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1 Introduction

Desargues’ theorem is a familiar and basic theorem in projective geometry.
It concerns the configuration in Figure 1.1, and says that the points x1, xo,
and z3 are collinear, no matter how the other points and lines are moved
around, subject to the incidence relations implied by the diagram.

Figure 1.1

In this paper we will generalize Desargues’ theorem in the direction of dy-
namical systems. The generalization comprises an infinite family of planar
configurations. There is a sense in which the configurations, and the state-
ments made about them, are “unboundedly intricate”. Before stating the
main result, we will explain some special cases, which may give the reader a
feel for the situation in general.

* Supported by a Sloan Research Fellowship



The starting point for our result is a different point of view on Desargues’
theorem. Let H and H' be the hexagons shown in Figure 1.2. H' is obtained
from H by drawing in the “diagonals” of H and then intersecting them.

H

Figure 1.2

This construction is easiest to draw when H is convex. But now imagine
deforming H until the sides of H are alternately parallel to the x and y axes,
as shown in the Figure 1.3. It turns out, in this case, that the points of H' lie
on a pair of lines, provided that these points are defined. (Generically they
are defined.) This fact follows from two applications of Desargues’ theorem.

Figure 1.3

Now begin with an octagon O, and apply the above construction twice,
to obtain O". If we deform O until its sides are alternately parallel to the x
and y axes, then the eight points of O” lie on a pair of lines. This is shown,
somewhat schematically in Figure 1.3. This phenomenon continues. If D
is a decagon whose sides are alternately parallel to the x and y axes, then

2



the 10 points of D" lie on a pair of lines. And so on. (The same comments
on definedness apply here as above.) The suggested infinite sequence of
statements is in turn a special case of Theorem 1.1.
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Figure 1.3

In order to present Theorem 1.1 in a natural and comprehensive manner,
we need some unusual terminology. Say that a PolyPoint is a cyclically
ordered, finite collection of points in the projective plane. (For convenience,
we will work in the complex projective plane.) We say that an n-Point
is a PolyPoint consisting of n points. Dually, we say that a PolyLine is a
cyclically ordered finite collection of lines in the projective plane. We say that
an n-Line is a PolyLine consisting of n lines. We will use the more familiar
term, polygon, to refer to an object which could either be a PolyPoint or a
PolyLine.

Let P be an n-Point and suppose & is not a multiple of n. A k-diagonal
of P is a line determined by the jth point of P and the (j + k)th point of P,
for some j. Indices are taken mod n. The k-diagonals of P inherit a cyclic
order from P. Taken all together they comprise an n-Line L. Dually, let L
be an n-Line. A k-diagonal of L is a point obtained by intersecting the jth
and (j + k)th lines of L. The k-diagonals of L inherit a cyclic ordering, and
thus comprise an n-Point.

We will denote the two maps described above by d;,. When X is an n-
Point, §z(X) is an n-Line, and vice versa. In fact, 67 is the identity, both
on PolyPoints and on PolyLines. Figure 1.4 shows the construction just
described, for n =7 and k = 3.



Figure 1.4

To get some nontrivial dynamics, we consider the group generated by d,
and d,, for distinct p and g. That is, we take a polygon P, and form the
sequence

.040p(P) 3 6,(P) 3 P > §4(P) > 6,04(P)...

Typically, this sequence is bi-infinite. However, the sequence could terminate,
at either end, due to a singularity of some kind which prevents the definition
of the relevant map. Our result involves cases where the sequence terminates,
at one end, in a highly symmetric singularity.

Say that an np-Point C is an n-cover if the jth and (j + p)th points
of C coincide, for all j. Our terminology is chosen so that C' is an n-fold
covering of a p-Point. (It is useful to think of n large and p small.) We
say that an np-Line S is an (n,p)-satellite if C = 6,(S) is an n-cover. If
S = {s1,52,..., Snp}, then the sets {s;,s;ip, Sj1op,...} consist of coincident
lines. The same definitions may be made with the words Point and Line
interchanged, using projective duality.

Figure 1.5 shows examples for (n,p) = (4,3). The examples H, O, and
D, considered above, are respectively (3,2)-, (4,2)-, and (5, 2)-satellites. To
give a general example, define P, , = {p1, pa, -.., Pnp}, Where

COS(ZFW) Sin(%ﬂ) ex %
Pi= | gu) COS%)H p( )}.

When n and p are relatively prime, P, , is an (n, p)-satellite.
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Figure 1.5

Now, suppose that S is an (n, p)-satellite and C' = 6,(S) is an n-cover,
just as above. A sequence of the form

(x)  C =06,(S) ¢ S > 6,(5) < 0,04(S) <> 6,0,04(95)...

cannot be continued much further to the left, because J, is not defined on
94(C). On the other hand, we can ask what happens as the maps proceed
towards the right.

Theorem 1.1 below says (in the cases covered) that generically (*) con-
tinues to the right as

(k%)  C =0,(5) S 0,(5) ¢ ... 2 6,(5") > 5" > 0,(S") =C™.

Both C' and C* are n-covers of p-gons, and the total number of arrows is
exactly 2n — 1. If C' is a PolyPoint, then C* is a PolyLine, and vice versa.
One is tempted to call C* the inverse of C.

Let P(n,p) and L(n,p) denote the space of (n, p)-satellites which respec-
tively are PolyPoints and PolyLines. By generic set we mean, roughly, that
the complement of the set is a lower dimensional subvariety. See §2.4 for a
precise definition.

Theorem 1.1 Suppose that n,p,q are positive integers, pairwise relatively
prime, such that min(n,p) > 3. Then there are generic subsets GP C P(n,p)
and GL C L(n,p), dual to each other, such that (6, 0 0,)" 2 06, is defined
on, and interchanges, GP and GL.



As we will see in §2, the case (3, p, ¢) is equivalent to Desargues’ theorem,
regardless of the values p and ¢q. Theorem 1.1 grows more global and dynam-
ical as n — oo. The most dramatic cases are when n is large in comparison
to p and ¢. The drama is that the singularity at one end of (xx) reappears
at other end, after (say) trillions of iterations of the basic construction.

For the sake of exposition, we have not tried to present the most general
version of Theorem 1.1. It is worth mentioning, however, that Theorem 1.1
holds for (n,p,q) = (n,2,1), for n = 3,4,5.... These cases correspond to
the specific examples described at the beginning of this introduction, and
in certain coordinates are quite closely related to C.L. Dodgson’s celebrated
method of condensation for computing determinants.

Aside from the connection to determinants, we are not sure how The-
orem 1.1 fits into the general scheme of things. We discovered the result
by computer experimentation. The main motivation was to understand the
singularities of the kind of birational mapping described above. (We studied
a case of this mapping in [S].) The motivating idea, however, does not find
its way into this paper.

Theorem 1.1 is a direct consequence of Lemma 2.1, which we prove in §2-3
and Lemma 4.1, which we prove in §4-5. Lemma 2.1 says that the sequence
(x) generically has the structure of (xx), where the total number of arrows is
&+ 2, for some & < 2n — 3. Just as the classical proof of Desargues theorem
involves a certain arrangement of planes in three space, our proof of Lemma
2.1 involves certain hyperplane arrangements in n-space.

Lemma 4.1 says that that &(n,p,q) = 2n — 3, when (n,p, q) satisfy the
hypotheses of Theorem 1.1. The proof of Lemma 4.1 is quite delicate (and
intricate) in places. Some of this subtlety is to be expected, because there
are choices of (n,p, ¢), such as (6,2, 3), for which &(n, p, ¢) < 2n— 3. Lemma
4.1 has a trivial computational proof for each fixed choice of (n,p,q). Let
p = (6,00,)" 204, One simply has to exhibit a single element P € P(n,p)
such that p is defined on P and on p(P). Call P a good example. A good
example is incompatible with & < 2n — 3.

To the reader who wishes to avoid the technicalities of §4-5 we say: In any
given case, Theorem 1.1 follows from Lemma 2.1 and from a single computer
experiment, which exhibits a good example. Indeed, ample experimental
evidence suggests that the element P, ,, described above, is always a good
example.

I would like to thank Peter Doyle, John Millson, and Madhav Nori, for
helpful, interesting and enthusiastic conversations about this work.



2 Upper Bound

2.1 Overview

Suppose that (n,p,q) is chosen. Recall that P(n,p) and L(n,p) are spaces
of (n,p)-satellites. Let ¢g be the identity map. For ¢ > 1 odd, define ¢; =
dg 0 ¢i—1. For j > 2 even, define ¢; = 6, o ¢;_1. The goal of §2-3 is to prove:

Lemma 2.1 (Upper Bound) Suppose that (n,p,q) satisfy the hypotheses
of Theorem 1.1. There is an odd positive integer & < 2n — 3 and generic
subsets GP C P(n,p) and GL C L(n,p) such that ¢¢ is defined on, and
interchanges, GP and GL.

In this chapter, we will deduce Lemma 2.1 from:

Lemma 2.2 Suppose that (n,p,q) > (3,2,1) componentwise, and p,q are
relatively prime. Suppose that L € L(n,p) and L* = ¢on_3(L) is defined.
Then L* € P(n,p).

Lemma 2.2 is, in turn, a consequence of the completely geometrical Theorem
2.3, described below and proved in §3 via hyperplane arrangements.

2.2 Mating PolyPoints

Figure 2.1



We fix n > 3. So that our definitions below make linguistic sense, we will
say that chain and n-Point are synonyms. Let X = (z1,z3,...,Zo,—1) and
Y = (y1,93,---, Y2n_1) be two n-Points. We construct Z = (29, 24, ...20,) by
defining

Zj = Tj—1Tj+1 N Yj-17j+1-

This is shown in Figure 2.1.

Of course, we only make this construction if the relevant lines and in-
tersection points are defined. Assuming Z exists, we call Z = X x Y the
offspring of X and Y. If X and Y are labelled by even integers, we can make
the same definition, taking indices mod 2n.

We say that a sequence of n-Points A; = (A 1, A1 3, ..., A19m—1) is a Poly-
Chain, and more specifically, an m-Chain. If A; = (A, , Ajjt2, - Ajom—j)
exists, we write

Aj+1 = (Aj+1,j+la e Aj+1,2m—(j+1)); Aj+1,k = Aj,k—l * Aj,k+1:

provided this is defined. We write A; — Ay, — ... — A, if all these Poly-
Chains exist. We call this progression the mating process. We will say that
the mating process is well defined on A, if A; — ... — A,,,. We call the A,, ,
the final offspring of A;. It is convenient to represent the mating process as
a triangular array. For instance, if m = 4, we could write

provided that the mating process was defined.

Suppose X and Y are the two n-Points above. We say that X and
Y are compatible if the n lines {Z;7;} are concurrent—i.e. have a common
intersection point. We will sometimes write X <+ Y in this case. We say that
the PolyChain A, described above, is a special PolyChain if Ay ; 1 <> Ay 11
for all j. Let D,, denote the space of special (n — 1)-Chains. In §3 we will
prove:

Theorem 2.3 Let n > 3. If the mating process is defined on A € D,,, then
the final offspring of A consists of collinear points.



The case n = 3 of Theorem 2.3 involves 6 points, arranged into 2 triangles,
and is a restatement of Desargues’ theorem. In general, Theorem 2.3 involves
n(n — 1) points, arranged into a sequence of n-Points. For a schematic
representation (in the case n = 4), we could write

A1,1 ~ A1,3 ~ A1,5 <~ A1,7
Az Aoy Agg
Az 3 Aszs

’ )

1Ay 4

The exclamation point means that the points of A4 4 all lie on a single line.

2.3 Deriving PolyChains from PolyLines

In this section, we explain how to deduce Lemma 2.2 from Theorem 2.3. This
deduction is just a matter of carefully keeping track of labellings.

Suppose that (n,p,q) are as in Lemma 2.2. Let L be any np-Line, not
necessarily a satellite, such that 6,(L) exists. Let X and Y be the n-Points
above. We write X >, L if X C §,(L), and the points of X are evenly spaced
in the cyclic ordering on d,(L). (This is to say that x;,, succeeds z;_; by p.)
If X,Y <, L, we write X <, Y if, for all relevant indices, the jth point of ¥
succeeds the jth point of X by ¢, in the cyclic order of 6,(L). We say that
the chain A, is (p, ¢)-derived from L if, for all relevant indices, A; ; >, L and
Avj1 =g Avja.

Cs1

Figure 2.2



Figure 2.2 shows a 3-Chain (C4,Cj3,Cs) which is (3,2)-derived from a
12-Line. The points of C; are, successively C; 1, Cj3, Cj5, and Cj7.

Lemma 2.4 For m and v, let g € [1,min(m,v + 1)]. Let L be an np-Line,
such that (6,0 6,)" 00, is defined on L. Let Ay be an m-Chain, (p,q)-derived
from L. Then Ay — ... = Ay and Ay is (p, q)-derived from (6, 0 64)971(L).

Proof: In general, for £ > 2, let « be a k-Chain (p, ¢)-derived from an np-
Line Q. If 6, 0 6, 0 64(Q) is defined, it follows straight from the definitions
that @ — 3, where S is a (k—1)-Chain which is (p, ¢)-derived from d,06,(f2).
Our lemma follows from this observation and induction. &

Now, assume that (d, o §,)" 2 o §, is defined on L € L(n,p). Suppose
that A; is an (n — 1)-Chain which is (p, ¢)-derived from L. It follows straight
from the definitions that A; € D,. From Lemma 2.4, the mating process
is well defined on Ay, and A,_1,_1 >, M = (6, 0 6,)" *(L). By Theorem
2.3, the n points of A,_; ,_1 are collinear. Cyclically relabelling, we see that
this is true for all A such that A v, M. This is the same as saying that
L'=§,(M) = (6,06,)"%0,(L) belongs to P(n,p).

2.4 Complex Algebraic Manifolds

What remains in this chapter is to deduce Lemma 2.1 from Lemma 2.2. We
begin by discussing a particular kind of complex manifold.

A map ¢ : C*¥ — C* is birational if both ¢ and ¢~ are rational. We
say that a manifold M is a complex algebraic manifold if there is an atlas of
local coordinate charts M — C*, whose transition functions are restrictions
of birational maps.

A subset S C M is singular if, in each local chart, S is a subset of a lower
dimensional complex affine variety. We say that U C M is generic ift M — U
is singular. Finite intersections and unions of generic subsets are generic. A
map f: M — N between complex algebraic manifolds is said to be rational
iff f is rational when considered in local coordinates. Typically, such a map
will only be defined on a generic subset of M.

In what follows, we attach a linear order to our polygons which is com-
patible with our cyclic order. This amounts to choosing a distinguished point
for each polygon. Once we do this, every configuration space in sight is a
complex algebraic manifold and all maps in sight are rational.
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2.5 Proof of Lemma 2.1

Say that the map ¢y, is bi-defined on some subset S C P(n, p) if ¢y, is defined
and injective on S, and ¢, ' is defined and injective on ¢,(S). We will say
that S is h-good if ¢, is bi-defined on S. Since our maps are rational maps,
the existence of a nonempty h-good subset implies the existence of a generic
h-good subset. In fact, the set of all h-good elements is generic, if nonempty.
Let & denote the largest value of h such that there exists a nonempty h-
good subset. It follows immediately from Lemma 2.2 that £ < 2n — 3. Let
GP C P(n,p) and GL C L(n,p) denote the generic sets of {-good elements.

Sub-Lemma 2.5 ¢, is defined on a generic subset V C P(n,p).

Proof: It suffices to show that ¢¢;; is defined on some element of P(n,p).
Suppose this is false. Suppose also that & is odd. The case when £ is even,
which does not actually arise, has a similar proof. Let X € GP, and let
Y = ¢¢(X). We claim that Y = (y1,ys, ..., Ynp) is an n-cover of a p-Point. If
not, then y; # y;4, for some j. This means that this equality fails on a generic
set. Cyclically relabelling, and intersecting, we see that this equality fails,
for all j, on a generic set S C GP. But ¢¢1 = 9, 0 ¢ is defined for X € S,
a contradiction. So, assuming ¢ is never defined, we see that ¢.(X) is an
n-cover of a p-Point. By choice of X, the PolyPoint §,(¢¢(X)) = ¢e1(X)
is defined. This PolyLine is clearly the n-cover of a p-Line. Hence, 4, is
not defined on ¢¢_1(X). This implies that ¢z, is not defined on ¢¢_;(X), a
contradiction to X € GP. &

Let V' C P(n,p) be the generic subset on which ¢y is defined. qﬁgjl
is never defined on ¢¢1(V), for otherwise, we could increase the value of
¢. The same argument as above says that ¢¢;1(X) is an n-cover, for any
X € V. Taking limits, we see that this is also true for X € GP. Hence,
by definition ¢:(GP) C L(n,p). Since <;5g1 is defined on ¢¢(GP), we have
¢¢(GP) C GL. Dually, ¢.(GL) C GP. Since ¢ is odd, ¢¢ is an involution on
the above domains. Therefore, ¢¢(GP) = GL and ¢¢(GL) = GP.

If € is even, then ¢¢41(X) is a "—;’-(:over of a g-gon, for X € V. This is
impossible since (by hypothesis) ¢ does not divide n. Hence £ cannot be
even. Since the even case does not occur, the proof is complete.
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3 Hyperplane Arrangements

In this chapter, we will prove Theorem 2.3. For d € [1,n — 1], say that a
d-flat is a copy of C% in C™. As usual, we call the extreme cases hyperplanes
and lines. Define (21, ..., 2,) = (21, 22)-

3.1 Joints and Tubes

A joint is a sequence J = (p1, p3, ..., Pon_1) Of n general position points in C".
Let |J| denote the hyperplane spanned by the points of J. A tube is sequence
of n lines, having the form ¢J = (gpi, ..., gpon_1), where ¢ € C™ — |J|. The
complex lines of ¢.J inherit labellings from J.

Given joints J; and Js, such that J; NJs = 0, let J; J5 be the collection of
n lines determined by corresponding points of J; and J;. We write J; <+ J3
if and only if J;J3 is a tube. A PolyJoint (or m-Joint) is a sequence of joints
Q= (1 & J3 & ... < Jop_1). By definition, 2 determines a sequence of
(typically distinct) tubes (1%, Ty, ...Tom—2), where Top = Jog_1 Jog11-

We call 7Q = (n(Jy1),...,7(Jam—1)) the projection of Q. We call Q a
cover of mQ). By construction, 7€) is a special PolyChain. Conversely, let
A = (A, As, ..., Ayp_1) be a special PolyChain. Let L; denote the collection
of lines determined by correspondingly labelled points of A;_; and A;;;. We
say that A is coverable if Vj the points of A; are in general position and
belong to C? and the lines of L; are pairwise distinct, and nonparallel in C.

Lemma 3.1 (Lifting) Coverable PolyChains have PolyJoint covers.

Proof: Let A = (Aj, As..., Ayy_1) be a coverable m-Chain. We will in-
duct on m. Certainly, we may find a joint J; such that 7(J;) = A;. Sup-
pose, by induction, we have a PolyJoint (Ji,..., Jox—1) which projects to
(A, ..., Agk_1). Let a9, € C? be the unique common point of the lines in
Lyi. Since the points of Ay, | are in general position, 7(|Jy 1|) = CZ.
Therefore, |Jox_1| is transverse to the level sets of . This means that
there is some To, € T (zor) — |Jog_1|- Since 7(TopJor 1) = Lok, and the
points of A1 are contained, one per line, in the lines of Loy, the set
J2k+1 = 7.‘.71(14%*_1) N TogpJop_1 1S a jOiIlt. By construction, J2k+1 < Jop_1
and 7(Joky1) = Aggr1- This completes the induction step. #
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3.2 Cyclic Skeleton

Let T = (t1(1),t1(3)...,t1(2n — 1)) be a tube. We set ;7" = T'. Inductively,
we set LT = (..., tx(j),-..), where tx(j) is the flat spanned by the flats
ty—1(j — 1) and tx_1(j + 1). Note that tx(*) is spanned by k consecutive
lines of T, and hence has dimension k. The n flats of 347 inherit their
cyclic order from the cyclic order of 7. When £ is odd (resp. even), the
elements of X;T are labelled by odd (resp. even) integers. Note also that
tk(4) = tk—1(J — 1) Ntg—1(j + 1). We call the union X, T the cyclic skeleton
of T

Suppose that W is a codimension j flat. Suppose that 7" is a tube. We
say that W is slices T if W NX,T consists of n distinct points and (provided
j<n-=-2)Wn Y411 consists of n distinct lines. If W slices T', we define
Wr = n(W N E;T). The points of Wy are labelled by odd or even integers,
depending on the parity of j. Let W and W' be distinct flats. We say that
the pair (W, W') slices T if dim(W NW') + 1 = dim(W) = dim(W’') and if
W, W' and W N W' all slice T. The following simple result is the key to our
entire proof:

Lemma 3.2 (Mating) Suppose the pair (V,V') slices T. If the offspring
(V)1 * (V)1 is defined, then (V OV)p = (V)p x (V).

Proof: Let d be the common codimension of V' and V'. Assume that d is
even. The odd case is the same, except for the parity of the labellings. VN,
consists of n points py, P, .., Pon—2 and VN3, T consists of n distinct lines,
Ly, Ls..., Lyy_q. (likewise for V'.) Let ¢; = (VN V') Ntg41(j). We claim that

(1) Lj=popis Ly=piw ¢ =L;NL;

By hypothesis, p; € tq(i). Since t4(j £ 1) C ta41(j), we have p;_1,pj41 €
V' Ntg41(7)- Since these points are distinct, p;—1p;41 is uniquely defined and
Dj—1Pj+1 C VNtar1(4). Since VNiay1(j) = Lj, we get the first part of (1). The
second part of (1) follows from the trivial fact (V Ntgy1(5)) N (V' Ntgy1(5)) =
(VN V') Ntay1(j). By definition,

2) Vir=_(.m@)); Ve =(.,n(@)..); VV]r=(.,7(g),..)

Our lemma follows from projecting (1) into the plane, and using (2). #
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3.3 Full Transversal
Suppose that € is the m-Joint described in §3.1. Define H, y = |Ji|, and
Hyp=Hg 13, 1NHy 1p41; ge2,m], kelg,2m—g|.

In all, we get Hy 4, Hy g19, ..., Hgom—g, for g € [1,m]. We do not rule out the
possibility that some H, is a point or the emptyset.

Define k& <= h iff h is even and |h — k| < 1. If s < min(m,n), we say
that €2 is s-sliced if the following holds for all relevant indices: If ¢ < s and
k <= h, then H, has codimension g and Hy, slices T},. In this case, and for
these indices, define

Ag,k = W(Hg,k M EkTh)a Ag = (Ag,ga Ag,g—|—2a ceey Ag,meg)-
Note that A; = 7€2.

Lemma 3.3 Suppose ) is d-sliced, and the mating process is d-defined on
Al = 7). Then Al — . Ad'

Proof: We just have to show that A, is the offspring of Ay ;1 and Ay 411,
forg<d-1,and k € {g+1,...,2m — g — 1}. Suppose first that g is odd
and k£ is even. Then

Agp1 = m(Hyp-1 NEgTx);  Agirr = m(Hgpi1 N EgTh);

Agirh = T(Hgr1p N X911 Te);  Hyrrp = Hyp 1 0V Hy 1.

Applying the Mating Lemma to the pair (Hyy_1, Hgr11), and the tube T},
we get the desired result in this case. If g is even and £ is odd,

Agp1=m(Hyp 1 NBgTy1);  Agpsr = 7(Hyp1 N BgThi1);
Agpie = T(Hy1 o N Y11 Thv1);  Hgran = Hyp1 M Hypya

By construction, X,T; 1 N Hyp = X, Tj41 N Hy k. Since 2 < g < k, we have
Hyp1 C Hy_1 ) C Hiy. Putting the two facts together, we have

Hyp s NS, Te 1 = Hyp oy N5, Thpn.

Therefore,

Applying the Mating Lemma to the pair (Hy 1, Hyx+1), and the tube T} 1,
we get the desired result in this case. #
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3.4 Proof of Theorem 2.2

Let B be the space of coverable (n — 1)-Chains, such that each chain is an
n-Point. Thus B is a subset of D,,, which appears in Theorem 2.3. Let £

be the set of n-Tubes which cover B. Let S C £ be the set of (n — 1)-sliced
elements.

Lemma 3.4 S is open dense in E.

Proof: By stringing out the coordinates of the points of an element of B
and of £, it is easy to see that both these spaces can be expressed as V — W,
where V and W are complex affine varieties. It is easy to see that B is
connected, since we are working over C. Given an element of B, one finds
an element of £ which covers it by the procedure of the Lifting Lemma. The
proof given there shows that £ fibers over B. The fiber again has the form
V — W, where V and W are complex affine varieties. Since we are working
over C, this fiber is connected. In summary, B and £ are both connected
complex algebraic manifolds.

S is determined by the nonvanishing of certain rational functions. Thus,
S is open and dense provided it is nonempty. Let Fi, ..., F,,_1 be a collection
of general position hyperplanes. Let Z be any tube. By transversality, every
F; will be transverse to every flat in the cyclic skeleton of Z', where Z' is a
suitable isometric copy of Z. Let © = (F1N Z', ..., F,_1 N Z'). By construc-
tion, @€ S. &

The preceding Lemma implies that B is dense in D,, which is fairly
obvious anyhow. Suppose that the mating process is defined on A; € D,,.
By continuity, the mating process is defined on all elements of D,, sufficiently
close to A;. By perturbation, we can assume that A; € B. In other words,
Ay = 7€), where QQ € §. Let Ay — ... = A, 1 be the mating process for
A;. In the notation of §3.3, we have A, 1, 1 = 7(H,-1,-1 N T,), where
n—1 < v. Since Q is (n — 1)-sliced, H, 1,1 is a 1-flat. This is to say that
the points of A,_;,_; are collinear.
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4 Lower Bound

Theorem 1.1 follows from Lemma 2.1 and from

Lemma 4.1 (Lower Bound) Let (n,p,q,§) be as in Lemma 2.1. Then
& =2n—-3.

4.1 Proof Modulo Transversality

In this section we prove Lemma 4.1, modulo a transversality lemma.

Let b = 3(£+1), so that §40(6,08,)2" = ¢¢. Let N > np be any integer,
fixed once and for all. Say that an element L € L(n,p) is good if there is an
N-joint €2 such that 7 is (p, ¢)-derived from L, and (see §3.3)

1. Q is h-sliced,
2. Hyy # 0 for d € [1,n] and for all relevant k.
3. HyyNX,T, spans Hyy, for g € [1,h] and k < 2.

In this case, we will say that 2 is associated to L. Let GC L(n, p) be the set
of good elements. Assume for now that:

Lemma 4.2 The closure of G in L(n,p) has nonempty interior.

Let P CGP denote those elements Y such that the np points of YV are
distinct, and the p lines of ¢,(Y") are in general position. By Theorem 2.1,
the map ¢ is a birational involution swapping G P and GL. Hence, ¢, takes
generic sets to generic sets. P is clearly generic, and hence so is ¢¢(P).
By 4.2 there exists some X € ¢¢(P)NG. Let Y = ¢¢(X), and let Q be
an N-Joint associated to X. Pick k € [2n,2N — 2n]. By Lemma 2.4 and
Lemma 3.3 combined, the 3-Chain (A x—2, Apk, Ank+2) is (p, ¢)-derived from
(6,0 684)21(X). The points of Ay, belong to Y and are evenly spaced in the
cyclic ordering on Y, forv = k—2,k,k+2. Since Y € P, the span L, of A,
is a line, for our choices of v. From Property 3 above, the span of H,,NX,T,,
projects to the span of A,, = m(Hy, N X,T},), provided v <= w. Therefore,
L, =7n(Hpy,). If h <n—2, then

Lk_g N Lk N Lk+2 D) W(Hﬁ,k_g N Hﬁ’k N Hﬁylﬁ_g) = W(Hﬁ_ﬁ,k) 7é @,

from Property 2 above. The above three lines are consecutive in §,(Y"). Since
p > 3, their concurrence contradicts Y € P. Hence h =n—1 and £ = 2n—3.
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4.2 Configuration Spaces

Let B = B(N;n,p,q) be the subspace of coverable N-Chains (p, ¢)-derived
from elements of L(n,p). Let &€ = E£(N;n,p,q) be the space of N-Joints
which cover elements B(N;n,p, q).

Lemma 4.3 B and £ are connected algebraic manifolds.

Proof: The following construction reveals that B is smooth and connected.
Choose p distinct points in C?. Choose np distinct lines, which cyclically
contain the chosen points. This determines an element L € L(n,p). Now
take the m-Chain A; which is (p, ¢)-derived from L, such that the first point
of A, is the first point of L. By consruction, A; € B. Since N > np,
different choices of L determine different elements of B.

Let Q € £. Let A = Q0 € B. Any lift of A; can be constructed from
the following lifting data: A joint Jy such that 7J; = A;;, and a sequence
of points Zok, such that 7(Zox) = wor. Define ¥(z1, ..., 2n) = (23, 24, .-, Zn)-
Each point in the lifting data is determined by the corresponding point in A;
and by its image under 9. Since B is a smooth manifold, our construction
shows that there is a “product neighborhood” of €2, diffeomorphic to a ball,
which fibers over a neighborhood of A; in B. The connectivity of £ follows
from the connectivity of B, and the (obvious) connectivity of the fibers. &

4.3 'Transversality Proof Overview

In this section we outline the proof of Lemma 4.2. Let 2 € £. We adopt the
notation of §3.3. Given a tube T, let /T denote the jth flat of 3,7, when
these flats are ordered in a way which is compatible with their cyclic order.

Say that Q is cyclically invariant if the function j — dim(Hy, N XIT,,)
is independent of j for any choice of indices (g, k,r,m). Let CZ be the set of
such €. In §4.5 we will show that CZ is open and dense in £.

Say that a PolyChain Ay = (..., Ak, ...) is affine if, for all relevant indices
a and [ the following is true: Ay, 1 U A 441 consists of 2n distinct points
of C” and 4, (Ay,s) consists of n distinct lines, all of which intersect C*. Say
that Q is h-affine if the mating process is h-defined on A, and A; is an affine
chain, for j =1, ..., h. Let AF denote the set of such 2. In §4.6 we will show
that AF is open dense in .
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Say that Q is transverse invariant if 3y € [1,n] such that dim(H, ;) =
max(n — v,n — g), for g € [1,n]. Let TZ be the set of such Q. In §4.7 we
will show that 7Z is open dense in £.

Let Uy =CINTINAF. From the statements above, U is open dense in
E. In §4.8 we will show that any element of U satisfies the three properties
listed in §4.1. Since 7 : & — B is continuous, 7(U) is dense in B. Now,
B contains an open subset of the space C of all N-Chains which are (p, ¢)-
derived from elements of L(n,p). This is to say that the closure of 7 (i) in
C has nonempty interior. Since N > np, an element of C determines, and
is determined by, the corresponding element of L(n,p). The spaces C and
L(n,p) are thus canonically homeomorphic. This homeomorphism carries
G CL(n,p) to m(U) C C. Hence the closure of G has nonempty interior in
L(n,p), as desired.

4.4 The Basic Set

Given a flat V, let V denote the completion of V in CP". Let V® =V — V.
Let © = (V4,..., V%) be a family of hyperplanes comprising part of 2. We
think of © as specifying combinatorially which hyperplanes to take. The
actual hyperplanes will vary with the choice of 2 € £.

Let © = (V,...,V}), and let ©%° = (V°, ..., V;®). Define NO to be the
intersection of all the hyperplanes in ©. Define N© and NO> similarly. There
are only finitely many distinct choices for ©. Let M C £ denote the subset
on which the functions dim(N©) and dim(NO) attain their minimum value,
for each and every choice of ©. From Lemma 4.3, we know & is a connected
complex algebraic manifold. The complement of M is described by the
vanishing of various rational functions. Since M is nonempty, it is generic.

4.5 Cyclic Invariance

In this section we prove that M C CZ, which implies that CZ is open dense.

Given a jOint J = (plap?n "'7p2n—1)7 let p(‘]) = (p?nPSa "':p2n—lap1) be the
joint obtained by cyclically relabelling the points of J. Given a PolyJoint

Q= (J1,., Jonv-1), let p() = (p(J1), ..., p(Jan—1)). Note that £ is clearly
invariant under p. By construction p(M)= M. This implies that M C CZ.
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4.6 Affine PolyJoints

In this section we prove that AF is open dense. By algebraicity, it suffices
to show that AF #0. Let GL and GP be the sets in Lemma 2.1. Suppose
we could find some L € GL such that the n lines/points of ¢;(L) are all
distinct, for 7 = 1,...,£. Since ¢; commutes with complex projective trans-
formations, we could perturb L by a complex projective transformation so
that all relevant points belong to C? and all relevant lines intersect C?. Any
N-chain A; derived from this perturbation would satisfy the conditions used
to define affine. By the lifting lemma, there is some  such that 72 = A;.
By construction, €2 would be h-affine.

If no element such as L exists, there is some index j € [1,£] such that
the ath and bth points/lines of ¢;(L) coincide, for all L € GP. Relabelling,
we see that the (a + k)th and (b + k)th points/lines coincide for all k. This
property is inherited by ¢, (L), for j' = 1,2, ..., so that the points of ¢¢(L)
are never entirely distinct. This contradicts the fact that ¢:(GL) = GP,
because elements in GP generically consist of np-distinct points.

4.7 Transverse Invariance

In this section we prove, modulo a technical detail, that M C TZ, which
implies that 7Z is open dense.

As a bit of notation, a projective flat in C P" is the projectivization of a
linear subspace of C™!.

Lemma 4.4 Let Py, Py, P;... be a sequence of codimension one projective
flats. Suppose that d, = d,(j) = dim(P;N...N P;y,) depends only on r. Then
dy —dpyy < 1. If dpyy = d,. > 0, for some r < n then P10 ...N Py is
independent of i. In particular, NP; # (.

Proof: The first statement is standard. (See [K, Cor 3.21].) If d,.(j) =
dr+1(j), then P;N...N Pjy, = Pjy1 N ...N Pjipqq. This is independent of j,
and gives the second statement. é#

Let ©(g, k) denote the collection of hyperplanes { H; ;} which intersect to
give Hy . So, O(g, k) consists of g consecutive hyperplanes in the list. The
choice of k determines which hyperplanes to take. Define

d(g, k) = dim(NO(g, k));  d®(g,k) = dim(NO>(g, k)).
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By definition, d(g, k) and d*®(g, k) are constant functions on M.

Lemma 4.5 The functions d(g,k) and d*(g, k) are independent of k on M.

Proof: O(g,k) = {H1p—g+1, -, Hirg-1}. Let Qlg, k] = (Jo—gt1, -, Jhtg-1)
be the corresponding g-joint. Let E[g, k] = {Qg, k]| © € £}. The argument
in the Lifting Lemma implies that &g, k] consists exactly in those g-Joints
associated to elements of L(n,p). The point is that any such g-Joint can be
prolonged to an N-Joint, by the procedure in the Lifting Lemma. In par-
ticular, £[g, k] is independent of k. Since our two functions only depend on
Q[g, k|, they are independent of £ on M. &

Given a PolyJoint Q, define I(2) = NH; ;, where the intersection is taken
over all possible indices j. Recall that 7 : C" — C? is our projection. Let
A =7-1(0,0) — C". Let B=C". In §5 we will prove

Lemma 4.6 (Existence) I(Qg) N A =0 for some Qy € £.

Corollary 4.7 3Q; C M such that either I(Qy) =0 or I(Q2;) N C™ # 0.

Proof: We will base our example on {25. We can perturb €2 so that €2y € M.
The only case we need to consider is when () # 0. Since M is open and
PolyJoints are compact, 7'(€2g) € M for all T sufficiently close to the identity.
The subgroup of projective transformations which stabilize the pair (A, B)
acts transitively on CP"™ — A — B, and has the identity as limit point. Hence
Q) =T(Q) intersects C™ for a suitable choice of T'. #

Suppose, with a view towards getting a contradiction, that 2y € M —-TZ.
Let dy = d(g,k) and d° = d*(g, k). If Vg dim(H,) = d), then Lemma 4.4
implies Qy € TZ. Hence dim(H, ) # d, for some u € [1,n]. Since H, is
a projective flat, we have d, = d%°. This implies that I(Q) N C" = () for all
Qe M.

Now, d*° = d, — 1. Also, these functions decrease by at most 1 as g
increases by 1. Therefore, d, = d, 1 > 0 for some v € [1,n]. This fact implies
that 7(Q2) # 0 for all Q € M. The two conclusions about Q contradict the
existence of €2; above.
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4.8 Dimension and Slicing

In this section we prove that any element of CZNTZ N AF satisfies the three
properties of §4.1. First of all, Property 2 holds for any element of 7Z, by
definition. We will show in Lemma 4.9 that Property 1 implies Property 3,
so that we only really need to establish Property 1.

Let T be a tube, as usual.

Lemma 4.8 If V N X, T consists of n distinct points, and V N Xp_T = (.
Then dim(V') > n — k.

Proof: We may normalize by a complex affine map so that T" = ¢J, where
g =10,...,0}, and J = {ey,e9,...,e,}. Here e; is the standard basis vector.
Let p; = V Ntx(5). The hypotheses imply that (after suitably labelling), the
jth and (j + k& — 1)st coordinates of p; are nonzero, for j =1,2,...,n—k+1.
These n — k + 1 vectors are independent, and all contained in V. &

Lemma 4.9 Suppose that W is a codimension d flat, slicing a tube T. Every
hyperplane of W intersects g1 T, and W N X T spans W.

Proof: Let Ly, L, ..., Ly,_1 be the lines of W NX,;T. If the first statement
of this lemma is false, then some hyperplane of W is disjoint from UL;. This
in turn implies that UL; C W', for hyperplane W' of W. By transversality,
and the distinctness of the lines L;, there is a hyperplane W"” C S’ such that
the intersections ¢; = W"” N L; are all distinct, and also disjoint from 3.
Lemma 4.8 says that dim(W") > n — d — 1, which is a contradiction.

The lines L; are each determined by pairs of points in W N X,T. If the
second statement of this lemma is false, then the lines L; are contained in a
hyperplane of W, which contradicts the first statement of the lemma. &

By construction, H; j is in general position with respect to X, 7T, so Hy
slices T, whenever k < z. Suppose, by induction, that €2 is d-sliced, for
some d < h. We now show that Hy.; slices T, when k <= z. For ease of
exposition, we assume that d and &k are even.

Suppose that dim(Hgy1y) = dim(Hggs). Consider the smallest d for
which this equality holds. The above equality implies that Hyy 1 = Hgp1-
By induction and the Mating Lemma, Aj;_1 = Agx+1. Since A, is an affine
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chain, this is only possible if A < d. Therefore, Hyy is a hyperplane of
Hyptr-

By induction, Hy 1 slice T, since (k£1) <= k. Let Ly 1, Ly 3, ..., Ly op1
be the n distinct lines of Hy g1 N Xg11 Tk Let py1,pis, ..., p+2n—1 be the n
distinct points of Hg i1 N XgT}. It follows from the Mating Lemma that

1. 7({p+;}) consists of the n-distinct points of the chain Ag 4.
2. m({Lx+,;}) consists of the n distinct lines of §; (Agk+1)-
3. m(L_;)Nm(Ly,;) is the jth point of Agiq.
Let I; = Hqp1 6N EleTk. We have
I = (Hap1 N0 T) N (Hapn N2, T) = L_jN Ly ;.

By Lemma 4.9, we see that Hyiq, N Xg1T) # 0. Hence, dim(Z;) > 0 for
some j. Since the mating process is defined on the chain A4, and A, is affine,
the lines L_ ; and L ; project to distinct lines in the plane. Therefore, these
lines are distinct in C™. Hence, dim(I;) < 0. In short I; is a point, for some
j. Since €2 € CZ, this fact is true for all j. Since the chain A, is affine,
the points I; project to distinct points in the plane, and hence are distinct
in C". If d =n — 2, we are done.

Suppose d < n — 3. Let Q; = Hyy1, N E4,,T. BEach Q; contains points
I;1,. Hence dim(Q;) = ¢; > 1. Suppose that ¢; > 2. Define

Vi=StTy Va=Qi W=3,T;.
Since
Qi N =G Te = (Hawn N S04 T) N SGET = Har e N EGH T = i,

we have V1NV, = I;4;. In particular, dim(V; NV,) = 0. This contradicts the
fact that V4, V, € W, and dim(V;) + dim(V5) > dim(W) + 1. Hence, ¢; = 1.
The lines Q2, Q4 -.., Q2n—2 project to the lines of 6;(Agy1.). Since Agyy is
affine these lines are all distinct in the plane. Therefore, ()1, Qs, ..., Q2,_1 are
all distinct. Putting everything together, we see that Hy 1 1 slices T.
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5 Proof of Lemma 4.6

5.1 Abstract Formulation

Recall that w(z1,...,2,) = (21,22) and that ¥(zq,...,2,) = (23, .0, 25). If
Z = ¢1(0,0) then A =7 — Z, where Z is the closure of Z in CP".

Given a point a = (a4, ..., a,) and a sequence of vectors @ = {q1, ..., g} C
C*, define a - Q = Yo _1 Gala. Suppose that C' C C" is an n-Point. Let Jo
be the space of n-Joints J such that 7(J) = C. Given J € Jg, we define the
linear map ¥, : C™ — C™ 2 by the formula ¥ (v) = v - 9(J).

Let H be a hyperplane. We say that a flat F' is adapted to the pair (J, H)
if U,;(F)=¢(HNZ). Suppose that H() is a hyperplane function. That is
H(J) is a hyperplane, for each J € J¢. Say that a flat F' is adapted to the
pair (C,H()) if F' is adapted to the pair (J, H(J)) for a generic choice of
J e Jo.

Given a hyperplane V' C C", let V' be the linear subspace which is parallel
to V. We say that the collection of hyperplane functions {H;(), ..., H,()}
is ample if there exist a collection of codimension 3 flats {Fi, ..., F,} and
a collection of hyperplanes {Vi,...,V,,} such that V},...,V, are in general
position, and for all j F; C V; and F; is adapted to the pair (C, H()).

Lemma 5.1 Suppose that {H1(), ..., H,()} is an ample collection of adapted

hyperplane functions. Then AN (NH;(J)) =0 for generic J € Jc.

Here is how we will use Lemma 5.1. After constructing a particular Poly-
Chain I', we define, for each J; € Jg,, a canonical PolyJoint Q(T', J;) =
{J1, J3, ..., Jon—1} which covers I'. Next, for j = 1,...,n we define hyper-
plane functions H;(J;) = |Ji42 1)/ Finally, we unravel the definitions to
prove that these hyperplane functions are ample. Lemma 5.1 then says that
Q(T, J;) satisfies the conclusion of Lemma 4.6 for generic choice of J; € Jg,
and all we really need is one example.

The rest of this section is devoted to the proof of Lemma 5.1.

Sub-Lemma 5.2 Let W1, ...,W,, be general position codimension one linear
subspaces. For j =1,...,n, let G; C W; be linear subspace which has codi-
mension 2 in W;. Then the generic linear map ¥ : C™ — C™? has the
property that ¥(G1) N...NY(G,) = {0}
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Proof: It suffices, by algebraicity, to find a single linear map which has the
desired property. Equip C" with the usual Hermitian inner product. Our
conditions imply that 3 dimensional subspaces @; = {GJL} are such that
span(Q1, ..., Qx) has dimension at least k. We will show, inductively, that
there is a dimension d — 2 linear subspace Ry, such that {R;NQ1, ..., RN Q4}
spans Ry. Certainly, this is true for d = 2,3. Suppose it is true for d = k.
Since Ry has dimension k£ — 2, and the span of @)y, ..., Q.1 has dimension at
least k + 1, there is some j € [1, k + 1] such that Q; ¢ Ri. Let v € Q; — Ry.
If we take Ry, to be the span of Ry and v, then Ry, has the desired prop-
erties. By induction, R = R, exists. It follows from duality that orthogonal
projection onto R has the desired properties. #

The collection of vectors in t(J) can be chosen generically. Hence, the
generic projection C" — C™ 2 arises as a map of the form W,;. Let Fj be
the linear subspace parallel to Fj. Note that F; C V/. SubLemma 5.2 and
the hypotheses imply that U ;(F{)N...N¥;(F)) = {0} for the generic choice
of J € Ji. Hence, there is no nontrivial flat in C™ 2 which is simultaneously
parallel to all of W ;(F}). Since ¢(Z N H;(J)) = ¥ ;(F}) there there is no flat
in C"? which simultaneously parallel to all of ¢)(Z N H;(J)). Such a flat
would exist, however, if AN (NH;(J)) # 0.

5.2 Separation and General Position

Say that a vector (ai, ..., a,) is separated if |a;| > 1 and if [a;]| > n!||af...a] |
for all j. Say that a vector A = (A1, A3, ..., Aon—1) iS inverse separated if the
associated sequence (ai, ..., a,) is separated. Here a; = )\2_]-1_1. (The reason
for the strange labelling of A will be clear soon.)

Define the linear map T 4(e;) = aje;j4. Here e; is the standard basis
vector. Let Wy = {z1,...,z,| X x; = 0}. For j > 1 define W, = Tf\,_ql(WO).

Lemma 5.3 If A is inverse separated then W1, ..., W,, are in general position.

Proof: Given vectors X and Y, let XY be the vector obtained by compo-
nentwise multiplication. Taking indices mod n, let V,, = (apy1, ..y Ghin). Let
Wy1 = (1,...,1). Inductively, define W, , = W, x_1Vj,. To prove this lemma,
it suffices to show that the vectors W 1,..., W, , are linearly independent.
Let P, 4(a1, ..., an) = det(M, 4), where M, , is the matrix whose columns are
these vectors. It suffices to prove that X = P, ,(a4, ..., a,) # 0.
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Let w = exp(2mi/n). We have P, (w,...,w") = w’P, o(w,...,w"). Here
b depends on n and ¢q. Now, P, is the usual Vandermonde determinant:
Ppo(w, ..., w™) = [T«;(w" — w?) # 0. Hence, P, , is not the zero polynomial.
The coeflicients of the monomials in X are all +1. The separation hypothesis
says that one of these monomials has larger norm than the sum of all the
other norms. #

5.3 Separated PolyChains

We will use the notation of §2. Suppose that I' = (Cy,Cj,...,Con_1) is a
PolyChain, (p, q) derived from an element of L(n,p). Let ¢;; be the points of
C;. Also, let

Tok = Cok—1,iC2k+1,i () C2k—1,iC2k+1,i-

This point is independent of . The points cop_1,, Tok, and cox41,; all lie in
the same complex line, and hence the following is well defined:

Cok+1,i — T2k ?
Borg = ——=—=: X =[] Boky-
Cokp—1,i — T2k k—1

We call A = {1, A3, ..., Aoy 1} the return sequence for I'. We say that I is
separated if A is inverse separated, as defined above.

Lemma 5.4 Suppose (n,p,q) are as in Theorem 1.1. Then some element of
B(N;n,p,q) is separated.

Proof: Let w = exp(27i/n). For any complex number z, let z be the point
in R? which represents z. Choose generic points xg,_o, Top € U = UOw?. Let
2>mr >r3 > ... > 195 = 1. Let s1,s83,...,80p—1 < 1 be a sequence
of small numbers. Let p, be the cyclic permutation: p,(21, 22, ..., 2n) =
(Zgt15 Zg4+25 -3 Zns #15 -+, Zg). (Our notation is a bit redundant when p = 3,4.)
As shown in figure 5, define

Ci = {riw, ...,rw"}; i=1,2,..,2p— 5.

_ 2 3 n
02;0—3 = {81% S3W -, S5W 7y +eny S2p—1W }

C2p—1 = (CQp—l,la Cop—1,3; -+ CQp—l,Qn—l); Cop—1,j = Top—2C2p—3,5 (N TpC1 j12g-
— 9 C
Cgp+j =p (CJ) ] = 1,3, ceey 2N — 2]) -1
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By construction, {C},Cs, ...,Con—_1} is a PolyChain which is (p, ¢)-derived
from an element of L(n,p).

Figure 5

To estimate the return sequence note that

Bajs Bags - Bop—sj € [1,2];  Bop—a = ;.

As sq,...,5, = 0, the points of Cy,_; converge to U. Since xg,_o, 29, & U,
there are constants ¢, K > 0 such that

max(s;) <€ = [op_aj, o € [1/K, K],

All in all, \; = Kjs;, where K; lies in a compact subset of R" which is
independent of the choice of {s;}, and we can prescribe this sequence as we
like.

5.4 Canonical Lifts

Let I' be any separated PolyChain, as constructed above. Perturbing if
necessary, we can assume that I' is coverable. Recall from the Lifting Lemma
that a PolyJoint lift of a coverable chain I' can be specified by choosing a joint
Ji such that w(J;) = C4, and points %9, Z4, ..., Toan_o such that 7Z; = x;. Let
J1 be a joint. The Ji-canonical lift of T is the object Q(T', J;) whose lifting
data is given by (Ji; 22, T4, .., Tan_2)-
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Lemma 5.5 For generic J, € Jg, the object QT, J;) is a PolyTube and
belongs to E(N;n,p,q).

Proof: By induction, there is a generic set of choices for J3 so that the Js-
canonical lift (C3, Cs, ..., Con_1) is a (N —1)-Joint. By transversality, there is
a generic set of choices of J; so that 2 ¢ |J;|. Finally, J; depends birationally
on J;. Hence, there is a generic set of choices of J; which guarantee that J3
has the above two properties. For such choices of .J;, the Ji-canonical lift
of (C1,Cs, ...,Con 1) will be an N-Joint, and hence will belong to £. (Note
that we are using that fact that x5 ¢ J; implies zo & J1.) #®

We write Q = Q(Jy,T'), and as in §3 write Q = {J1, J5, ..., Jay_1}. As in
83, let Hy; = |J;|, as usual. The functions H; ; are all hyperplane functions
of J;. We are mainly interested in ﬁj() = Hiy9(j—1)p(). All that remains is
to prove

Lemma 5.6 The collection {H;(), ..., H,()} is ample.

Proof: We will use the notation F'- Q = {a - q| a € F} for any flat F.

Define Vy = {(21,...,2,)| > z; = 1}. Let F} be the maximal subflat of
such that F} - C; = {(0}. Note that V5 -.J; = H;. Since the points of C' span
C?, we see that codim(F}) = 3. Hence F} - J, = Z N H,. In particular, F} is
adapted to the pair (Hy(), C). '

Define F; = T3 '(F1). Also define V; = T{ (V1) and W; = V/. Obvi-
ously, F} jas codimension 3 and V; has codimension 1. It follows from Lemma
5.3 that Wy, ..., W, are in general position. To finish the entire proof, all we
need to show is that Fj is adapted to the pair (Ci, H;()). We will give a
proof for j = 2. The general case follows from the iteration of our argument.

Let ¢;; be the ith point of C;. Let ¢;; be the ¢th point of J;. Let ¢;; =
¥(é;). By construction 7(é;) = ¢;;. Recall that Z = 77'(0,0). Z has
codimension 2. We also use the constants (3;; defined in the preceding section.

First, we claim that Cogt1; = Boki Cok—14:. None of the above values
changes if we translate C™ in such a way as to preserve C?. Hence, we may
assume zor = (0,0). In this case, the complex linear map of C" defined
by S(z) = Bz takes cox_1, t0 Copy14. Since S preserves the lines through
the origin, S(égk—1,) = Cok+1,4. Since S commutes with 1), we establish our
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claim. Iterating, and using the fact that I" is (p, ¢)-derived from an element
of L(n,p), we have

(*) Ciqopi = AiCri;  Ciyopi = Clivagy ¢ =1,3,...,2n—1

Given the standard basis {e;} of C", define maps R(e;) = e;19, and D(e;) =
)\i+2jez~. We have

(k%) Uy (F) =9(Fy- J1) = ¢Y(D(R(FY)) - J1) = Y(R(F1) - Jiyap)-

The only nontrivial equality is the last one, which follows from (x). Since
R(Vp) = Vb, we have

R(Vp) - Jiyop = Vo - Japr1 = Hipop = Ha.
From equation (x), we have R(F1) - Jy1 = Z. A dimension count now

implies that R(F}) - Ji49p = Z N Hy. Combining this with (s*) shows that
U, (F3) = ¢¥(Z N Hy), as desired. #
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