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1 Introduction

1.1 Background

A classic recreational problem in mathematics poses the following kind of
question: Given a point on the surface of box, what is the farthest point
away in the intrinsic sense? The intrinsic sense means that distances be-
tween points on the surface are measured in terms of lengths of paths on the
surface of the box and not in terms of the ambient 3-dimensional Euclidean
distance. The solution to this problem usually involves unfolding the surface
and pressing it into the plane, so that the shortest paths can be studied in
terms of ordinary planar geometry. In this paper we will study the same kind
of question for the surface of the regular octahedron.

We begin with some generalities. Let (X, d) be a compact metric space.
The farthest point map, or farpoint map for short, associates to each point
p ∈ X the set Fp ⊂ X of points q ∈ X which maximize the distance function
q → dX(p, q). From a dynamics point of view, it is nicer to have a map
from points of X to points of X rather than from points of X to subsets of
X. So, let X ′ ⊂ X be the set of points p ∈ X such that Fp is just a single
point. We then have a well defined map F : X ′ → X, which carries p to the
unique point in X farthest from p. To get a dynamical system, we define
X(1) = X ′. Inductively we let X(n+1) be the set of those points p ∈ X ′ such
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that F (p) ∈ X(n). The full orbit is well defined on

X(∞) =
∞⋂
n=1

X(n). (1)

In nice cases, X(∞) is large enough to still be interesting.
I learned about the farpoint map on the regular octahedron from Peter

Doyle, whose undergraduate student Annie Laurie Muahs-Pugh studied it
in her Dartmouth College undergraduate thesis. At some point I wrote a
graphical user interface, called Spider’s Embrace [S1], which revealed essen-
tially all the structure. In the intervening years, my PhD student Zili Wang
wrote a thesis and a subsequent paper [W] which took Spider’s Embrace as
inspiration. She generalized some of the results to the case of centrally sym-
metric octahedra having all equal cone angles. I thought it would be good
to rigorously prove the things I discovered using Spider’s Embrace.

This paper has some overlap with other papers on the farpoint map. J.
Rouyer’s paper [R1] uses methods similar to the one in this paper to give an
explicit computation of the farthest point map on the regular tetrahedron.
The papers [R2], [R3] study the farthest point map for general convex poly-
hedra, and (as we point out later in the paper) contain more general versions
of a few of our subsidiary lemmas. The papers [V1], [V2], [VZ], and [Z]
study the map on general convex surfaces. One focus has been on Stein-
haus’s conjecture concerning the ubiquity of points p such that Fp is a single
point.

1.2 Statement of Results

Henceforth X denotes the regular octahedron equipped with its intrinsic
surface metric. Rather than think about the map F , it is nicer to think
about the composition

f = FA = AF, (2)

where A : X → X is the antipodal map. As our notation suggests, A and
F commute. At first it might appear that in fact A = F , so that f is the
identity map, but this is not the case. Note that f 2 = F 2, so we are not
really changing the problem much by studying f instead of F .

The map f commutes with every isometry of X, so it suffices to describe
the action of f on a fundamental domain for the action of the isometry
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group. One sixth of a face of X serves as such a fundamental domain. After
suitably scaling the metric and taking local coordinates, we can take for a
fundamental domain the triangle T having vertices

0, 1,

(
1

4
,

√
3

4

)
(3)

Figure 1.1 shows a picture of T and an auxiliary curve J . Figure 1.2 below
shows how T sits inside the (orange) face of X containing it.

Figure 1.1: The domain T and the curve J .

The curve J is the graph of the function

y =
1√
3

(
1− x− ((2 + x)(5− 2x)(1− 4x))1/3

)
, (4)

on the interval [r, 1/4). Here r ≈ .239123 is the real root of x3− x2− 4x+ 1.
We do not consider the top endpoint to be belong to J .

Theorem 1.1 (Main) If p = (x+ iy) ∈ T − J then Fp is a single point. If
p ∈ T − J lies to the left of J , then

f(p) =

(
−xy −

√
3x+

√
3y2 − y√

3x+ y − 2
√

3
, y

)
=

(
Ayx+By

Cyx+Dy

, y

)
. (5)

if p ∈ J lies to the right of J , then

f(p) =

(
−xy + 2

√
3x+

√
3y2 − y√

3x+ y +
√

3
, y

)
=

(
Dyx−By

−Cyx+ Ay
, y

)
. (6)

If p is the top vertex of T then f(p) = p. If p ∈ J then Fp is the union of
the two points given by the formulas above.
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Figure 1.2 shows a geometric interpretation of the Main Theorem. The
blue triangle is the fundamental domain T and the orange triangle corre-
sponds to the face of X containing T . The grey triangle is a reflected copy
of the orange one. The map in Equation 5 maps the blue point to the white
point (on the same horizontal line) and the map in Equation 6 maps the
white point to the blue point. In particular, the two branches of f in T ,
when analytically continued to have a common domain, are inverses.

Figure 1.2 Geometric view of the maps.

Let L∞(f) denote the ω-limit set . A point p belongs to L∞(f) is there
is some point q such that limn→∞ f

n(q) = p. We can use our result above
to find L∞(f) precisely. The restriction of f to each maximal horizontal line
segment λ of T −J is a linear fractional transformation having a unique fixed
point in λ. The fixed point, namely λ∩∂T , is attracting. This fact, together
with the rest of the Main Theorem, gives us the following corollary.

Corollary 1.2 Let ∂∞T denote the union of the non-horizontal sides of T .

1. X ′ ∩ T = X(∞) ∩ T = T − J.

2. Let p ∈ T − J . Then f(p) = p if and only if p ∈ ∂∞(T ).

3. L∞(f) ∩ T = ∂∞T .

Figure 1.3 shows the intersection of L∞(f) with one face of X.
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Figure 1.3: L∞(f) in one face.

Figure 1.4 shows the image of the set J under 10 iterates of the dynamics.
This picture illustrates how the dynamics moves points near J out to the
boundary of T . Let J` and Jr be two copies of J which, so to speak, lie
infinitesimally to the left and the right of J . We will iterate the left branch
of f on J` and the right branch on Jr. We have shaded in the regions between
fk(J`) and fk(Jr) for k = 1, ..., 10.

Figure 1.4: Iterates of J under the dynamics.

In §2 we prove the Main Theorem modulo some details we take care of
in §3 and §4.
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2 The Proof in Broad Strokes

2.1 The Octahedral Plan

As in the introduction, X denotes the regular octahedron equipped with its
intrinsic metric. X is locally Euclidean except for 6 cone points, each having
cone angle 4π/3. As a polyhedron, X has 8 faces , each an equilateral triangle.
Let T be the fundamental domain discussed in the introduction. The blue
triangle in Figure 2.1 is T . The black vertex of T , which we call the sharp
vertex , corresponds to a cone point of X. Let ∆0 denote the face of X that
contains T . We identify ∆0 with the triangle in the plane whose vertices are
the cube roots of unity. The face ∆0 is the one labeled 0 in Figure 2.1.

We call the equilateral triangles of P faces . By convention, a face is
closed. There is a (unique) continuous locally isometric surjective map

Ψ : P → X (7)

which is the identity on ∆0. We picture X as sitting on ∆0, and Ψ wraps P
around X as if we were wrapping a gift. We have numbered the faces of P
to indicate their images under Ψ. The map Ψ carries the faces labeled 7 to
the face of X antipodal to ∆0. Let Ak be the 7-face also labeled (k). Finally,
we mention that the blue circle, centered on the sharp vertex, has radius 3.

Figure 2.1: The octahedral plan P .
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The 6 cone points of X are grouped into 3 pairs of antipodal points. We
use 3 colors to color these pairs: black, white, and grey. The vertices of the
octahedral plan are colored according to this scheme. Thus, Ψ maps all the
white vertices to the union of the two white cone points of X, and likewise
for the other colors. The next result is contained in [R3, Corollary 13]. We
give a self-contained proof.

Lemma 2.1 If p is a cone point then Fp is just the antipodal point.

Proof: It suffices to prove this when p is the sharp vertex of T . Let p′

be the antipodal point. Rolling X out onto the equilateral tiling along a
shortest geodesic segment connecting p to p′, we see that the image of p′ is
another black vertex of the planar tiling. The closest black vertices to p lie
on (the blue circle) ∂D, where D is the disk of radius 3 centered at p. Hence
dX(p, p′) = 3. Looking at Figure 2.1, we see that Do contains all points
of a j-face, except perhaps the black vertex, for each j = 0, ..., 7. Hence
Ψ(Do) = X − p′. Hence, dX(p, q∗) < 3 for all q∗ ∈ X − p′. ♠

We prove the following result in §3.

Lemma 2.2 (Octahedral Plan) If p 6= q∗ ∈ X, with p ∈ ∆0 not a cone
point, then we have dX(p, q∗) = |p− q| for some q ∈ Ψ−1(q∗). If q∗ ∈ Fp, the
point q lies in a 7-face of P .

The Octahedral Plan Lemma combines with the properties of Ψ to give the
following more precise result: As long as Ψ−1(q∗) contains a point in a 7-face,
we have

Ψ−1(q∗) = {q0, ..., q5}, ∀j qj ∈ Aj, dX(p, q∗) = min
k
|p− qk|. (8)

2.2 The Hexagon

Let T o be the interior of the fundamental domain T . There are (unique)
isometries Ij for j = 0, ..., 5 such that:

• Ij preserves the white-black-grey vertex coloring.

• Ij(Aj) = A0.

• Ψ ◦ Ij = Ψ on Aj and Ψ = Ψ ◦ I−1j on A0.
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Referring to the points in Equation 8, these properties imply that

Ij(qj) = Ik(qk), ∀j, k ∈ {0, ...., 5}. (9)

For a proof, use the fact that Ψ : A0 → X is injective.
The map I0 is the identity. If j ≡ i+3 mod 6 then TiT

−1
j is a translation.

Otherwise TiT
−1
j is a 120 degree rotation about a vertex vij. These are the big

colored vertices in Figure 2.4 below. We let Tj = Ij(T ). The blue triangles
in Figures 2.2 are T0, ..., T5. Given p ∈ T (not the sharp vertex) we define

pj = Ij(p) ∈ Tj, j = 0, ..., 5. (10)

Let Hp be the (solid) hexagon with vertices p0, ..., p5.

Figure 2.2: The hexagon Hp and the triangle A0.

Lemma 2.3 Hp is strictly convex.

Proof: Given the placement of the blue triangles, it is clear that Hp is lo-
cally convex at pj for j = 1, 2, 3, 4, 5. Consider the case j = 0. Clockwise
rotation by 120 degrees about v01 maps p1 to p0. Clockwise rotation by 120
degrees about v05 maps p0 to p5. From this property we see that p0p1 has
slope in [−

√
3, 0) and p0p5 has slope in [−∞,−

√
3). This shows that Hp is

locally convex at p0. ♠
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2.3 The Voronoi Decomposition

Given q ∈ Hp let
µp(q) = min

k∈{0,...,5}
|q − pk|. (11)

We say that a minimal index for q is an index j such that µp(q) = |q − pj|.
The jth Voronoi cell Cj is the set of points q ∈ Hp having j as one of their
minimal indices. That is, µp(q) = |q − pj|. The list C0, ..., C5 is the Voronoi
decomposition of Hp. The Voronoi cells are convex polygons. Their edges
are contained in the union of bisectors defined by pairs of vertices of Hp. See
Figures 2.3 and 2.4

Figure 2.3: Hp and its Voronoi decomposition.

Remark: I produced Figure 2.3 in Mathematica, using the same formulas
I use in §4 to do the calculations in the paper. The picture corresponds to
the parameters a = b = 1/2. I mention this as a sanity check that I have
correctly typed the formulas in to Mathematica. Figure 2.4 and 2.5 are pro-
duced by my Java program.
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Given distinct indices i, j, k, let (ijk) as the unique point equidistant from
vertices pi, pj, pk. Lemma 2.3 guarantees that this point is well-defined and
various continuously with p ∈ T . Relatedly, we say that an essential vertex
is a point belonging to at least 3 Voronoi cells. In Figure 2.3 there are 4
distinct essential vertices, namely: (012), (025), (235), (345). In §4 we prove:

Lemma 2.4 (Structural Stability) For all p ∈ T the essential vertices
are (012), (025), (235), (345). When p ∈ T o these 4 triples are distinct.

In the boundary case the 4 triples are never (completely) distinct. See Figure
2.5 below for an example. If (012) = (235) we write (0235), etc.

Let T ′ denote the edge of T that lies in the edges of the equilateral tiling.
This is the long non-horizontal side. See Figure 2.4. Also, Figure 2.5 shows
why we need to exclude T ′ in our next result.

Lemma 2.5 If p ∈ T − T ′ then (012), (025), (235), (345) lie in Ao0.

Proof: Our proof refers to Figure 2.4 below. We will repeatedly use the
properties of the maps TiT

−1
j discussed above. We get our various bounds

by considering the actions of these maps (usually 120 degree rotations) on
the extreme points in Tj. Let ←→e denote the line extending the edge e.

We have v45 ∈ b45, and b45 lies between v45v34 and v45v12, and v34 6∈ b45.
Hence b45 intersects both edges e23 and e45, and not at the vertex v34. At
the same time, v34 ∈ b34, and b34 lies strictly between ←→e23 and ←→e45. Hence
(345) = b45 ∩ b34 ∈ Ao0. The proof for (012) is the same, with indices 0, 1, 2
in place of 5, 4, 3.

Since v35, (345), (235) are collinear, and v02, (012), (025) are collinear, and
v35, v34, v12, v02 are collinear, and (012), (235) ∈ Ao0 we see that (235) and
(025) lie to the left of ←→e23. The altitude of A0 through v34 is parallel to b25
and either equals b25 (in an extreme case) or lies to the left of it. Hence (025)
and (235) lie to the right of ←→e45. Since v05 ∈ b05 lies to the right of b25 and
has non-negative slope, (025) lies above −→e01. Since v23 ∈ b23 lies to the left of
b25 and has non-positive slope, we see that (235) lies above −→e01. ♠
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Figure 2.4: Hp and its Voronoi decomposition.

Lemma 2.5 combines with the Structural Stability Lemma to show that
the essential vertices lie in A0 even when p ∈ ∂T . The only case not covered
by what we have already done is when p ∈ T ′. When p ∈ T ′, reflection
in e23 swaps p0, p5 with p2, p3. This gives us (345) = v34 and (012) = v12
and (025) = (235) ∈ eo23 ⊂ b02 = b35. We get (0235) ∈ eo23 because we are
excluding the sharp point. See Figure 2.5. We also note that (025) = (235)
when p lies in the short non-horizontal edge of A0. In this case, reflection in
the horizontal line through v05 swaps p0, p2 with p5, p3.
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Figure 2.5: Hp and its Voronoi decomposition.

Lemma 2.6 Let q ∈ A0. If q is not an essential vertex then there is some
r ∈ A0 such that µp(q) < µp(r).

Proof: If q is disjoint from all cells but at most 2, we have at least one
direction where we can vary q so as to increase µp. If q ∈ Ao0 we are done. If
q ∈ ∂A0 and lies in only one cell, then q cannot be a vertex of A0, so we can
vary q in at least one direction along the edge of ∂A0 so as to increase µp.
This leaves the case when q ∈ ∂A0 lies Ci ∩ Cj. Since all essential vertices
lie in A0, the bisector bij starts out on ∂Hp, enters A0, then encounters an
essential vertex β before exiting A0. After bij hits β it is disjoint from Ci and
Ck. Therefore, q lies between bij ∩ ∂Hp and β. But then we push q along b
towards β to increase µp, and this keeps us in A0. ♠
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2.4 Setting up a Vertex Competition

The reader can compare our next result with [R2, Lemma 3]. The result
there, though stated in different language, is essentially equivalent.

Lemma 2.7 (Vertex) If q∗ ∈ Fp, then q∗ = Ψ(q) where q ∈ A0 is such that
µp(q) ≥ µq(r) for all r ∈ A0. In particular, q is an essential vertex.

Proof: Let q0, ..., q5 be as in Equation 8. Let q = q0. By Equations 8 and 9,
we have

q = I0(q0) = ... = I5(q5) ∈ A0, Ψ(q) = q∗.

Since Ij is an isometry, |p− qk| = |pk − q| for all k. Hence

dX(p, q∗) = min
k
|qk − p| = min

k
|q − pk| = µp(q). (12)

For any r ∈ A0 we set r∗ = Ψ(r). Then Equation 8 applies to r∗ just as to
q∗. Hence, Equation 12 holds as well. This gives

µp(r) = dX(p, r∗) ≤ dX(p, q∗) = µp(q).

In short µp(q) ≥ µp(r) for all r ∈ A0. By Lemma 2.6, the point q is an
essential vertex. ♠

Lemma 2.8 Fp ⊂ {Ψ((025),Ψ((235))}.

Proof: Our argument refers to Figure 2.4. The Structural Stability Lemma
and the Vertex Lemma imply that

Fp ⊂ {Ψ((012)),Ψ((025),Ψ((235)),Ψ((345))},

The line ←→p0p2 lies entirely beneath A0 and in particular beneath the seg-
ment of b02 connecting (012) to (025). Also, ←→p0p2 and b02 are perpendicular.
Therefore, as we move from ζ = (012) to ζ = (025) along b02 we increase the
function |ζ− p0| = |ζ− p2|. This shows that µp((012)) < µp((025)) whenever
(012) 6= (025). The Vertex Lemma now eliminates (012) when it does not
equal (025).

Since p is not the sharp vertex, the same argument, with the indices
5, 4, 3, 2 in place of 0, 1, 2, 3, shows that µp((345)) < µp((235)) whenever
(345) 6= (235). The Vertex Lemma now eliminates (345) when it does not
equal (235). ♠
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2.5 The Vertex Competition

Let
G(p) = |p2 − (025)|2 − |p2 − (235)|2. (13)

In §4.2, we show that

• G(p) > 0 if p ∈ T − ∂∞(T ) lies to the left of J .

• G(p) < 0 if p ∈ T − ∂∞(T ) lies to the right of J .

• G(p) = 0 on J ∪ ∂∞T .

By the Vertex Lemma and Lemma 2.8,

• Fp = Ψ((025)) when p ∈ T − ∂∞T lies to the left of J and

• Fp = Ψ((235)) when p ∈ T − ∂∞T lies to the right of J .

• Fp = {Ψ((025),Ψ((235))} when p ∈ J ∪ ∂∞T .

The last case needs more analysis. When p ∈ ∂∞(T ) we have (025) = (235),
as already discussed. When p ∈ J , the points (025) and (235) are distinct.
The Structural Stability Lemma shows this for points of J ∩ T o. For the
bottom endpoint of J , see the remark at the end of §4.1.

It only remains to get the formulas from the Main Theorem. Recall that
f = FA = AF where A is the antipodal map and F is the farpoint map.
Define

α0(z) = exp−2πi/3(2− i
√

3− z). (14)

The map α0 has the propery that α0(A0) = ∆0, in a way that preserves the
vertex coloring in Figure 2.1. Hence

Ψ ◦ α0 = A ◦Ψ.

So, when Fp = Ψ((025)), we get f(p) = α0((025)). This is exactly the map
given in Equation 5. When Fp = Ψ((235)), we get f(p) = α0((235)). This
is exactly the map given in Equation 5. Finally, when p ∈ ∂∞(T ), either
formula gives f(p) = p. This establishes all parts of the Main Theorem.
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3 The Octahedral Plan Lemma

3.1 General Points

In this section we prove the first statement of the Octahedral Plan Lemma.

Lemma 3.1 If p 6= q∗ ∈ X, with p ∈ ∆0 not a cone point, then we have
dX(p, q∗) = |p− q| for some q ∈ Ψ−1(q∗).

Proof: Let α∗ be a length-minimizing geodesic segment connecting p to
q∗. Since p is not a cone point, and since X has positive curvature at the
other cone points, α∗ contains no cone points in its interior. We can therefore
uniquely develop X out onto the equilateral tiling, along α∗, to get a segment
α ⊂ R2. The segments α and α∗ have the same length. Since P is star shaped
with respect to p, we have Ψ(q) = q∗ provided that q ∈ P . We will suppose
q 6∈ P and get a contradicton.

By symmetry it suffices to consider the case when α crosses the two blue
edges in Figure 3.1. If α exits P then it exits through one of the red edges.
So, by passing to a sub-arc of α∗, which is also a distance minimizer, we can
assume without loss of generality that q lies in either the yellow face or one
of the green faces.

Figure 3.1: Filling in around the octahedral plan
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We have relabeled the faces of P so that the face ζ is labeled according to
the combinatorial distance from Ψ(ζ) to ∆0. The colored faces do not belong
to P , but nonetheless we can give them numerical labels. If q lies in one of
the yellow faces then q∗ must lie in a face which has combinatorial distance 1
from ∆0 because this face shares a vertex with ∆0 and cannot have the same
label as an adjacent face. The green faces have label 2 because a subarc of
α connects p to a point in the adjacent face labeled 3.

Figure 3.2: The three cases

The three cases have the same proof. Let τ be the equilateral triangle
centered at the vertex v and having q as a vertex. Let r be the other shown
vertex of τ . Note that all points of ∆0 except perhaps for the sharp vertex
(v on the left) lie on the same side of the bisector (r, q) as does r. Hence
|p − r| < |p − q|. We get strict inequality because q 6∈ P . We claim that
r∗ = Ψ(r) and q∗ lie in the same face. Assuming this claim, the positions
of q and r in their respective faces with respect to the vertex coloring is the
same. Hence r∗ = q∗. But Ψ(pr) has the same endpoints as α∗ and is shorter.
Contradiction.

Now for the claim. In the yellow case, we roll X one click counterclockwise
about v to reach the face containing r and we roll X three clicks clockwise
about v to reach q. Since the cone angle at v is 4 times the interior angle of
a single equilateral triangle, we see that r∗ and q∗ lie in the same face. In
the middle green case, the reason is essentially the same. For the righthand
green case, let ζ be the face having 2 blue edges. Given the nature of α,
we see that q lies in the face antipodal to Ψ(ζ). But r∗ also lies in the face
antipodal to Ψ(ζ). Hence r∗ and q∗ lie in the same face. ♠
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3.2 Points in the Farthest Point Set

We revert to the original labeling of the octahedral plan, as in Figure 2.1.
Suppose q∗ ∈ Fp. Let q be as in Lemma 3.1. We suppose that q does not lie
in a 7-face and we derive a contradiction. If q avoids all k faces for k > 3
then we can choose s ∈ −→pq such that |p − s| > |p − q| and Ψ−1(s∗) = {s},
where s∗ = Ψ(s). But then we have a contradiction:

dX(p, q∗) = |p− q| < |p− s| = dX(p, s∗).

The last equality is Lemma 3.1.

Figure 3.3: Pushing out qj towards rj.

For the remaining cases, we can assume by symmetry that q lies in a
5-face and avoids all 7-faces. Our argument refers to Figure 3.3. We have
q ∈ Ψ−1(q∗) = {q0, q1} where qj lies in the 5-face sharing an edge ej with Aj.
Let rj = ej ∩ ←→v0qj (or else the midpoint of ej when v0 = q0 = q1.) Let Bj

be the bisector defined by (qj, rj). The face ∆0 lies on the same side of Bj

as does qj. Therefore |p − rj| > |p − qj|. Rotation by 120 degrees clockwise
about v0 maps (q0, r0, q0) to (r1, r1, e1).

By continuity and symmetry, there exists points sj ∈ qjrj which avoid
the 7-faces and satisfy |p− sj| > |p− qj| and s∗ = Ψ(s0) = Ψ(s1). But then
Ψ−1(s) = {s0, s1} and we have a contradiction:

dX(p, q∗) = min(|p− q0|, |p− q1|) < min(|p− s1|, |p− s2|) = dX(p, s∗).

The last equality is Lemma 3.1.
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4 The Calculations

4.1 Structural Stability

We will be considering functions on T , the fundamental domain. It will be
more convenient to deal with functions on the unit square [0, 1]2. So, we
explain a convenient map from [0, 1]2 to T . We define

(x, y) = φ(a, b) =

(
a+

1

4
(1− a)b,

√
3

4
(1− a)b

)
. (15)

Here φ is a surjective polynomial map from [0, 1]2 to T which maps (0, 1)2

onto T o. We get φ by composing the map (a, b)→ (a, ab) with an affine map
from the triangle with vertices (0, 0), (1, 0), (1, 1) to T .

We first prove the Structural Stability Lemma for p ∈ T o. The combina-
torics of the Voronoi decomposition can change only if one of the edges of the
cell decomposition collapses to a point. The only edges for which this can
happen are those joining consecutive points on the list (012), (025), (235),
(345). Such an edge collapses if and only if one of the quadruples (0125),
(0235), (2345) is such that the corresponding vertices are equidistant from a
single point – i.e. co-circular. We rule this out.

As is well known, 4 distinct points z1, z2, z3, z4 ∈ C are co-circular if and
only if

χ(z1, z2, z3, z4) = Im
(
(z1 − z2)(z3 − z4)(z1 − z3)(z2 − z4)

)
= 0. (16)

This function is the imaginary part of the cross ratio. Thus, it suffices to
prove that the 3 functions

Tijk` =
16

27
√

3
χ(pi, pj, pk, p`) ◦ φ, (17)

corresponding to the quads above never vanish on (0, 1)2. The factor out in
front is included to make the formulas below nicer. Now we give formulas
for the vertices of Hp. Let

Z(k1, `1, k2, `2; p) = w(k1, `1)p+ w(k2, `2), w(k, `) =
k + `

√
3i

2
. (18)

We have p = p0 = x+ iy, and then a careful inspection of Figure 2.2 gives us
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1. p1 = Z(−1,+1,+3,−1; p).

2. p2 = Z(−1,−1,+9,+1; p).

3. p3 = Z(+2,+0,+9,+3; p).

4. p4 = Z(−1,+1,+3,+5; p).

5. p5 = Z(−1,−1,+0,+4; p).

We plug this in to Equation 17 and factor using Mathematica [Wo]:

T0125 = (a− 1)bν1, T2345 = (1− a)bν2, T0235 = 24a(a− 1)(b− 1). (19)

Here, ν1 and ν2 are positive on [0, 1]2:

ν1 = (8− 4a2 − b2) + (8a− 4ab− a2b2) + (2b+ 2a2b+ 2ab2)
ν2 = (16a− 2ab− 2a2b− 2ab2) + (4 + a2b2 + 4a2 + 4b+ b2)

Hence our 3 functions in Equation 19 are positive on (0, 1)2. This completes
the proof when p ∈ T o.

For the boundary case, we just have to see that there is no p ∈ ∂T such
that the cells Ci1 , ...Cik meet at a point and less than 3 of these indices come
from one of the 4 triples above. If this happens, then by continuity the same
thing happens when p is perturbed into T o. Hence, this does not happen.
This proves the Structural Stability Lemma in the boundary case.

Remark: The case when p lies in the interior of the bottom edge of T
corresponds to b = 0 and a ∈ (0, 1). In this case, T0235 6= 0. This means that
(012) and (235) are distinct in this case.

4.2 The Vertex Competition

In this section we calculate the function G from §2.5. Using the formulas for
the vertices listed above, we compute the relevant bisectors and the relevant
intersections of these bisectors to arrive at formulas for the essential vertices.
Here they are.
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(012) = 3
√
3x2−6yx−11

√
3x+21y+5y2

√
3+8
√
3

2(
√
3x2−3

√
3x+3y+y2

√
3+2
√
3)

+ i 3x
2−2
√
3yx−15x−3y2−

√
3y+12

2(
√
3x2−3

√
3x+3y+y2

√
3+2
√
3)

(025) = 2
√
3y2+2xy−3y+3x

√
3−8
√
3

2(y+x
√
3−2
√
3)

+ i2y
2−2
√
3xy+3

√
3y+3x−12

2(y+x
√
3−2
√
3)

(235) =
√
3y2+xy+3y+3x

√
3+2
√
3

y+x
√
3+
√
3

+ iy
2−
√
3xy+6x+3

y+x
√
3+
√
3

(345) = 3
√
3x2+8

√
3x−3y+y2

√
3+4
√
3√

3x2+3
√
3x−3y+y2

√
3+2
√
3

+ i6x
2+2y

√
3x+15x+6y2−2

√
3y+6√

3x2+3
√
3x−3y+y2

√
3+2
√
3

For G we don’t make the change of variables, but rather compute in terms
of p = x+ iy ∈ T o. We have

G = − 18H(√
3x+ y − 2

√
3
)2 (√

3x+ y +
√

3
)2 ,

where

H =



3x5 − 6x4 − 9x3 + 15x2 − 3x

3
√

3x4 − 4
√

3x3 − 6
√

3x2 − 3
√

3x+
√

3
2x3 − 6x2 + 15x− 2

2
√

3x2 − 2
√

3
−x+ 4

−
√

3

 ·


1
y
y2

y3

y4

y5


The denominator is positive on T , so the sign of H determines the sign of
the whole expression. Using Mathematica to solve the equation H = 0 for y
in terms of x, we find that the solutions are

y =
x− 1√

3
, y =

√
3x,

y =
1√
3

(
1− x− ωk((2 + x)(5− 2x)(1− 4x))1/3

)
. (20)

Here ω = exp(2πi/3) and k = 0, 1, 2. The first two solutions correspond to
the sides of ∂∞(T ). This third solution intersects T only when k = 0. This
is precisely the function in Equation 4, the one which defines the curve J
from the Main Theorem. Finally, G(1/2, 0) = −1/3, which shows that G is
positive to the left of J and negative to the right, when restricted to T−∂∞T .
This establishes everything we needed to know about G.
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