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Abstract

This is the main paper amongst a series of 7 papers which together
prove the Melnyk-Knopf-Smith phase transition conjecture for 5-point
energy minimization. This paper proves the main result, drawing on
results proved in the other 6 papers.

1 Introduction

1.1 History and Context

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N
F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P . A
configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other N -
point configurations P ′. The question of finding energy minimizers has a
long literature; the classic case goes back to Thomsom [Th] in 1904.

The classic choice for this question is F = Rs, the Riesz potential , given
by Rs(d) = d−s. The Riesz potential is defined when s > 0. When s < 0
the corresponding function Rs(d) = −d−s is called the Fejes-Toth potential .
The main difference is the minus sign out in front. The case s = 1 is
specially called the Coulomb potential or the electrostatic potential . This
case of the energy minimization problem is known as Thomson’s problem.
See [Th]. The case of s = −1, in which one tries to maximize the sum of
the distances, is known as Polya’s problem.

There is a large literature on the energy minimization problem. See [Fö]
and [C] for some early local results. See [MKS] for a definitive numerical
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study on the minimizers of the Riesz potential for n relatively small. The
website [CCD] has a compilation of experimental results which stretches all
the way up to about n = 1000. The paper [SK] gives a nice survey of results,
with an emphasis on the case when n is large. See also [RSZ]. The paper
[BBCGKS] gives a survey of results, both theoretical and experimental,
about highly symmetric configurations in higher dimensions.

When n = 2, 3 the problem is fairly trivial. In [KY] it is shown that when
n = 4, 6, 12, the most symmetric configurations – i.e. vertices of the relevant
Platonic solids – are the unique minimizers for all Rs with s ∈ (−2,∞)−{0}.
See [A] and [Y] respectively for the case n = 12 and the cases n = 4, 6. The
result in [KY] is contained in the much more general and powerful result
[CK, Theorem 1.2] concerning the so-called sharp configurations.

The case n = 5 has been notoriously intractable. First let me introduce
the two main players. The Triangular Bi-Pyramid (TBP) is the 5 point
configuration having one point at the north pole, one point at the south
pole, and 3 points arranged in an equilateral triangle on the equator. A
Four Pyramid (FP) is a 5-point configuration having one point at the north
pole and 4 points arranged in a square equidistant from the north pole.

There is a general feeling that for a wide range of energy choices, and in
particular for the power law potentials (when s > −2) the global minimizer
is either the TBP or an FP. Here is a run-down on what is known so far:

• The paper [HZ] has a rigorous computer-assisted proof that the TBP is
the unique minimizer for the potential F (r) = −r. (Polya’s problem).

• My paper [S1] has a rigorous computer-assisted proof that the TBP
is the unique minimizer for R1 (Thomson’s problem) and R2. Again
Rs(d) = d−s.

• The paper [DLT] gives a traditional proof that the TBP is the unique
minimizer for the logarithmic potential.

• In [BHS, Theorem 7] it is shown that, as s → ∞, any sequence of
5-point minimizers w.r.t. Rs must converge (up to rotations) to the
FP having one point at the north pole and the other 4 points on the
equator. In particular, the TBP is not a minimizer w.r.t Rs when s is
sufficiently large.

• In 1977, T. W. Melnyk, O. Knop, and W. R. Smith, [MKS] con-
jectured the existence of the phase transition constant, around s =
15.04808, at which point the TBP ceases to be the minimizer w.r.t.
Rs.
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• Define
Gk(r) = (4− r2)k, k = 1, 2, 3, ... (2)

In [T], A. Tumanov proves that the TBP is the unique minimizer for
G2. The minimizers for G1 are those configurations whose center of
mass is the origin. The TBP is included amongst these.

1.2 The Main Result

Define

15+ = 15 +
25

512
. (3)

My monograph [S0] proves the following result.

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

Remark: My monograph also has a result that the TBP minimizes all
Riesz potentials (a.k.a. Fejes-Toth potentials) for s ∈ (−2, 0). This is still a
theorem; I am leaving it out of this account because I want to focus on one
result at a time.

The Phase Transition Theorem verifies the phase-transition for 5 point
energy minimization first observed in [MKS], in 1977, by T. W. Melnyk, O,
Knop, and W. R. Smith. This work implies and extends my solution [S1]
of Thomson’s 1904 5-electron problem [Th]. To make [S0] easier to referee,
I have broken down the proof into a series of 7 independent papers, each of
which may be checked without any reference to the others.

This paper deduces the Phase Transition Theorem from the results of
the other papers. In §2 I will give most of the preliminary definitions and
then in §3 I will put it all together.
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2 Preliminaries

2.1 Stereographic Projection

Let S2 ⊂ R3 be the unit 2-sphere. Stereographic projection is the map
Σ : S2 → R2 ∪∞ given by the following formula.

Σ(x, y, z) =

(
x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

2.2 Avatars

Stereographic projection gives us a correspondence between 5-point config-
urations on S2 having (0, 0, 1) as the last point and planar configurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

Figure 1 shows the two possible avatars (up to rotations) of the triangular
bi-pyramid, first separately and then superimposed. We call the one on the
left the even avatar , and the one in the middle the odd avatar . The points
for the even avatar are (±1, 0) and (0,±

√
3/3). When we superimpose the

two avatars we see some extra geometric structure that is not relevant for
our proof but worth mentioning. The two circles respectively have radii 1/2
and 1 and the 6 segments shown are tangent to the inner one.

0

1

2

3

02

3

1

02

even odd both

Figure 1: Even and odd avatars of the TBP.
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We call 2 avatars isomorphic if the corresponding 5-point configurations
on S2 are isometric. Every avatar is isomorphic to an even avatar. To see
this, we form a graph by joining two points in a 5-point configuration by
an edge if and only if they make a far pair. As for any graph, the sum of
the degrees is even. Hence there is some vertex having even degree. When
we rotate so that this vertex is (0, 0, 1), the corresponding avatar is even.
By focusing on the even avatars, and further using symmetry, we arrive at
a configuration space where there is just one TBP avatar.

2.3 The Big Domain

Given an avatar ξ = (p0, p1, p2, p3), we write pk = (pk1, pk2). We define a
domain Ω ⊂ R7 to be the set of avatars ξ satisfying the following conditions.

1. ξ is even.

2. ‖p0‖ ≥ max(‖p1‖, ‖p2‖, ‖p3‖).

3. p12 ≤ p22 ≤ p32 and p22 ≥ 0.

4. p01 ∈ [0, 2] and p01 = 0.

5. pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3.

6. min(p1k, p2k, p3k) ≤ 0 for k = 1, 2.

We define Ω[ to be the same domain except that we leave off Condition 6.

2.4 The Definite Neighborhood of the TBP

We specially treat avatars very near the TBP. When we string out the points
of ξ0, we get (1, 0,−u,−1, 0, 0, u) where u =

√
3/3. The space indicates that

we do not record p02 = 0. We let Ω0 denote the cube of side-length 2−17

centered at ξ0.

2.5 The Special Domain

We let Υ ⊂ (R2)4 denote those avatars p0, p1, p2, p3 such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].
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4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

As we discussed above, Υ contains the avatars that compete with the TBP
near the exponent .ש

p0

p1

p2

p3

Figure 2: The sets defining Υ compared with two TBP avatars.

2.6 The Special Potentials

Rather than work with the Riesz potentials, we work with potentials that
have a more polynomial flavor.

Gk(r) = (4− r2)k. (7)

Also define
G[

5 = G5 − 25G1,

G]]
10 = G10 + 28G5 + 102G2,

G]
10 = G10 + 13G5 + 68G2 (8)
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3 Proof of the Phase Transition Theorem

3.1 A Resume of Papers

The other 6 papers I have written all have names of the form “5 Point Energy
Minimization: X” where “X” stands for some facet of the proof. Here are
the 6 topics:

• Energy Lemma

• Big Calculation

• Local Analysis

• Interpolation

• Symmetrization

• Endgame

I will refer to the papers by these names in the arguments below.

3.2 Energy Lemma

The Energy Bound Paper establishes a certain energy bound, which we
call Lemma E. Lemma E plugs into a divide-and-conquer scheme which
establishes the theorem below which we call the Containment Theorem. We
will not describe Lemma E here because it is a rather technical result.

3.3 Big Calculation

Let Ω and Ω0 and Υ be as in the previous chapter. Here we explain the
results from the Big Calculation Paper. Here is the first result.

Theorem 3.1 (Containment) The following is true:

1. Let F = G4, G6, G
]
10. If ξ is not equivalent to any avatar in Ω then

then ξ does not minimize EF .

2. Let F = G[
5. If ξ is not equivalent to any avatar in Ω[ then then ξ

does not minimize EF .

Here is the second and main result.

Theorem 3.2 (Calculation) Assuming Lemma E, the following is true.
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1. The TBP is the unique minimizer for G4, G
[
5, G6 amongst 5-point con-

figurations which have avatars in Ω− Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configura-

tions which have avatars in Ω− Ω0 −Υ.

3. The TBP is the unique minimizer for G]]
10 among 5-point configura-

tions which have avatars in Υ.

Since Lemma E is true, and proved in the Energy Bound Paper, the
Calculation Theorem holds unconditionally. Now we can state the main
corollary of the Big Computation paper in an unconditional way that does
not mention Lemma E.

Corollary 3.3 The following is true.

1. The TBP is the unique minimizer for G4, G
[
5, G6, G

]]
10 among configu-

rations which are not represented by avatars in Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configura-

tions which have are not represented by avatars in Υ ∪ Ω0.

Proof: The only non-obvious point is the statement about G]]
10. Since the

TBP is a global minimizer for G1 and (uniquely so) for G[
5 on Ω − Ω0, we

see that the TBP is the unique minimizer for G5 on Ω−Ω0. Since the TBP
is the unique minimizer for G]

10 and G5 and (by Tumanov’s result [T]) G2

on Ω − Ω0 − Υ we see that the TBP is the unique minimizer for G]]
10 on

Ω − Ω0 − Υ. This combines with Statement 3 of the Calculation Theorem
to show that the TBP is the unique minimizer for G]]

10 on Ω− Ω0. ♠

3.4 Local Analysis

The Local Analysis paper deals with configurations having avatars in Ω0.
Here is the main result.

Theorem 3.4 (Local Convexity) For F = G4, G6, G
[
5, G

]
10, the Hessian

of EF is positive definite at every point of Ω0.

Let ξ ∈ Ω0 be other than ξ0. The Local Convexity Theorem combines
with the vanishing gradient to show that the restriction of EF to the line
segment γ joining ξ0 to ξ is convex and has 0 derivative at ξ0. Hence
EF (ξ) > EF (ξ0).
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Corollary 3.5 Let F be any of G4, G
[
5, G5, G6, G

]
10, G

]]
10. Then ξ0 is the

unique minimizer for EF inside Ω0.

Proof: Let F be any of the functions from the Local Convexity Theorem.
Let ξ ∈ Ω0 be other than ξ0. The Local Convexity Theorem combines with
the vanishing gradient to show that the restriction of EF to the line segment
γ joining ξ0 to ξ is convex and has 0 derivative at ξ0. Hence EF (ξ) > EF (ξ0).

It remains to deal with F = G5 and F = G]]
10. As is well known, ξ0 is

a minimizer for G1. Since ξ0 is the unique minimizer for G[
5 in Ω0, we see

that ξ0 is also the unique minimizer for G5 = G[
5 + 25G1 in Ω0.

By the main result in [T], ξ0 is the unique global minimizer for G2. With
this in mind, we see that the same kind of argument we just gave for G5

also works for G]]
10 = G]

10 + 15G5 + 34G2. ♠

Combining this result with Corollary 3.3 we get the following result.

Corollary 3.6 The following is true.

1. The TBP is the unique minimizer for G4, G
[
5, G6, G

]]
10 amongst all con-

figurations.

2. The TBP is the unique minimizer for G]
10 among 5-point configura-

tions which are not represented by avatars isomorphic to those in Υ.

3.5 Interpolation

The results above do not deal with the Riesz potentials at all. The main
result in the Interpolation paper bridges the gap. Here is the main result.

Theorem 3.7 (Interpolation) Let T0 be the TBP. Then

1. Suppose s ∈ (0, 13] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G4, G5, G6, G
]]
10 then ERs(T0) < ERs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration. If we have

F (T0) < F (T ) for all F = G[
5, G

]
10 then ERs(T0) < ERs(T ).

The Interpolation Theorem and Corollary 3.6 combine to prove the fol-
lowing result.

Corollary 3.8 Let T0 be the TBP. Then
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1. Suppose s ∈ (0, 13] and T is any 5-point configuration. Then we have
ERs(T0) < ERs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration not repre-
sented by an avatar isomorphic to one in Υ. Then ERs(T0) < ERs(T ).

3.6 Symmetrization

Let K4 denote the set of avatars which are invariant under reflections in
the coordinate axes. We describe a symmetrization operation which maps
Υ into K4. Let (p0, p1, p2, p3) be an avatar with p0 6= p2. Define

−p∗2 = p∗0 = (x, 0), −p∗1 = p∗3 = (0, y), x =
‖p0 − p2‖

2
, y =

‖π02(p1 − p3)‖
2

.

(9)

Here π02 is the projection onto the subspace perpendicular to p0− p2. The
avatar (p∗1, p

∗
2, p
∗
3, p
∗
4) lies in K4. Here is the first result in the Symmetrization

paper.

Theorem 3.9 (Symmetrization I) Let s ≥ 12 and (p0, p1, p2, p3) ∈ Υ.
Then

ERs(p
∗
0, p
∗
1, p
∗
2, p
∗
3) ≤ ERs(p0, p1, p2, p3)

with equality if and only if the two avatars are equal.

Let Ψ]
4 denote the set (p0, p1, p2, p3) ∈K4 with

−p2 = p0 = (x, 0), −p1 = p3 = (0, y), 512(x, y) ∈ [440, 448]. (10)

Ψ]
4 contains the avatar representing the FP which ties with the TBP at

s = .ש
We define

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (11)

Here is the second result in the Symmetrization paper.

Theorem 3.10 (Symmetrization II) If s ∈ [14, 16] and p ∈ Ψ]
4 then we

have Es(σ(p)) ≤ Es(p) with equality if and only if σ(p) = p.
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3.7 Endgame

Let Ψ4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [43, 64]. (12)

Let Ψ]
4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [55, 56]. (13)

Finally, let Ψ8 denote the diagonal of Ψ4, the points where x = y. Likewise
define the diagonal Ψ]

8 of Ψ]
4. To relate Ψ4 to the discussion above, we have

Υ ∩K4 ⊂ Ψ4

and (obviously)

Ψ]
8 ⊂ Ψ]

4 ⊂ Ψ4.

The tiny domain Ψ]
8 contains the avatar for the FP which ties with the TBP

at s = .ש
Here is the result of the Endgam Paper.

Theorem 3.11 (Endgame) Let ξ0 denote a avatar of the TBP. There ex-
ist ש ∈ (15, 15+) such that the following is true.

1. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ (Ψ4× [13, 15])∪ ((Ψ4−Ψ]
4)× [15, 15+]).

2. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ Es(ξ0) < Es(ξ).

3. For all s ∈ ,ש) 15+) and some ξ ∈ Ψ]
8 we have Es(ξ0) > Es(ξ).

Combining the Endgame Theorem with the two Symmetrization Theo-
rems we get the following corollary.

Corollary 3.12 Let ξ0 denote a avatar of the TBP. There exist a number
ש ∈ (15, 15+) such that the following is true:

1. Es(ξ0) < Es(ξ) for all (ξ, s) ∈ Υ× [13, .(ש

2. For all x ∈ ,ש) 15+) there is some ξ ∈ Υ such that Es(ξ0) > Es(ξ).

The Phase Transition Theorem follows immediately from Corollary 3.8
and Corollary 3.12.
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