and a point p ∈ Cn such that the differentials
dG1|TpCn , ..., dGn−4|TpCn are linearly independent. Therefore, dG1|TqCn , ..., dGn−4|TqCn are
linearly independent at almost all q ∈ Cn.

In Calculation 1, we are computing the differentials on the ambient space Pn but evaluating
them at a point of Cn. In Calculation 2, we are computing the differentials on the ambient space,
evaluating them at a point of Cn, and restricting the resulting linear functionals to the tangent
space of Cn. In both calculations, we are actually evaluating at points in C0

n. In each case,
what allows us to make a conclusion about generic points is that the monodromy invariants are
algebraic.

Calculation 2 combines with Theorem 3 to show that there are exactly n − 4 algebraically
independent monodromy invariants, when restricted to Cn. Hence, the generic common level set
of the monodromy invariants Oi, Ei, restricted to Cn, has dimension n− 4.

Next, we wish to prove that these level sets have locally free action of the abelian group Rd
(or Cd in the complex case). For F ∈ M, the Hamiltonian vector field XF is tangent to Cn,
by Proposition 3.1, and also tangent to the common level set of functions in M. Finally, by
Theorem 2, the Hamiltonian vector fields all commute with each other (i.e., define an action of
the Abelian Lie algebra). The following lemma finishes our proof.

Lemma 3.4. The Hamiltonian vector fields of the monodromy invariants generically span the
monodromy level sets on Cn.

Proof. Let ∧1Pn denote the space of 1-forms on Pn. Let X denote the space of vector fields
on Cn. Let dM⊂ ∧1Pn denote the image ofM under the d-operator. Calculation 1 shows that
the vector space dM generically has dimension n − 2 when evaluated at points of Cn. At the
same time, we have the Poisson map X : dM→ X , given by

X(dF ) = XF ,

see (2.9). In the odd case, the map X has 2 dimensional kernel, see Remark 3.3 d). Hence, X
has n− 4 dimensional image, as desired. 2

Now we explain explicitly how the results above give us the quasi-periodic motion in the
case of closed convex polygons. We know from the work in [17] that the monodromy level sets
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on C0n are compact. By Sard’s Theorem, and by the calculations above, almost every level set
is a smooth compact manifold of dimension m = n − 4. By Sard’s Theorem again, and by
the dimension count above, almost every level set L possesses a framing by Hamiltonian vector
fields. That is, there are m Hamiltonian vector fields on L which are linearly independent at
each point and which define commuting flows. These vector fields define local coordinate charts
from L into Rm, such that the overlap functions are translations. Therefore L is a finite union
of affine m-dimensional tori. The whole structure is invariant under the pentagram map, and
so the pentagram map is a translation of L relative to the affine structure on L. This is the
quasi-periodic motion. Even more explicitly, some finite power of the pentagram map preserves
each connected component of L and is a constant shift on each connected component.

The Even Case: In the even case, we have the following calculations:

1. There exist elements F1, ..., Fn−1 ∈ M and a point p ∈ Cn such that the differentials
dF, ..., dFn−1 are linearly independent at p. Therefore, dF, ..., dFn−1 are linearly indepen-
dent at almost all q ∈ Cn.

2. There exists elements G1, ..., Gn−3 ∈ M and a point p ∈ Cn such that the differentials
dG1|TpCn , ..., dGn−3|TpCn are linearly independent. Therefore, dG1|TpCn , ..., dGn−3|TpCn are
linearly independent at almost all q ∈ Cn.

In this case, the common level sets generically have dimension n−5 and, again, the Hamilto-
nian vector fields generically span these level sets. The situation is summarized in the following
table.

Invariants Casimirs Level sets /Hamiltonian fields
n odd n+ 1 2 d = n− 4
n even n+ 2 4 d = n− 5

4 The linear independence calculation

4.1 Overview

For any given (smallish) value of n, one can make the calculations directly, at a random point,
and see that it works. The difficulty is that we need to make one calculation for each n. One
might say that the idea behind our calculations is tropicalization. The monodromy invariants
and their gradients are polynomials with an enormous number of terms. We only need to make
our calculation at one point, but we will consider a 1-parameter family of points, depending on
a parameter u. As u→ 0, the different variables tend to 0 at different rates. This sets up a kind
of hierarchy (or filtration) on the the monomials comprising the polynomials of interest to us,
and only the “heftiest” monomials in this hierarchy matter. This reduces the whole problem to
a combinatorial exercise.
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We take n ≥ 7 odd. Let m = (n− 1)/2. Recall that M is spanned by

O1, ..., Om, On, E1, ..., Em, En.

We define
Ak,± = Ok ± Ek. (4.1)

For the first calculation, we use the monodromy invariants

A3,+, ..., Am,+, An,+, A2,−, ..., Am,−, An,−. (4.2)

For the second calculation, we use the monodromy invariants

A3,−, ..., Am,−, A3,+, ..., Am,+, An,+. (4.3)

The point we use is of the form p = P u, where P u is an n-gon having corner invariants

a, b, c, d, u1, u2, u3, u4, ..., u4, u3, u2, u1, d, c, b, a, (4.4)

Here

• a = O(u(n−4)(n−3)/2).

• b = 1 +O(u)

• c = 1 +O(u).

• d = 1 +O(u).

We will show that the results hold when u is sufficiently small. Here we are using the big O
notation, so that O(u) represents an expression that is at most Cu in size, for a constant C that
does not depend on u.

We will construct P u in the next section. Our first calculation requires only the information
presented above. The second calculation, which is almost exactly the same as the first calcula-
tion, requires some auxilliary justification. In order to justify the calculation we make, we need
to make some estimates on the tangent space TPu to Cn at P u. We will also do this in the next
section.

In Section 4.2 and Section 4.3 we will explain our two calculations in general terms. In
Section 4.4 we will define the concept of the heft of a monomial, and we will use this concept to
put a kind of ordering on the monomials that appear in the monodromy invariants of interest
to us. Following the analysis of the heft, we complete the details of our calculations.
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4.2 The first calculation in broad terms

Let ∇ denote the gradient on R2n. Let ∇̃ denote the normalized gradient :

∇̃F = λ−1∇F ; λ = ‖∇F‖∞. (4.5)

In practice, we never end up dividing by zero. So, the largest entry in ∇̃F is ±1.
If F is a monodromy invariant, the coordinates of ∇̃F (P u) have a power series in u. We

define ΨF to be the result of setting all terms except the constant term to 0. We call ΨF the
asymptotic gradient . Thus, if

∇̃F (P u) = (1− u3 · · · ,−1 + u · · · , u2 · · · , ...)

then ΨF = (1,−1, 0, ...).

Lemma 4.1. Suppose that ΨF1, ...,ΨFk are linearly independent. Then likewise ∇F1, ...,∇Fk
are linearly independent at P u for u sufficiently small. Equivalently, the same goes for dF1, ..., dFk.

Proof. Since ΨF1, ...,ΨFk are independent there is some ε > 0 such that a sum of the form∣∣∣∣∑ bjΨFj

∣∣∣∣ < ε; max |bj | = 1

is impossible.
Suppose for the sake of contradiction that the gradients are linearly dependent at P u for

all sufficiently small u. Then the normalized gradients are also linearly dependent at P u for all
sufficiently small u. We may write∑

bj∇̃Fj · ei = 0; max |bj | = 1. (4.6)

for the standard basis vectors e1, ..., e2n. The coefficients bj possibly depend on u, but this
doesn’t bother us.

We have the bound ∣∣∣∣bj∇̃Fj − bjΨFj∣∣∣∣ = O(u). (4.7)

Hence ∑
j

bjΨFj · ei = O(u) (4.8)

for all basis vectors ei. Therefore, we can take u small enough so that∣∣∣∣∑ bjΨFj

∣∣∣∣ < ε; max |bj | = 1,

in contradiction to what we said at the beginning of the proof. 2
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Remark 4.2. The idea of the proof of the previous lemma is simple: given a matrix, alge-
braically dependent on a parameter u, the rank of the matrix is greatest in a Zariski open subset
of the parameter space and can only drop for special values of the parameter (zero, in our case).

We form a matrix M+ whose rows are ΨF , where F is each of the A+ invariants. We similarly
form the matrix M−.

Lemma 4.3. Each row of M+ is orthogonal to each row of M−.

Proof. Consider the map T : R2n → R2n which simply reverses the coordinates. We have
Ek ◦ T = Ok for all k and moreover T (P u) = P u. Letting dT be the differential of T , we have

dT (∇Ak,±) = ±∇Ak,±. (4.9)

Our lemma follows immediately from this equation, and from the fact that T is an isometric
involution. 2

In view of Lemmas 4.1 and Lemma 4.3, our first calculation follows from the statements that
M+ and M− have full rank.

For the matrix M+, we consider the minor m+ consisting of columns

1, 6, 7, 10, 11, 14, 15, 18, 19, ...

until we have a square matrix. We will prove below that m+ has the following form (shown in
the case n = 13.) 

0 ±1 ±1 ±1 ±1
0 0 ±1 ±1 ±1
0 0 0 ±1 ±1
0 0 0 0 ±1
±1 0 0 0 0

 (4.10)

This matrix always has full rank. Hence M+ has full rank.
For the matrix M− we consider the minor m− consisting of columns

1,3, 6, 7, 10, 11, 14, 15, 18, 19, ...

The only difference here is that column 3 is inserted. The resulting matrix has exactly the same
structure as just described. Hence M− has full rank.
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4.3 The second calculation in broad terms

Let T = TPu(Cn) denote the tangent space to Cn at P u. Let {ek} denote the standard basis for
R2n. Let π : R2n → R2n−8 denote the map which strips off the first and last 4 coordinates.

Define
∇8 = π ◦ ∇. (4.11)

We define the normalized version ∇̃8 exactly as we defined ∇̃. Likewise we define Ψ8G for any
monodromy function G.

For a collection of vectors v5, . . . , v2n−4 to be specified in the next lemma, we form the vector

Υ8G = (Dv5G, ...,Dv2n−4G) (4.12)

made from the directional derivatives of G along these vectors. Note, by way of analogy, that

∇8G = (De5G, ...,De2n−4G). (4.13)

We define the normalized version Υ̃8 exactly as we defined ∇̃8.
In the next section, we will establish the following result.

Lemma 4.4 (Justification). There is a basic v5, ..., v2n−4 for TPu(Cn) such that π(vk) = ek for
all k and

Υ̃8G− ∇̃8G = O(u).

Corollary 4.5. Suppose that Ψ8G1, ...,Ψ8Gk are linearly independent. Then the restrictions of
dG1, ..., dGk to TPu(Cn) are linearly independent for u sufficiently small.

Proof. Given our basis, Ψ8 represents the constant term approximation of both Υ̃8 and ∇̃8.
So, the same proof as in Lemma 4.1 shows that the vectors Υ̃8Gj are linearly independent. This
is equivalent to the conclusion of our corollary. 2

Using the invariants listed in (4.3), we form the matrices M+ and M− just as above, using
Ψ8 in place of Ψ. Lemma 4.3 again shows that each row of M+ is orthogonal to each row of M−.
Hence, we can finish the second calculation by showing that both M+ and M− have full rank.

For M− we create a square minor m− using the columns

2, 3, 6, 7, 10, 11, 14, 15, ...

Again, we continue until we have a square. It turns out that m− has the form
±1 ±1 ±1 ±1
0 ±1 ±1 ±1
0 0 ±1 ±1
0 0 0 ±1

 (4.14)

29



Hence M− has full rank.
For M+ we create a square minor m+ using the same columns, but extending out one further

(on account of the larger matrix size.) It turns out that m+ has the same form as m−. Hence
M+ has full rank.

4.4 The heft

Any monomial in the variables x1, ..., x2n, when evaluated at P u, has a power series expansion
in u. We define the heft of the monomial to be the smallest exponent that appears in this series.
For instance, the heft of u2 + u3 is 2. We define the heft of a polynomial to be the minimum
heft of the monomials that comprise it. Given a polynomial F , we define heft of ∇F to be the
minimum heft, taken over all partial derivatives ∂F/∂xj .

We call a monomial term of ∂F/∂xk hefty if its heft realizes the heft of ∇F . We define HkF
to be the sum of the hefty monomials in ∂F/∂xk. Each monomial occurs with sign ±1. We
define |HkF | ∈ Z to be the sum of the coefficients of the hefty terms in HkF . We say that F is
good if |HkF | 6= 0 for at least one index k. If F is good then

ΨF = C(|H1F |, ..., |H2nF |), (4.15)

for some nonzero constant C that depends on F . It turns out that C = ±1 in all cases.
We say that F is great if F is good and |HkF | 6= 0 for at least one index k which is not

amongst the first or last 4 indices. When F is great, not only does equation (4.15) hold, but we
also have

Ψ8F = C(|H5F |, ..., |H2n−4F |), (4.16)

Lemma 4.6. Let k = 2, 3. Then Ak,± is great and ∇Ak,± has heft 0.

Proof. Let F = Ak,±. Consider the case k = 2. The argument turns out to be the same in
the (+) and (−) cases. We say that an outer variable is one of the first or last 4 variables in
R2n, and we call the remaining variables inner . Since x2x6 and x6x2n−2 are both terms of F ,
we see that

H6F = x2 + x2n−2 + ...

In particular, ∇F has heft 0. Any term in H6F involves only the outer 8 variables, and a short
case-by-case analysis shows that there are no other possibilities besides the two terms listed
above. Hence |H6F | = 2. This shows that F is great.

Now consider the case k = 3. The argument turns out to be the same in the (+) and (−)
cases. Since x2x6x2n−2 is a term of F we see that

H6F = x2x2n−2 + ...

The rest of the proof is as in the previous case, with the only difference being that |H6F | = 1
in this case. 2
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From now on, we fix some F = Ak,± with 3 < k ≤ m. Let α1, α2, ... be the terms of the
following sequence

0, 0, 0, 2, 3, 6, 7, 10, 11, 14, 15, ... (4.17)

Lemma 4.7. ∇F has heft at most α1 + ...+ αk.

Proof. We describe a specific term in ∇F having heft α1 + ... + αk. We make a monomial
using the indices

2, 2n− 2, 6, 2n− 6, 10, 2n− 10, ... (4.18)

stopping when we have used k − 1 numbers. The monomial corresponding to these indices has
heft

0 + 0 + 0 + 2 + 3 + 6 + 7 + 10 + 11... = α1 + ...+ αk.

Thinking of our indices cyclically, we see that our integers lie in an interval of length 4k − 7.
So, between the largest index in (4.18) that is less than n and the smallest index greater than
n there is an unoccupied stretch of at least 9 integers. The point here is that

9 + (4k − 7) ≤ 9 + 4m− 7 = 9 + 2(n− 1)− 7 = 2n.

Given that the unoccupied stretch has at least 9 consecutive integers, there is at least 1 (and
in fact at least 2) even indices j such that the monomial

m = ±xjx2x2n−2x6x2n−6x10...

is a term of F . But then ∂m/∂xj has heft α1 + ...+ αk. 2

We mention that (4.18) is one of two obvious ways to make a term of heft α1 + ...+αk. The
other way is to take the mirror image, namely

2n− 1, 3, 2n− 5, 7, 2n− 9, 11, ... (4.19)

Lemma 4.8. If ∂F/∂xj has a hefty term, then j is an inner variable.

Proof. For ease of exposition, we will consider the case when j is one of the first 4 variables. Let
(i1, ..., id) be the sequence of indices which appear in a term m′ of ∂F/∂xj . The corresponding
term m in F has index sequence (j, i1, ..., id), where these numbers are not necessarily written
in order. We know that at least one of the indices, say a, is an inner variable. By construction
∂m/∂xa has smaller heft than m′. Hence ∂F/∂xj has no hefty terms. Hence j is an inner
variable. 2

Lemma 4.9. Suppose the monomial ±xi1 ...xia is a hefty term of ∂F/∂xj. Then a = k− 1 and
i1, ..., ik−1 are either as in (4.18) or as in equation (4.19).

31



Proof. We have to play the following game: We have a grid of 2n dots. The first and last dot
are labelled (n − 3)(n − 4)/2. The remaining 6 outer dots are labelled 0. The inner dots are
labelled 1, 2, 3, ..., 3, 2, 1. Say that a block is a collection of d dots in a row for d = 1, 2, 3. We
must pick out either k or k − 1 blocks in such a way that the total sum of the corresponding
dots is as small as possible, and the (cyclically reckoned) spacing between consecutive blocks is
at least 4. That is, at least 3 “unoccupied dots” must appear between every two blocks.

It is easy to see that one should use k − 1 blocks, all having size 1. Moreover, half (or half
minus one) of the blocks should crowd as much as possible to the left and half minus one (or
half) of the blocks should crowd as much as possible to the right. A short case by case analysis
of the placement of the first and last blocks shows that one must have precisely the choices made
in (4.18) and (4.19). 2

Corollary 4.10. Let F = Ak,±, with k ≥ 2. Then F is good. If k ≤ m then F is great, and the
heft of ∇F is α1 + ...+ αk.

Proof. In light of the results above, the only nontrivial result is that F is great when 3 < k ≤
m. The construction in connection with (4.18) produces a hefty term of ∂F/∂xj for some inner
index j. The key observation is that, for parity considerations, the mirror term corresponding
to (4.19) is not a term of ∂F/∂xj . In one case j must be odd and in the other case j must be
even. Hence, there is only 1 hefty term in ∂F/∂xj . 2

As regards the heft, we have done everything but analyze the Casimirs. Recall that

On = x1x3...x2n−1; En = x2x4...x2n. (4.20)

Lemma 4.11. An,± is good and ∇An,+ has heft

(n− 3)(n− 4)

2
.

Moreover,
ΨAn,± = (1, 0, ..., 0,±1).

Proof. Let F be either of these functions. Clearly the hefty terms of ∇F are the ones which
omit the first and last variables. From here, this lemma is an exercise in arithmetic. 2

A similar argument proves

Lemma 4.12. An,± is good and ∇8An,+ has heft (n− 4)2. Moreover,

ΨAn,± = (0, ..., 0,±1, 1, 0, ..., 0),

with the 2 middle indices being nonzero.
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4.5 Completion of the first calculation

To complete the first calculation, we need to analyze the matrix made from the asymptotic
gradients ΨF1,ΨF2, .... We deal with the first two in a calculational way.

Lemma 4.13. ΨA2,± = (0, 0,±1, 0, 0, 1,±1, ..., 1,±1, 0, 0, 1, 0, 0).

Proof. Let F = A2,±. We know that F has heft 0, so the hefty terms in ∇F are monomials
which only involve the outer indices. Hence, when 8 ≤ j ≤ 2n − 8 the result only depends on
the parity of j and neither the value of j nor the value of n. For the remaining indices, the
result is also independent of n. Thus, a calculation in the case (say) n = 13 is general enough
to rigorously establish the whole pattern. This is what we did. 2

Lemma 4.14. ΨA3,± = (0, 0, 0, 0, 0, 1,±1, ..., 1,±1, 0, 0, 1, 0, 0).

Proof. Same method as the previous result. 2

Now we are ready to analyze the minors m+ and m− described in connection with the first
calculation. When we say that a certain part of one of these matrices has the form given by
(4.10), we understand that (4.10) gives a smallish member of an infinite family of matrices, all
having the same general type. So, we mean to take the corresponding member of this family
which has the correct size.

We say that a given row or column of one of our matrices checks if it matches the form given
by (4.10). We will give the argument for m+. The case for m− is essentially the same.

Lemma 4.15. The first column of m+ checks.

Proof. By Lemma 4.11, the first coordinate of ΨAn,+ is ±1. By Lemmas 4.8, 4.13, and 4.14.,
we have ΨAk,+ is zero for k < n. This is equivalent to the lemma. 2

Lemma 4.16. The first row of m+ checks and the last row of m+ checks.

Proof. The first statement follows immediately from Lemma 4.14. The second statement
follows immediately from Lemma 4.11. 2

Now we finish the proof. Consider the ith row of m+. Let k = i + 2. In light of the trivial
cases taken care of above, we can assume that 3 < k ≤ m. Let F = Ak,+. As we discussed in
the proof of Corollary 4.10, each polynomial ∂A/∂Fj has either 0 or 1 hefty terms.

Assume that j is even. Let J ⊂ {1, ..., 2n} be the unoccupied stretch from Lemma 4.7. Let
J ′ ⊂ J denote the smaller set obtained by removing the first and last 3 members from J . It
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follows from the construction in Lemma 4.7 that ∂F/∂j has a hefty term if and only if j ∈ J ′.
Thus the jth entry of the kth row is ±1 if and only if j ∈ J ′. Similar considerations hold when
j is odd. It is an exercise to show that the conditions we have given translate precisely into the
form given in (4.10). Hence m+ checks.

Remark 4.17. One can approach the proof differently. When we move from row k to row k+2
the corresponding interval J ′ = (a, b) changes to the new interval J ′ = (a + 4, b − 4). From
this fact, and from our choice of minors, it follows easily that row k checks if and only if row
k + 2 checks. At the same time, when n is replaced by n+ 2, the interval J ′ = (a, b) changes to
J ′ = (a, b + 4). This translates into the statement that row k checks for n if and only if row k
checks for n + 2. All this reduces the whole problem to a computer calculation of the first few
cases. We did the calculation up to the case n = 13 and this suffices.

4.6 Completion of the second calculation

We make all the same definitions and conventions for the second calculation, using the matrix
(family) in (4.14) in place of the matrix (family) in (4.10). The argument for the second calcula-
tion is really just the same as the argument for the first calculation. Essentially, we just ignore
the outer 8 coordinates and see what we get. What makes this work is that all the functions
except An,± are great – the inner indices determine the heft. To handle the last row of m+,
which involves the Casimir An,+, we use Lemma 4.12 in place of Lemma 4.11.

It remains to establish the Justification Lemma 4.4. It is convenient to define

δ =
(n− 4)(n− 5)

2
. (4.21)

We also mention several other pieces of notation and terminology. When we line up the indices
5, ..., 2n − 4, there are 2 middle indices. When n = 7 the middle indices of 5, 6, 7, 8, 9, 10 are 7
and 8. Let π⊥ denote the projection from R2n onto R8 obtained by stringing out the first and
last 4 coordinates.

Lemma 4.18 (Tangent Estimate). The following properties of π⊥(vj) hold:

• All coordinates are O(1).

• Coordinates 3 and 6 are O(u).

• Except when j is one of the middle two indices, coordinates 1 and 8 are O(uδ+1).

• When j is the first middle index, coordinate 1 is uδ+O(uδ+1) and coordinate 8 is O(uδ+1).

• When j is the second middle index, coordinate 8 is uδ + O(uδ+1) and coordinate 1 is
O(uδ+1).
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Proof. We prove this in the next section. 2

Lemma 4.19. The Justification Lemma holds for F = An,+.

Proof. A direct calculation shows that, up to O(uδ+1),

∇̃F = (1, 0, ..., 0, uδ, uδ, 0, ..., 0, 1) (4.22)

Hence
∇̃8F = (0, ..., 0, 1, 1, 0, ....0) +O(u). (4.23)

Let Z be the first coordinate of ∇F . If j is not a middle index, we have

DvjF = ∇F · vj = Z ×O(uδ+1). (4.24)

This estimate comes from the Tangent Estimate Lemma 4.18.
If j is the first middle index, then

DvjF = ∇F · vj = Z × 2O(δ). (4.25)

The first contribution comes from coordinate 1, and is justified by the Tangent Estimate Lemma,
and the second contribution comes from coordinate j.

The above calculations show that

Υ̃8F = (0, ..., 0, 1, 1, 0, ....0) +O(u). (4.26)

Hence ∇̃8F = Υ̃8F +O(u). 2

Now suppose that F is one of the relevant monodromy invariants, but not the Casimir.
Our analysis establishes

Lemma 4.20. Both π⊥(∇̃F ) and π⊥(∇F ) have the following properties.

1. All coordinates are at most 1 +O(u) in size.

2. All coordinates except coordinates 3 and 6 are O(u).

Proof. This is immediate from our analysis of the heft of ∇F . 2

Lemma 4.21. One has
∇̃8F · ej = ∇̃F · vj +O(u).
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Proof. Combining the Tangent Estimate Lemma with Lemma 4.20, we see that

π⊥(∇̃F ) · π⊥(vj) = O(u).

Hence
∇̃F · vj = π ◦ ∇̃F · ej +O(u). (4.27)

From Property 1 above, we see that

‖∇8F‖∞ = ‖∇F‖∞ +O(u).

Therefore
∇̃8F = π ◦ ∇̃F +O(u). (4.28)

Combining equations (4.27) and (4.28), we get the result of the lemma. 2

Lemma 4.22. Setting λ = ‖∇F‖∞, we have

λ−1(Υ8F )j = (Υ̃8F )j +O(u).

Here (X)j is the jth coordinate of X.

Proof. Combining the Tangent Estimate Lemma 4.18 with Lemma 4.20, we have

π⊥ ◦ ∇F · π⊥(vj) = O(u).

Therefore
‖Υ8F‖∞ = ‖∇8F‖∞ +O(u).

Combining this with equation (4.28), we have

‖Υ8F‖∞ = ‖∇F‖∞ +O(u).

Our lemma follows immediately. 2

By definition, we have

∇̃F · vj = λ−1∇F · vj = λ−1(Υ8F )j ; λ = ‖∇F‖∞. (4.29)

Combining this last equation with our two lemmas, we have

(∇̃8F )j = ∇̃8F · ej = (Υ̃8F )j +O(u). (4.30)

This holds for all j. This completes the proof of the Justification Lemma.
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5 The polygon and its tangent space

The goal of this section is to construct the polygon P u and prove the Tangent Lemma, which
estimates the tangent space TPu(C). We will begin by repackaging some of the material worked
out in [19]. The results here are self-contained, though our main formula relies on the work done
in [19]. In order to remain consistent with the formulas in [19], we will use a slightly different
labelling convention for polygons.

5.1 Polygonal rays

We say that a polygonal ray is an infinite list of points P−7, P−3, P1, P5, ... in the projective
plane. We normalize so that (in homogeneous coordinates)

P−7 = (0, 0, 1), P−3 = (1, 0, 1), P1 = (1, 1, 1), P5 = (0, 1, 1). (5.1)

The first 4 points are normalized to be the vertices of the positive unit square, starting at the
origin, and going counterclockwise. Here we are interpreting these points in the usual affine
patch z = 1. This polygonal ray defines lines:

L−5+k = P−7+kP−3+k; k = 0, 4, 8, ... (5.2)

We denote by LL′ the intersection L ∩ L′. Similarly, PP ′ is the line containing P and P ′.
The pairs of points and lines determine flags, as follows:

F−6+k = (P−7+k, L−5k), F−4+k = (P−3+k, L−5+k), k = 0, 4, 8, 12... (5.3)

The corner invariants were defined in Section 2.2. In this section we relate the definition
there to our labelling convention here. We define

χ(F0+k) = [P−7+k, P−3+k, L−5+kL3+k, L−5+kL7+k], k = 0, 4, 8, ... (5.4)

χ(F2+k) = [P9+k, P5+k, L7+kL−1+k, L7+kL−5+k], k = 0, 4, 8, ... (5.5)

Here we are using the inverse cross ratio, as in equation 2.3. Referring to the corner invariants,
we have

xk = χ(F2k); xk+1 = χ(F2k+2); k = 0, 2, 4, ... (5.6)

Remark 5.1. Notice that it is impossible to define χ(F−2) because we would need to know
about a point P−11, which we have not suppled. Likewise, it is impossible to define χ(F−4)
because we would need to know about L−9, which we have not supplied. Thus, the invariants
x0, x1, x2, ... are well defined for our polygonal ray.
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Cross product in vector form: Since we are going to be computing a lot of these cross
ratios, we mention a formula that works quite well. We represent both points and lines in
homogeneous coordinates, so that (a, b, c) represents the line corresponding to the equation
ax+ bx+ cz = 0. We define V ∗W to be the coordinate-wise product of V and W . Of course,
V ∗W is also a vector. Let (×) denote the cross product. We have

(χ, χ, χ) =
(A×B) ∗ (C ×D)

(A× C) ∗ (B ×D)
. (5.7)

Here χ is the inverse cross ratio of the points or lines represented by these vectors. It may
happen that some coordinates in the denominator vanish. In this case, one needs to interpret
this equation as a kind of limit of nearby perturbations. This formula works whenever A,B,C,D
represent either collinear points or concurrent lines in the projective plane.

5.2 The reconstruction formulas

Referring to the definition of the monodromy invariants, we define Oba to be the sum over all
odd admissible monomials in the variables x0, x1, x2, ... which do not involve any variables with
indices i ≤ a or i ≥ b. For instance

O1
1 = 1, O3

1 = 1, O5
1 = 1− x3, O7

1 = 1− x3 + x3x4x5.

We also note that, when a < 0, the polynomial Oba is independent of the value of a. For this
reason, when a < 0 we simply write Ob in place of Oba. The corresponding set Sb consists of
admissible sequences, all of terms are less than b.

Given a list (x0, x1, x2, ...) we seek a polygonal ray which has this list as its corner invariants.
Here is the formula.

P9+2k = (O3+k −O3+k
1 + x0x1O

3+k
3 , O3+k, O3+k + x0x1O

3+k
3 ), k = 0, 2, 4, ... (5.8)

We would also like a formula for reconstructing the lines of a polygonal ray. We start with
the obvious:

L−5 = (0, 1, 0); L−1 = (−1, 0, 1); L3 = (0,−1, 1). (5.9)

For the remaining points, we define polynomials Eba exactly as we defined Oba except we inter-
change the uses of even and odd . Thus, for instance E6

2 = 1− x4. Here is the formula.

L7+2k = (E2+k − E2+k
0 , E2+k

0 − x0E2+k
2 ,−E2+k), k = 0, 2, 4... (5.10)

Remark 5.2. These formulas are equivalent to equations 19 and 20 in [19], but the normalization
of the first 4 points is different, and the roles of points and lines have been switched. We got
the above formulas by applying a suitable projective duality to the polygonal ray in [19].
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We mention one important connection between our various reconstruction formulas. The
following is an immediate consequence of Lemma 3.2 in [19]:

P5+k × P9+k = −(x1x3x5, ..., xk/2+1)L7+k, k = 0, 4, 8... (5.11)

We close this section with a characterization of the moduli space of closed polygons within
X. We do not need this result for our proofs, but it is nice to know.3

Lemma 5.3. The invariant x1, ..., x2n define a closed polygon if and only if O2n−5 and all its
cyclic shifts vanish.

Proof. We can think of a closed polygon as an n-periodic infinite ray. The periodicity implies
that P4n−7 = P−7 = (0, 0, 1). Since 4n− 7 = 2k + 9 for k = 2n− 8, equation (5.8) tells us that
O2n−5 = 0. Considering equation 5.10, we see that E2n−6 = E2n−6

0 = 0. But E2n−6
0 is a cyclic

shift of O2n−5. Hence, if P is closed then O2n−5 and all its cyclic shifts vanish.
Conversely, if O2n−5 and all its shifts vanish then P4n−7 ∈ L−5 and P−3 ∈ L4n−5. Likewise

P4n−3 ∈ L−1 and P1 ∈ L4n−1, and so on. This situation forces P4n−3 = P−3. Shifting the
indices, we see that P4n+1 = P1, and so on. 2

Remark 5.4. Observe that O2n−5 involves exactly 2n− 7 consecutive corner invariants. If the
first 2n − 8 are specified, then the next variable can be found by solving O2n−5 = 0. Thus,
Lemma 5.3 gives an algorithmic way to find a closed n-gon whose first 2n− 8 corner invariants
are specified.

5.3 The polygon

We start with an infinite periodic list of variables which starts out

(u, u2, ..., un−4, un−4, ..., u2, u1, ...) (5.12)

and has period 2n− 8. We let Xu denote the polygonal ray associated to this infinite list. Once
u is sufficiently small, the first n points of Xu are well defined. We define P u to be the n-gon
made from the first n-points of Xu, and we take u small enough so that this definition makes
sense.

The first 2n − 8 corner invariants of P u, which we now identify with x0, ..., x2n−9, are the
ones listed in equation (5.12). However, when it comes time to compute x2n−8, ..., x2n−1, we do
not use the relevant points of Xu but rather substitute in the corresponding point of P u. Thus,
the remaining 8 corner invariants change. We write the corner invariants of P u as

a, b, c, d, u, u2, u3, ..., u3, u2, u, d′, c′, b′, a′. (5.13)

3One could give an alternative proof of Proposition 3.1 computing the Poisson bracket of the polynomials of
Lemma 5.3 with the monodromy invariants.
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It follows from symmetry that e = e′ for each e ∈ {a, b, c, d}. This symmetry here is that the
first 2n − 8 invariants determine P , and their palindromic nature forces P to be self-dual: the
projective duality carries P to the dual polygon made from the lines extending the sides of P .

Lemma 5.5. e = 1 +O(u) for each e ∈ {b, c, d}.

Proof. We set P−11 = (X,Y, Z) and L−13 = (U, V,W ). We have

L−9 = (1, 0, 0)× (X,Y, Z) = (−Y,X,Z). (5.14)

Equations 5.8 and 5.10 tell us

(X,Y, Z) = (1, 0, 0) +O(u); (U, V,W ) = (0, 1,−1) +O(u). (5.15)

We compute

b = χ(F−6) = χ(P1, P−3, L−1L−9, L−1L−13) =
UX +WX + V Y

(U +W )(X − Y )
. (5.16)

c = χ(F−4) = χ(P−11, P−7, L−9L−1, L−9L3) =
X − Y
X − Z

(5.17)

d = χ(F−2) = χ(P5, P1, L3L−5, L3L−9) = d =
X

X + Y + Z
. (5.18)

Our result is immediate from these formulas and from equation (5.15). 2

Lemma 5.6. a = us +O(us+1), where s = (n− 4)(n− 3)/2.

Proof. We have

a = χ(F−8) = χ(P−15, P−11, L−13L−5, L−13L−1) = χ(A,B,C,D). (5.19)

We will estimate a by considering the middle coordinate of equation (5.7). Calculations similar
to the ones above give

A = (0, 1, 1) +O(u), B = (0, 1, 1) +O(u),

C = (1, 0, 0) +O(u), D = (1, 1, 1) +O(u). (5.20)

Hence

(A× C)2 = +1 +O(u); (B ×D)2 = +1 +O(u); (C ×D)2 = −1 +O(u). (5.21)
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Recall that
P−15 = P−15+4n; P−11 = P−11+4n. (5.22)

According to equation (5.11), we have

A×B = −(x1x3, ...x2n−9)L−13+2n =

−u2u4...u3u1L−13+2n = −usL−13+4n. (5.23)

But
L−13+4n = (0, 1,−1) +O(u). (5.24)

Therefore
(A×B)2 = −us +O(us+1).

Looking at the signs in equation (5.21), we see that a = us +O(us+1). 2

5.4 The tangent space

Recall that π : R2n → R2n−8 is the projection which strips off the outer 4 coordinates. Let π⊥

be as in the Tangent Estimate Lemma 4.18. Recall that {vk} is the special basis of TP (C) such
that π(vk) = ek for k = 5, ..., 2n− 4.

Lemma 5.7. The following holds concerning the coordinates of π⊥(vj):

• Coordinates 2, 4, 5, 7 of π⊥(vj) have size O(1)

• Coordinates 3, 6 have size O(u).

Proof. As above, we will just consider coordinates 2, 3, 4. The other cases follow from sym-
metry.

We refer to the quantities used in the proof of Lemma 5.5. Each of these quantities is a
polynomial in the coordinates, depending only on n. Hence dX/dt, etc., are all of size at most
O(1). Moreover, the denominators on the right hand sides of equations (5.16), (5.17), and
(5.18) are all O(1) in size. Our first claim now follows from the product and quotient rules of
differentiation.

For our second claim, we differentiate equation (5.17):

dc

dt
=
X ′(Y − Z)−X(Y ′ − Z ′) + ZY ′ − Y Z ′

(X + Z)2
=∗

Y ′ − Z ′ +O(u) =
d

dt
(−x0x1)O3+k

3 . (5.25)

The starred equality comes from the fact that (X,Y, Z) = (0, 1, 1)+O(u). The claim now follows
from the fact that x0(0) = u and x1(0) = u2 and (O3+k

3 )′(0) = O(1). 2
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Lemma 5.8. The following holds concerning the coordinates of π⊥(vj):

• When j is not a middle index, coordinates 1 and 8 of are of size O(uδ+1).

• When j is the first middle index, coordinate 1 equals uδ(1 + O(u)) and coordinate 8 is of
size O(uδ+1).

• When j is the second middle index, coordinate 8 equals uδ(1 + O(u)) and coordinate 1 is
of size O(uδ+1).

Proof. We will just deal with coordinate 1. The statements about coordinate 8 follow from
symmetry.

Let us revisit the proof of Lemma 5.6. Let f = −(A×B)2. We have a = fg, where

g = − (C ×D)2
(A× C)2(B ×D)2

. (5.26)

We imagine that we have taken some variation, and all these quantities depend on t.
Each of the factors in the equation for g has derivative of size O(1). Moreover, the denomi-

nator in g has size O(1). From this, we conclude that

g(0) = 1 +O(u); g′(0) = O(1). (5.27)

It now follows from the product rule that

da

dt
=
df

dt
(1 +O(u)). (5.28)

Equations 5.21 and 5.23 tell us that

f(t) = (x1x3, ..., x2n+9)λ(t); λ(t) = (L−13+2n)2. (5.29)

By equation (5.10), we have

λ(0) = 1 +O(u); λ′(0) = O(1). (5.30)

Hence, by the product rule,

da

dt
=

d

dt
(x1x3...x2n+9)(1 +O(u)). (5.31)

Using the variables
x1 = u, ..., xj = uj + t, xj+1 = uj+1, ... (5.32)

we get the result of this lemma as a simple exercise in calculus. 2
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The results above combine to prove the Tangent Space Lemma.
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