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1 Introduction

There has been a lot of interest over the years in the problem of inscribing
polygons, especially triangles and quadrilaterals, in Jordan loops. See, for
instance, [AA], [ACFSST], [CDM], [Emch], [H], [Jer], [Mak1], [Mak2],
[Ma1], [Ma2], [M], [N], [NW], [S1], [S2], [S3], [Shn], [St], [Ta], [Va]. This
interest probably stems from the famous Toeplitz Square Peg Problem, which
goes back to 1911 and asks if every Jordan loop has an inscribed square.

The purpose of this paper is to present some configuration theorems about
rectangles inscribed in 4-tuples of lines, and especially to highlight the con-
nection to hyperbolic geometry. I discovered these results experimentally,
using a Java program [S4] I wrote. The interested reader can download
the program and see the results in action. The proofs I give in this paper
are mostly computational, though occasionally a geometric idea makes an
appearance.

To make the results as clean as possible, we will consider those 4-tuples
L = (L1, L2, L3, L4) of lines in the plane such that

• The intersection of the 4 lines is empty.

• No two of the lines are parallel or perpendicular. We set Lij = Li ∩Lj.

• The two diagonals δ0 = L23L41 and δ∞ = L12L34 are not perpendicular.
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We call such configurations nice.
We say that a rectangle R is inscribed in L if the vertices (R1, R2, R3, R4)

go cyclically around R, either clockwise or counterclockwise, and are such
that Ri ∈ Li for i = 1, 2, 3, 4. We also consider the diagonals δ0 and δ∞ as
inscribed degenerate rectangles. In the former case, R2 = R3 and R4 = R1

and in the latter case R1 = R2 and R3 = R4. Let HL denote the set of
centers of rectangles inscribed in L.

Theorem 1.1 The set HL is a hyperbola, and each point of HL is the center
of a unique rectangle inscribed in L.

Figure 1 shows Theorem 1.1 in action.

Figure 1: Theorem 1.1 in action.

We think of HL as a conic section contained in the projective plane, RP
2.

One of the two components ΩL of RP
2 −HL is a convex set. We equip ΩL

with its projectively natural Hilbert metric, and this makes ΩL isometric
to the hyperbolic plane. (See §2.1 for a definition of the Hilbert metric.)
Relatedly, we let H

2 denote the upper half plane model of the hyperbolic
plane.
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We define

ρ(R) = ±|R3 −R2|
|R2 −R1|

, σ(R) = slope(R1R2). (1)

We call these two quantities the aspect ratio and the slope. The sign of ρ is
+1 if R is clockwise ordered and −1 if R is counterclockwise ordered. The
aspect ratios of δ0 and δ∞ respectively are 0 and ∞, and there is no sign.
These formulas define canonical maps

ρ, σ : HL → R ∪∞, (2)

Here ρ(p) and σ(p) respectively are the slope and aspect ratio of the unique
rectangle inscribed in L and having p as the center.

Theorem 1.2 Both maps ρ and σ are restrictions of hyperbolic isometries
from ΩL to H

2.

Note that the ideal boundary of ΩL is the union of HL with the two
points where HL intersects the line at infinity in RP

2. Thus, ρ(HL) omits
two points of R∪∞. We call these omitted points ρ1 and ρ2. Likewise, there
are two omitted values σ1, σ2 for the map σ.

Theorem 1.3 σ1σ2 = −1 and

ρ1ρ2 = −(m2 −m3)(m4 −m1)

(m1 −m2)(m3 −m4)
, mi = slope(Li).

Theorem 1.3 has some geometric interpretations. First of all, the quantity
ρ1ρ2, being the cross ratio of the slopes, is an affine invariant. If we move
our lines by an affine transformation, the quantity ρ1ρ2 does not change.
The fact that σ1σ2 = −1 has a geometric interpretation as well. When two
slopes have this property, the corresponding rectangles have parallel sides,
but in a twisted way: Side 1 of rectangle 1 is parallel to side 2 of rectangle
2. We call such rectangles partners . We call two points of HL partners if the
corresponding inscribed rectangles are partners.

Theorem 1.4 There is a family of parallel lines in R
2 such that each line in

this family intersects HL in two partner points. Conversely, any line which
intersects HL in two partner points lies in this family.

3



Theorem 1.4 has an interesting geometric consequence. Partner points of
HL lie in different connected components of HL. Thus, partner rectangles in
HL cannot be joined by a bounded path of rectangles all inscribed in L.

So far we have focused mainly on the centers of the inscribed rectangles.
Here is a result about the vertices. We state our result in terms of the aspect
ratio, but the result could also be stated in terms of the slope. Let Vk(r) ∈ Lk

denote the kth vertex of the rectangle of aspect ratio r inscribed in L.

Theorem 1.5 The map Vk is the real part of a holomorphic double branched
cover from C ∪ ∞ to the complex line in CP

2 extending Lk. Hence Vk is
generically 2-to-1 on R ∪ ∞ and there is an isometric involution Ik of H2

such that Vk ◦ Ik = Vk. Finally, I1 ◦ I2 ◦ I3 ◦ I4 is the identity map.

Theorem 1.5 implies that generically each rectangle inscribed in L shares
the kth vertex with one other rectangle inscribed in L. This fact combines
with the final statement of Theorem 1.5 to prove a configuration theorem
that is reminiscent of the Poncelet and Steiner porisms. Given an inscribed
rectangle R(k), let R(k + 1) be the other rectangle sharing the kth vertex
with R(k). This gives us a chain R(1), R(2), ... of inscribed rectangles. The
last statement implies that this chain repeats after 4 steps: R(4+ k) = R(k)
for all k. Figure 2 shows this configuration theorem in action. We have
shown a particularly nice instance; in general the 4 rectangles can overlap
messily.

Figure 2: Theorem 1.5 in action.
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This paper is organized as follows. In §2 we prove the five theorems listed
above. Our proofs are mostly computational, and we use Mathematica [W]
for many of the calculations. I don’t have much geometric intuition for why
the theorems are true, but the analytic reason seems clear. The constructions
are simple enough so that, when complexified, they lead to very low degree
holomorphic maps which are subject to the usual rigidity theorems from
complex analysis.

In §3 we discuss additional features of the constructions above. Namely

• We use Theorem 1.4 to prove the simplest case of a conjecture we made
in [S1] concerning continuous paths of rectangles inscribed in polygons.

• We consider a degenerate case the theorems above, in which the third
niceness condition is dropped. In this case HL turns out to be a pair
of crossing lines.

• We explain how to encode most of the information from the theorems
above as a map from the space of quadrilaterals into the projective
tangent bundle of the Riemann sphere.

I would like to thank Arseniy Akopyan, Peter Doyle, Cole Hugelmeyer,
and Sergei Tabachnikov for interesting discussions related to this work.
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2 The Configuration Theorems

2.1 Projective Geometry

Here we recall a few basic facts about projective geometry.

Basic Definition: Let RP
2 denote the real projective plane, i.e., the space

of lines through the origin in R
3. One can also think of RP

2 as the space of
equivalence classes of nonzero vectors in R

3, with two vectors being equiv-
alent if they are scalar multiples of each other. The coordinates [x : y : z]
denote such an equivalence class. We identify R

2 ⊂ RP
2 with the affine

patch
{[x : y : 1]| x, y ∈ R

2}.

Projective Transformations and Cross Ratios: The projective trans-
formations are diffeomorphisms of RP

2 induced by the action of invertible
3× 3 real matrices. The cross ratio of 4 collinear points A,B,C,D is given
by

[A,B,C,D] =
(A− C)(B −D)

(A−B)(C −D)
(3)

In this equation, we identify the line containing the points with R via a
projective transformation. The answer is independent of the choice. By
construction, the cross ratio of 4 points is projectively invariant:

[A,B,C,D] = [A′, B′, C ′, D′]

if there is a projective transformation T such that A′ = T (A), etc.

Conic Sections: A nondegenerate conic section is the solution set of an
irreducible homogeneous polynomial of degree 2, considered as a subset of
RP

2. A conic section intersect the affine patch in an ellipse, a hyperbola, or
a parabola. Projective transformations transitively permute the nondegen-
erate conic sections. One beautiful thing about projective geometry is that
there is just one nonsingular conic section up to projective transformations.
To save words, we will just say conic section when we mean a nondegenerate
conic section.
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Hilbert Metric: We use the cross ratio to define the Hilbert metric on
a convex domain Ω ⊂ RP

2. The distance between two points B,C ∈ Ω is

dist(B,C) = log[A,B,C,D], (4)

where A,D ∈ ∂Ω and A,B,C,D appear in order on a line segment contained
in Ω∪ ∂Ω. This metric is projectively natural. Each conic section H bounds
a convex domain Ω on exactly one side. We call Ω the hyperbolic domain
bounded by H, and we equip Ω with the Hilbert metric. This is commonly
called the Klein model of the hyperbolic plane. When H is the unit circle, Ω
is the unit disk. In this case, Ω has a second natural metric which makes it
isometric to H

2, namely the Poincare metric. In this model, the geodesics
are arcs of circles which meet the unit circle at right angles. There is an
isometry between the two models which is the identity map on the unit circle.

Parametrizing Conic Sections: Given a 3× 3 invertible matrix A = Aij,
we introduce the parametric curve

ΓA(r) = [A00 +A01r+A02r
2 : A10 +A11r+A12r

2 : A20 +A21r+A22r
2] (5)

Here r is the parameter. The condition det(A) 6= 0 guarantees not all coor-
dinates vanish at once, so that ΓA makes sense as a curve in RP

2.

Lemma 2.1 ΓA parametrizes a conic section and is the restriction of a hy-
perbolic isometry from H

2 to the associated hyperbolic domain.

Proof: For any invertible matrix M , we have M(ΓA) = ΓMA. The map M
acts as a projective transformation permuting the conic sections and acting
isometrically on their associated hyperbolic domains. So, the result is true
for MA if and only if it is true for A. We choose M to that

MA =





−1 0 1
0 −2 0
1 0 1



 .

In this case
ΓA(r) = [−1 + r2 : −2r : 1 + r2].

We recognize this map as stereographic projection from R ∪∞ to the unit
circle. In complex coordinates, this map is given by r → (r − i)/(r + i).
As is well known, stereographic projection is the restriction of a hyperbolic
isometry fromH

2 to the unit disk, equipped with either hyperbolic metric. ♠
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2.2 The Perpendicularity Test

We consider a configuration L = (L1, L2, L3, L4) such that the intersection
of the lines is empty and no two lines are parallel or perpendicular. In
this section we give a criterion for when the diagonals δ0 and δ∞ are not
perpendicular.

The equation for Lj is Vj · (x, y, 1) = 0, where Vj = (mj,−1, bj). We
normalize by a similarity so that m1 = b1 = 0 and b2 = 0 and b3 = 1. The
point Lij = Li ∩ Lj is the projectivization of the cross product Vi × Vj. We
compute

(L12 − L34) · (L23 − L41) =
∆

(m2 −m3)(m3 −m4)m4

, (6)

∆ = b4
2(m2 −m3) + b4(m2m3m4 −m2 +m3 +m4) + (−m2m4

2 −m4). (7)

So, the diagonals are perpendicular if and only if ∆ = 0.
Note that ∆ is quadratic in b4, so one can explicitly solve the equation

∆ = 0 in terms of b4. The distriminant of the quadratic equation is

D = (m2
2 +m2

3 +m2
4 + 2m2m4 + 2m2m

2
3m4 + 4m2

2m
2
4 +m2

2m
2
3m

2
4)−

2m3(m2 +m4)(1 +m2m4). (8)

Lemma 2.2 D > 0.

Proof: Let S ⊂ R
3 denote the set (m2,m3,m4) where m2 6= 0 and m4 6= 0

and m2m4 + 1 6= 0. Solving D = 0 for m3 yields

m3 =
(m2 +m4)± 2 i m2m4

m2m4 + 1
. (9)

Hence there are no real solutions in S. Since every point in S can be con-
nected by a continuous path in S to a point where m3 = 0, it suffices to
prove that D > 0 when m3 = 0. In this case, we have the simpler formula
D = (m2 +m4)

2 + (2m2m4)
2 > 0. ♠

So, if we fix L1, L2, L3 and translate L4, there are exactly two positions
where the diagonals are perpendicular, By symmetry, the same result holds
for any of the other lines as well.

We call ∆ the perpendicularity test and D the positive discriminant .
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2.3 Four Coincident Lines

As a warm-up, we study rectangles inscribed in a 4-tuple L = (L1, L2, L3, L4)
of lines which all contain the origin. We insist that no two lines are parallel or
perpendicular. The set of rectangles inscribed in L is invariant under scalar
multiplication. That is, if R is inscribed in L, then so is λR, the rectangle
obtained by scaling all the vertices of R by the same nonzero real number λ.

Lemma 2.3 No rectangle inscribed in L has its vertex or center at the origin,
and two rectangles inscribed in L and having their centers on the same line
through the origin are scalar multiples of each other.

Proof: Let R be a rectangle inscribed in L. If R is centered at the ori-
gin then the lines of L coincide in pairs. If R has a vertex at the origin
then two lines of L are perpendicular. If R1 and R2 have centers on the
same line through the origin then there is some real number λ such that R1

and the scalar multiple λR2 have the same center, c. If R1 6= λR2 then R1

and λR2 determine at least 2 lines Lk and Lk+2 of L. Reflection in c swaps
these two lines, forcing Lk and Lk+1 to be parallel. This is a contradiction. ♠

Lemma 2.4 The set of centers of L is a pair of unequal crossing lines (minus
the origin), and each point on these crossing lines is the center of a unique
rectangle inscribed in L.

Proof: We rotate so that L1 is the x-axis. In view of the previous result, it
suffices to prove that there are exactly 2 rectangles inscribed in L having (1, 0)
as a vertex. Let mj be the slope of the line Lj. The quantities m2,m3,m4

are nonzero and distinct, and 1 +mimj 6= 0 for i 6= j.
A point (xj, yj) ∈ Lj satisfies yj = mjxj. Define T (x, y) = (−y, x). Note

that (x, y) and T (x, y) are perpendicular vectors. Let ρ be the aspect ratio
of the rectangle we seek. We have R1 = (1, 0) and R2 = (x2,m2x2), and

R3 = R2 + ρT (R2 −R1), R4 = R1 + ρT (R2 −R1). (10)

Solving for R3 ∈ L3 and R4 ∈ L4 gives x2 = (A ±
√
D)/B where D is the

positive discriminant and

A = m2 −m3 −m4 −m2m3m4, B = 2(m2 −m3)(1 +m2m4). (11)

Since B 6= 0 and D > 0 there are exactly 2 solutions, as desired. ♠
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2.4 A Matrix Equation

From now on, unless otherwise stated, L is a nice configuration. We normalize
as in §2.2. We also recall that

T (x, y) = (−y, x). (12)

We seek a rectangle (R1, R2, R3, R4) inscribed in L having aspect ratio r. We
have the same equations for the vertices of R as in Lemma 2.4. The two
equations R3 ∈ L3 and R4 ∈ L4 lead to two equations in two unknowns:

M

[

x1

x2

]

=

[

−1
−b4

]

, M =

[

r (m3 −m2)− r(1 +m2m3)
r +m4 −r(1 +m2m4)

]

(13)

This has a unique solution provided that det(M) 6= 0. The equation det(M)
is quadratic in r. The discriminant of this quadratic equation is D, the
positive discriminant from §2.3. Hence there are always 2 values where
det(M) = 0.

Lemma 2.5 If r is a value where det(M) = 0, there are no rectangles in-
scribed in L having aspect ratio r.

Proof: In case r is a value where det(M) = 0, the two rows of M are
multiples of each other. We only get inscribed rectangles of aspect ratio r
in this case if the second row of M is b4 times the first row. This happens if
and only if

r =
m4

b4 − 1
=

b4m3 − b4m2

−1 + b4 +m2m3 −m2m4

. (14)

If b4 = 1 there are no solutions. In general, solving this equation for b4 leads
to the same equation as solving ∆ = 0 for b4. Here ∆ is the perpendicularity
test. Since ∆ 6= 0 for nice configurations, there are no additional rectangles
inscribed in L. ♠

Remark: When ∆ = 0, the case of perpendicular diagonals, we draw a
different conclusion from Lemma 2.5. In this case, there is an entire line’s
worth of inscribed rectangles having aspect ratio r.
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2.5 Proofs of the Results

In this section we prove Theorems 1.1-1.5 advertised in the introduction.
For r such that det(M) 6= 0, the solution to Equation 13 is given by

x1 =
n10 + n11r

d0 + d1r + d2r2
, x2 =

n20 + n21r

d0 + d1r + d2r2
, (15)

• n10 = b4(m3 −m2),

• n11 = 1− b4 − b4m2m3 +m2m4,

• n20 = m4,

• n21 = 1− b4,

• d0 = m4(m2 −m3),

• d1 = m2m3m4 +m2 −m3 +m4,

• d2 = m2(m3 −m4).

We remark that the discriminant of the equation d0+ d1r+ d2r
2 = 0 is, once

again, the positive discriminant D from §2.3.

Lemma 2.6 HL is a nondegenerate conic section.

Proof: Recall that HL is the curve of inscribed centers. In view of the work
in the previous section, we get all points on HL by analyzing Equation 15.
Using the equations above for R3 and R4, we find that HL is the curve ΓA,
where A is the matrix

b4(m3 −m2) +m4 2− b4(m2m3 + 2) (b4 − 1)m2

m2m4 m2 − b4m3 +m4 m2(b4m3 −m4)
2(m2 −m3)m4 2(m3m4m2 +m2 −m3 +m4) 2m2(m3 −m4)

(16)

The point HA(r) is the center of the rectangle of aspect ratio r. We compute

det(A) = 2m2m3(m2 −m4)∆,

where ∆ is the perpendicularity test. Thus det(A) 6= 0. By Lemma 2.1, the
set HL is a conic section. ♠
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Lemma 2.7 HL not an ellipse or a parabola.

Proof: Referring to Equation 15, the equation d0 + d1r + d1r
2 has 2 real

roots r1 and r2. because D > 0. Since n20 = m4 6= 0, we see that there
are (two) values r for which the point x2 is arbitrarily large. Since x2 is
one of the vertices of an inscribed rectangle, and since no two lines of L are
parallel, the distance from x2 to the other lines tends to ∞ with the size of
x2. Hence, the corresponding rectangles have unboundedly large diameter.
If these large rectangles had bounded centers then we could take a rescaled
limit and find a quadruple of lines as in §2.1 which had an inscribed rectangle
centered at the origin. This would force two pairs of lines in L to be parallel,
a contradiction.

We have just shown that HL contains points unboundedly far from the
origin. Hence HL is not an ellipse. Suppose that HL is a parabola. From
the analysis above, and continuity, we can find two rectangles Rn,1 and Rn,2

inscribed in L such that both rectangles have diameter n, and aspect ratios
converging to the values r1 6= r2. If HL is a parabola. can take a rescaled
limit and arrive at a quadruple of lines as in §2.1 which has 2 distinct in-
scribed rectangles with the same center. But then the lines of L would have
to be parallel in pairs, a contradiction. ♠

Now we know that HL is a hyperbola. If two rectangles are inscribed in
L and have the same center, then reflection in this center permutes the lines,
forcing L to have some parallel lines. Hence every point of HL is the center
of a unique inscribed rectangle. This completes the proof of Theorem 1.1.

Lemma 2.8 Theorems 1.2 and 1.3 are true for the map ρ.

Note that the map ΓA considered in the previous section is the inverse of
the map ρ from Theorem 1.2. By Lemma 2.1, the map ΓA is the restriction
of a hyperbolic isometry from H

2 to ΩL. Hence ρ is the restriction of an
isometry from ΩL to H

2.
Referring to the discussion in §2.5, the omitted aspect ratios ρ1 and ρ2

are the roots of the equation d0+ d1r+ d2r
2. The product is therefore d0/d2,

and (remembering that m1 = 0) this leads to the expression in Theorem 1.3.
Since the expression is invariant under rotations, the general formula works
even when m1 6= 0. ♠
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Lemma 2.9 Theorems 1.2 and 1.3 are true for σ.

Proof: We compute explicitly that there is a 2 × 2 matrix µ = {µij} such
that

σ = µ(r) =
µ11r + µ12

µ21r + µ22

, (17)

where
µ11 = m2 −m2b4, µ12 = m2m4,

µ21 = m2m3b4 −m2m4, µ22 = m2b4 −m3b4 +m4.

Solving the equation det(µ) = 0 leads to the same equation as solving ∆ = 0.
Hence µ is nonsingular. Hence µ acts as a linear fractional transformation of
R∪∞. (Depending on the sign of det(µ), the map µ is either an isometry of
H

2 or an isometric map from H
2 to the lower half plane model of H2.) By

construction σ = µ ◦ ρ or σ = µ ◦ ρ, depending on the sign of det(µ). So, the
truth of Theorem 1.2 for ρ implies the truth of Theorem 1.2 for σ. Finally,
an explicit calculation shows that σ1σ2 = −1 when σj = µ(rj). ♠

Proof of Theorem 1.4: The map σ maps partner points p1, p2 to points
s1, s2 satisfying s1s2 = −1. But then the hyperbolic geodesic with endpoints
s1, s2 contains the point i. Hence σ maps the ΩL-geodesic p1p2 ∩ ΩL to a
hyperbolic geodesic through i. But then all the geodesics in ΩL connecting
partner points contain a common point, namely σ−1(i). This point lies at
∞ in the projective plane because i lies on the geodesic through the omitted
slopes σ1, σ2 and these correspond to the two infinite points of HL. Hence
all the lines connecting partner points are parallel to a single direction. Con-
versely, any line parallel to this direction intersets HL twice and is mapped
by σ to a geodesic through i. Hence such a line joins partner points. ♠

Proof of Theorem 1.5: To check that Vk is the real part of a holomorphic
double branched cover, it suffices to prove that f = π1◦Vk is the real part of a
holomorphic double branched cover, because the second coordinate depends
linearly on the first. Here π1 is projection onto the first coordinate. From
Equations 10 and 15 we see that

f(r) =
ak + bkr + ckr

2

d0 + d1r + d2r2
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where ak, bk, ck are rational expressions in m1,m2,m3,m4, b1, b2, b3, b4, the
parameters for the lines. When complexified, Vk is a holomorphic double
branched cover from C ∪∞ to C ∪∞.

Now we study the involutions I1, I2, I3, I4. This time we do not normalize
so that m1 = b1 = 0. We find explicitly that

I1(r) =
Z02r + Z01

Z21r + Z20

, Zij = det

[

Bi Bj

Mi Mj

]

. (18)

Here B0, B1, B2 respectively equal

b14m23, b12 + b34 + b14m3m2 + b31m2m4 + b12m3m4, b12m34,

and M0,M1,M2 respectively equal

m14m23, m12 +m34 +m14m3m2 +m31m2m4 +m12m3m4, m12m34,

We have set bij = bi− bj and mij = mi−mj. To get the remaining maps, we

define I
(j)
1 to be the map above with respect to the cycled line configuration

L(j) = (L1+j, L2+j , L3+j , L4+j). This just means that we cyclically permute
the variables above and recompute. We have

I2(r) =
1

I
(1)
1 (1/r)

, I3(r) = I
(2)
1 (r), I4(r) =

1

I
(3)
1 (1/r)

. (19)

These maps all act as hyperbolic isometries. Using Mathematica, we check
symbolically that I1I2I3I4 fixes the points−1, 0, 1 and hence is the identity. ♠

Remark: The quantities M0,M1,M2 above are the same as what we would
get for d0, d1, d2 (up to sign) were we to recompute these quantities without
normalizing so that m1 = b1 = 0. For the record, we also give the formula
for the matrix µ from Equation 17 without the condition that b1 = m1 = 0.

µ11 = m12b34 − b12m34, µ12 = m1m2b34 −m1m3b24 +m2m4b13 −m3m4b12

µ21 = m2m3b14 −m1m3b24 +m1m4b23 −m2m4b13, µ22 = b14m23 −m14b23
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3 Further Results

3.1 The Saddle Conjecture

Now let γ be a polygon in the plane. Let A be a chord of γ. That is, A is a
segment having both endpoints A1, A2 ∈ γ. Let Bj be the line perpendicular
to A at Aj. Let γj be the union of edges of γ, either one or two, which
contain Aj. We call A a diameter if γj lies one one side of Bj for j = 1, 2.
This means that γj does not intersect both open half spaces of R2 −Bj.

Some of the diameters are extrema for distance function d : γ × γ → R,
and we call these the extreme diameters . Some diameters are not extreme
diameters, and we call the additional diameters saddles . Typically, one can
lengthen a saddle by varying one endpoint and shortened it by varying the
other. Figure 3 suggests how a path of rectangles in an equilateral triangle
interpolates between a max and a saddle.

 

 

 

 

 

    

 

 

Figure 3: Inscribed rectangles interpolating between a max and a saddle.

When I(γ) is a 1-dimensional manifold, we call an arc component A of
I(γ) a proper arc if the aspect ratios of rectangles corresponding to points in
A tend to 0 or ∞ as one exits the ends of A. We also insist that there are
a pair of diameters of γ on which these degenerating rectangles accumulate.
The example in Figure 3 shows a proper arc of I(γ) when γ is an equilateral
triangle.

In [S1 we proved the following result.

Theorem 3.1 For an open dense set of polygons γ, the space I(γ) is a piece-
wise smooth 1-manifold consisting of loops and proper arcs.

After looking at hundreds of examples, I conjectured that generically
the proper arcs of I(γ) always connect extreme diameters to saddles. We
emphasize that this result is only true generically. When γ is a square, there
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is certainly a path of inscribed rectangles connecting the two diagonals. Here
I will use Theorem 1.4 to prove this conjecture in the simplest case.

Theorem 3.2 Let Q be a generic convex quadrilateral. Then the arc com-
ponents of I(Q) must connect extreme diameters to saddles.

Proof: The quadrilateral Q has no minimal diameters and 2 or 3 maximal
diameters. The two diagonals are maximal diamaters and possibly a side
is another maximal diameter. There are the same number of saddles as
maximal diamaters, and these are obtained by dropping perpendiculars from
vertices of Q to other sides of Q.

Let L be the quadruple of lines extending the sides of Q, taken in coun-
terclockwise cyclic order. We first claim that I(Q) cannot contain a path of
rectangles connecting the diagonals of Q such that all the rectangles are also
inscribed in L. To prove our claim, let ρ1 and ρ2 be the omitted aspect ratios,
as in Theorem 1.4. We have ρ1ρ2 < 0, because the slopes m1,m2,m3,m4 are
cyclically ordered on R ∪∞. But then and continuous path in R ∪∞ con-
tains some ρj. Geometrically, this means that there is no continuous path of
rectangles inscribed in L which connects the two diagonals. This proves the
claim.

Q

Q0

Figure 4: Some rectangles that are inscribed in Q but not LQ.

It remains to consider the case when our arc of I(γ) contains rectangles
which have a pair of vertices contained in the same side Q0 of Q. Such a path
always has a saddle at one end. Intuitively, if we rotate the side as in Figure
4, then the two bottom vertices squeeze together and the top two vertices
seek out the highest point. So, a maximal diameter is always paired with a
saddle.

Since there are the same number of saddles as extreme diameters, and no
two extreme diagonals are paired together, each extreme diameter is paired
with a saddle and vice versa. ♠
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3.2 A Degenerate Case of the Theorems

Here we discuss a degenerate case of our results. Suppose that we have a
configuration L = (L1, L2, L3, L4) of lines which satisfies the first 3 niceness
conditions but not the fourth one. This means that the diagonals δ0 and δ∞
are perpendicular.

Theorem 3.3 The set HL is a pair of unequal crossing lines Hσ and Hρ.
The well-defined maps σ and ρ are constant on Hσ and Hρ respectively, and
projective transformations on Hρ and Hσ respectively. In particular, Hσ con-
sists of centers of rectangles having constant slope and Hρ consists of centers
of rectangles having constant aspect ratio.

We omit the proof, though we mention that the result follows from a
careful analysis of what happens to the equations in the previous chapter
when D = ∆ = 0. The analogue of Lemma 2.5 gives rise to Hρ and the
analogue of Lemma 2.6 gives rise to Hσ. An alternative method of proof
would be to take a limit from the nice case.

What is going on geometrically is that L is the limit of a sequence Ln of
nice configurations. The hyperbolas {HLn

} converge toHL, pinching together
in the limit. The hyperbola HLn

is very nearly partitioned into two pieces.
On one of the pieces ρ is very nearly constant and on the other piece σ is
very nearly constant. In the limit, each piece becomes one of the two lines.
The map ρn ◦ σ−1

n is a hyperbolic isometry for all n, but in the limit the
translation length of this isometry tends to ∞. The limit maps all of H2 to
a single ideal point. Likewise, the limit of the map σn ◦ ρ−1

n maps all of H2

to a single ideal point.

3.3 The Projective Tangent Bundle

We can encode most of the information contained in our configuration theo-
rems into a map from the space of quadruples of lines into P , the projective
tangent bundle of C ∪ ∞. To each nice quadruple L we associate the pair
Ψ(L) = (p, ℓ) where

p = µ−1(i). (20)

and ℓ is the circle (or line) in C ∪ ∞ which extends the geodesic whose
endpoints are ρ1 and ρ2. Here µ is the map from Equation 16. Geometrically,
the extension of ρ to H

2 maps one of p or p (whichever lies in H
2) to the

common point of the parallel lines from Theorem 1.4.
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Let us justify our claim that p ∈ ℓ. The condition that σ1σ2 = −1 means
that i lies in the geodesic with endpoints σ1σ2. Since µ maps i, σ1, σ2 to
p, ρ1, ρ2, we see that p really does lie in ℓ. In other words, the domain of Ψ
really is P . To put things more classically, we could say that the element of
the projective tangent bundle is the point p and the tangent line at Tp(C∪∞)
to ℓ. This tangent line uniquely determines ℓ and conversely.

Now we mention, mostly without proof, some properties of Ψ. Assuming
that Ψ(L) = (p, ℓ) we denote p as Ψp(L) and ℓ as Ψℓ(L). The purpose of this
notation is to discuss the functions Ψp and Ψℓ separately.

Similarity Invariance: If L and L′ are two quadruples related by a similar-
ity, then Ψ(L) = Ψ(L′). This is pretty obvious if there is no rotation involved.
In case there is rotation involved, the key observation is that µ′ = µ◦β where
β is some hyperbolic isometry that fixes i.

The Angular Property: To each configuration L, we let θ(L) ∈ [0, π/2]
be the small angle between the diagonals of L. We have already seen that
HL is a hyperbola if and only if θ(L) < π/2. Let Vθ denote the pair of lines
in C which make the angle θ with the y-axis. It turns out that Ψp(L) ∈ Vθ,
where θ = θ(L).

The Diagonal Property: We call two configurations L and L′ diagonally
related if δ′0 is a translate of δ0 and δ′

∞
is a translate of δ′

∞
. The point

q = i
L12 − L34

L23 − L41

(21)

is the same for all configurations in D(L). It turns out that q ∈ Ψℓ(L
′) for

all L′ in D(L). Note that Equations 20 and 21 give us a practical way to
compute Ψ(L).

The Swivel Property: We fix some index k and let L denote the space of
quadruples we get by holding 3 of the lines of L fixed and varying the kth
line. A point of L represents a quadruple of lines, and a line in L represents
all the quadruples where the kth line belongs to a pencil of lines all through a
fixed point. Now we think of Ψ as a map on L. There is a point β, depending
on the 3 fixed lines, such that β ∈ Ψl(λ) for all λ ∈ L. Also, Ψp maps any
line in L to a circle (or straight line) through β.
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