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Abstract

Given a convex polygon P in the projective plane we can form a

finite “grid” of points by taking the pairwise intersections of the lines

extending the edges of P . When P is a Poncelet polygon we show

that this grid is contained in a finite union of ellipses and hyperbolas

and derive other related geometric information about the grid.

1 Introduction

Poncelet’s porism is a classical result in algebraic geometry. Some good ref-
erences for this result are [B], [BKOR], [H], [GH], and [T]. The porism
deals with polygons P which are superscribed about a conic E0 and simul-
taneously inscribed in another conic E1. This is to say that the edges of P
are all tangent to E0 and the vertices of P are all contained in E1. Figure
1.1 shows an example, in which E0 is a circle and E1 is an ellipse.

We call P a Poncelet polygon and we say that P is defined relative to
(E0, E1). Poncelet’s porism may be phrased as follows: P includes in a con-
tinuous family of Poncelet polygons, all defined relative to (E0, E1). Looking
at Figure 1.1, we can imagine that P is able to “rotate around” continuously
(and slightly changing shape as it “rotates”) so as to remain superscribed
about E0 and inscribed in E1. My Java applet [S] shows an animated ver-
sion of this.
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Figure 1.1

At first it might seem that Poncelet’s porism is fairly trivial: Perhaps
there is a 1-parameter subgroup of projective transformations which simul-
taneously stabilizes E0 and E1; then each polygon in the “rotating family”
is in the orbit of each other one. What makes Poncelet’s porism deep is that
this is typically not the case. The well-known proof of Poncelet’s porism
involves the familiar but deep fact that elliptic curves over C may be uni-
formized so as to have flat Riemannian metrics. An excellent account, with
historical references, is given in [GH]. In §2 we will sketch the main points
of the proof. Compare [T, §5] for a different point of view.

One can define a certain collection of points in the projective plane based
on P . Let l1, ..., ln be the lines which contain the edges of P . We define the
Poncelet grid to be the union G of points {li ∩ lj}. When i = j we define
li ∩ lj to be the tangency point li ∩ E0. Many but not all of the points of
G are shown in Figure 1.1. The purpose of this article is to investigate the
properties of the Poncelet grid. For ease of exposition we only consider the
case when n ≥ 3 is odd. The even case is slightly different but similar results
obtain.

Our main results refer to Figure 1.2, shown on the next page. We dis-
covered these results experimentally, in part using Mathematica [W]. Figure
1.2 shows a decorated version of G. The outer conic E1 is not shown; from
our point of view, it represents an artificial truncation of the Poncelet grid.
A network of ellipses and hyperbolas overlays G. Our main results is that
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G is related to the network of ellipses and hyperbolas exactly as it appears
to be. Each grid point is the intersection of an ellipse and a hyperbola. The
obvious collection of quadrilaterals is colored 1 for a checkerboard effect.

Figure 1.2

1One technical point about the coloring: In order to make the coloring consistent for

the whole grid, the quadrilaterals which intersect the line at infinity need to be treated spe-

cially. The color in these quadrilaterals needs to switch from white to black, or from black

to white, when the line at infinity is crossed. The reader can see this by experimenting,

for instance, with the case n = 3, 5
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It is convenient to think of our result in terms of an angular part and a
radial part . The angular part was essentially known to Poncelet; we think
that the radial part is new. The angular part of our result says that G is
contained on (n + 1)/2 ellipses, with n points per ellipse. The intersection
Pj = G ∩ Ej is the vertex set of another Poncelet polygon, defined relative
to the pair (E0, Ej). Thus, the initial conic E1 is nothing special. Any of the
Ej could have been used to define G. As it turns out, G has a symmetry:
For all i, j there is a projective transformation which carries Pi to Pj .

The radial part of our result says that G is contained in a finite union
{Hj} of hyperbolas. In the generic case there are n hyperbolas, each with
(n + 1)/2 points on them. This is the case we will discuss in detail. Let
Qj = G∩Hj. We call Qj a radial arm. It turns out that Qj is the vertex set
of another Poncelet polygon, even though Qj has essentially half the number
of vertices as P . Moreover, the Poncelet grid has a second symmetry. For
all i, j there is a projective transformation which carries Qi to Qj , as long
as neither collection of points is collinear. That is, all the radial arms of a
Poncelet grid (generically) are projectively equivalent to each other.

The second symmetry has a neat extension: Recall that the Poncelet
porism guarantees the existence of an infinite number of Poncelet polygons
defined relative to the pair (E0, E1). Each one of these other polygons leads to
a Poncelet grid G′. Typically G and G′ are not projectively equivalent to each
other. Nonetheless, each (generic) radial arm of G is projectively equivalent
to each (generic) radial arm of G′. As the Poncelet grid “rotates around”,
the projective classes of its radial arms (generically) remain constant!

Here is a formal summary of our results:

Theorem 1.1 Let G be the Poncelet grid associated to any Poncelet polygon
defined in terms of two nested ellipses E0 and E1. There is a finite family
{Ej} of ellipses and a finite family {Hj} of hyperbolas such that G ⊂

⋃
Ej

and also G ⊂
⋃

Hj. The intersections Pj = Ej ∩ G and Qj = Hj ∩ G are
vertex sets of new Poncelet polygons. All the P s are projectively equivalent to
each other and all the Qs are projectively equivalent to each other. Finally,
there is a set S of 4 complex lines such that the complexified versions of Ej

and Hj are tangent to the lines of S for all j.

In §2 we will sketch the classic proof of Poncelet’s porism. Following this,
we will give some further analysis of the basic construction. In §3 we will
prove Theorem 1.1, step by step.
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2 Poncelet’s Porism

2.1 Basic Ideas

Let E0 and E1 be two ellipses contained in P , the real projective plane. Each
ellipse bounds a disk on one side and a Mobius band on the other. We assume
that the disk bounded by E1 contains E0 in its interior. We normalize by a
projective transformation so that E0 is the unit circle and

E1 = {(x, y)| (x/a)2 + (y/b)2 = 1}, (1)

where a > b > 1. We ignore the case a = b because it is trivial.

E1

E0

p

q
r=f(p)

Figure 2.1

We give E0 the counterclockwise orientation. At each point p ∈ E0 the
tangent ray to E0 at p intersects E1 in a point q. There is a unique point
r ∈ E0 such that r 6= p and the ray −→qr contains the tangent ray to E0 at r.
We define f(p) = r. The point p is contained in an edge of a Poncelet n-gon
if and only if fn(p) = p. Poncelet’s porism says, given two points p, p′ ∈ E0,
we have fn(p) = p if and only if fn(p′) = p′. This result is proved by showing
that f is conjugate to a rotation of a circle.

Here we sketch (a variant of) the classical argument. Let P (C) be the
complex projective plane. Let E0(C) and E1(C) be the conics in P (C)
which extend E0 and E1. There are 4 complex lines which are simultaneously
tangent to E0(C) and E1(C).

Lemma 2.1 The lines simultaneously tangent to E0 and E1 have the form
±icx ± dy = 1, where

c2 =
b2 − 1

a2 − b2
; d2 = c2 + 1. (2)
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Proof: Let P
∗(C) denote the dual projective plane. There is a projective

duality δ : P (C) → P
∗(C) which carries the line ax + by = 1, considered

as a subset of P (C), to the point (a, b) ∈ P
∗(C). Let S(Ej) denote the

set of lines tangent to Ej(C). Then δ(S(E0)) is the conic having equation
x2 +y2 = 1 and δ(S(E1)) is the conic having equation (ax)2 +(by)2 = 1. The
intersection points of these dual conics are (±ic,±d), where c and d are as
in Equation 2. The result follows immediately. ♠

Let T denote the set of pairs (q, l) where q ∈ E1(C) and l is a complex
line containing q and tangent to E0(C). We define π : T → E0(C), by the
equation π(q, l) = l ∩ E0(C). The complex line lp, tangent to E0(C) at p,
intersects E1(C) in either 1 or 2 points, depending on whether or not lp is
also tangent to E1(C). Hence π is a double branched cover, branched at
4 points. This forces T to be a torus. The inclusion T ↪→ P (C) gives a
complex structure on T in which π is a holomorphic homeomorphism.

Like all complex tori, T has a Euclidean metric, unique up to scale, in
which all holomorphic and anti-holomorphic self-homeomorphisms are isome-
tries. This is the uniformization theorem for elliptic curves. There are two
natural involutions on T :

• We have i1(q, l) = (q, l′), where (generically) l′ is the other line through
q which is tangent to E0(C). The map i1 has 4 fixed points; these are
pairs (q, l) where q ∈ E0(C) ∩ E1(C).

• We have i2(q, l) = (q′, l) where (generically) q′ is the other point of
l ∩ E1(C). The map i2 has 4 fixed points; these are the pairs (q, l)
where l is tangent to both E0(C) and E1(C).

The fixed points of i1 are completely distinct from the fixed points of i2.
Hence f̃ = i1 ◦ i2 acts as a translation−i.e. with no fixed points.

π−1(E0) consists of two circles, Ẽ0 and Ẽ ′

0. We label so that Ẽ0 consists
of elements (q, l) where l contains a ray tangent to E0, pointing in the coun-
terclockwise direction, and q is on this ray. (Compare Figure 2.1.) The map
π intertwines the action of f̃ on Ẽ0 with the action of f on E0. Complex
conjugation preserves both our conics and hence induces an anti-holomorphic
isometry of T . The fixed point set is exactly π−1(E0). Since Ẽ0 is one com-
ponent of the fixed point set of an isometry, Ẽ0 is a closed geodesic on T .
All in all, f̃ is a free isometry of Ẽ0, which is to say, a rotation. This proves
that f is conjugate to a rotation.
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2.2 Further Analysis

Let’s sharpen the picture of T , the torus defined in the previous section.
The two circles Ẽ0 and Ẽ ′

0 are obviously disjoint. Hence they bound a pair
of annuli. These annuli are interchanged by the anti-holomorphic isometry
induced from complex conjugation. Hence T is obtained by doubling an
annulus across its geodesic boundary. An annulus with geodesic boundary
can be obtained from a rectangle, with the top and bottom sides identified in
the obvious way. Hence, T can be obtained by gluing together the opposite
sides of a rectangle R, as shown in Figure 2.2.

Figure 2.2

Ẽ0 and Ẽ ′

0 are the images of two evenly spaced vertical line segments, under
the identification map. Since f̃ preserves these sets, f̃ is a vertical translation.
The map π has the property that π ◦ ρ = π, where ρ is the involution of T
induced by the map which rotates 180 degrees about the center of R.

We normalize R to have height 1. The width of R determines the complex
structure on T , and vice versa. At the same time, the complex structure on T
is determined by the location of the branch points on E0(C). These branch
points are determined by the value of c, given in Equation 2. We write
R = R(c) to denote the dependence of R on c.

Lemma 2.2 The map c → R(c) is injective.

Proof: Define

X = E0(C) ∩ Π; Π = {(ix, y)| x, y ∈ R}.. (3)

The branch points of the map T → E0(C) are (±ic,±d) ∈ X. There is a
biholomorphic map β : E0(C) → C ∪∞, the Riemann sphere. The complex
structure on T is completely determined by the cross ratio of the branch
points in E0(C). That is, the complex structure is determined by the cross
ratio of the points β((±ic,±d)). We just need to show that this cross ratio
is monotonic in c.
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The map r(z, w) = (z,−w) is an anti-holomorphic automorphism of
E0(C) which preserves X. Thus β(X) is the fixed point set of the anti-
holomorphic map β ◦r ◦β−1. Hence β(X) is a circle. Adjusting β, we can as-
sume that β(X) is the unit circle. The branch points of E0(C) are permuted
by the dihedral group D whose elements have the form (z, w) → (±z,±w).
Further adjusting β we can assume that β conjugates D to the dihedral
dihedral group Dβ generated by z → z and z → −z.

The set of branch points β((±ic,±d)) is invariant under Dβ and hence
must be a rectangle R′

c whose sides are parallel to the coordinate axes. The
cross ratio of the vertices of R′

c is monotonic in the modulus−i.e. the width-
to-length ratio. But the modulus of R′

c is monotonic in c because each choice
of c gives rise to a different rectangle R′

c. ♠

We define ∆ = {(a, b)| a > b > 1}, and think of c as a function from ∆
to R

+. From Equation 2 we see that the fiber of c in the (a, b)-plane is the
hyperbola

hc = {(a, b)| (c2 + 1)b2 − c2a2 = 1}. (4)

hc contains the point (1, 1), and has asymptotes b = ±ka with |k| < 1. Here
k = c2/(c2 + 1). Hence

• If c(a, b) = c(a′, b′) then a − a′ and b − b′ have the same sign.

• Each fiber of c contains pairs (a, b) arbitrarily close to the pair (1, 1).

• Each fiber of c contains pairs (a, b) arbitrarily close to the pair (∞,∞).

Interpreting these statements geometrically, and using the fact that each fiber
of c is a smooth curve, we get the following result:

Lemma 2.3 For each c ∈ R
+, there is a foliation Pc of the outside of the

unit disk. Each leaf of Pc is an ellipse E1. The rectangle R = R(E1) is
independent of the choice of E1 within the foliation. Moreover, if E1 and E ′

1

are two ellipses such that R(E1) = R(E ′

1), then there is a constant c such
that E1 and E ′

1 both belong to the foliation Pc.

Proof: The foliaion Pc consists precisely in the ellipses E1, given by Equa-
tion 1, where a, b > 1 lie on the hyperbola hc. The rest of the lemma follows
from the properties of hc mentioned above. ♠
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3 The Grid

3.1 Some General Constructions

By dihedral group we mean the group D whose elements have the form
(x, y) → (±x,±y). Let µ be a D-invariant unit length Riemannian met-
ric on E0. Let p ∈ E0 and let n ≥ 3 be some odd integer. There is a unique
collection p1, ..., pn = p of points which are evenly spaced with respect to
µ. Let lj be the line in P which is tangent to E0 at pj . We take indices
cyclically, so that ln+k = lk. We define

G(µ, n, p) =
⋃

i,j

li ∩ lj . (5)

When i = j we define li ∩ lj to be the tangency point pi. Thus G consists of
n(n + 1)/2 points.

We distinguish two kinds of subsets of G.

Pj =
n⋃

i=1

li ∩ li+j ; Qj =
n⋃

i=1

lj−i ∩ lj+i. (6)

Our definitions have some redundancy. First, Pj = Pn−j for all j. Second,
Qj only has (n + 1)/2 distinct points.

Let D0 be the unit disk. Given q ∈ P − D0, there are two lines l1 and l2
containing q and tangent to E0. These two lines are tangent to E0 at points
r1 and r2. The complement E0 − r1 − r2 consists of two arcs I1 and I2. Let
|Ij| be the µ-length of Ij and let mj be the µ-midpoint of Ij.

q

l1

l2

r1

r2

I2

m2

m1

I1

Figure 3.1
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(In Figure 3.1 the points mj are drawn off-center to emphasize the fact that
the metric µ might not be the rotationally symmetric one.) Based on the
constructions in Figure 3.1 we can define two natural maps on P − D0:

λ1(q) = min(|I1|, |I2|); λ2(q) = {m1, m2}. (7)

The range of λ1 is [0, 1/2]. The range of λ2 is the set E0/± of pairs of
antipodal points on E0. Both λ1 and λ2 extend continuously to E0.

If E is any fiber of λ1 then E is simple closed curve. We call E an
angular fiber . There is a unique Riemannian metric on E which makes the
map λ2 : E → E0/± a local isometry. We call this metric the angular metric.
If H is any fiber of λ2 then H is a simple arc with endpoints on E0. We call
H a radial fiber . There is a unique Riemannian metric on H which makes
the map λ1 : H → [0, 1/2] an isometry away from the points λ−1

1 ({0, 1/2}).
We call this the radial metric on H .

We can associate some distinguished fibers to our grid G. The map λ1 is
constant on the sets Pj . We define Ej to be the fiber of λ1 which contains
Pj. The points of Pj are evenly spaced in the radial metric on Ej . The map
λ2 is constant on the sets Qj and we define Hj to be the fiber of λ2 which
contains Qj. The points of Qj are evenly spaced in the Riemannian metric
on Hj , as long as they are sufficiently far away from the endpoints of Hj.

3.2 Poncelet Metrics

As in §2 we have the branched covering π : T → E0(C), which depends on
the parameters a > b > 1. We define µ(a, b) to be the unit length analytic
Riemannian metric on E0 which makes π an isometry between Ẽ0 and E0.
We call µ(a, b) a Poncelet metric on E0. Let c = c(a, b) be as in Equation 2.

Lemma 3.1 µ(a, b) = µ(a′, b′) if and only if c(a, b) = c(a′, b′).

Proof: Suppose that c(a, b) = c(a′, b′). Then R(a, b) = R(a′, b′). Here R
is the rectangle considered in §2.2. We can identify the tori T and T ′. The
maps π and π′ have the same domain and satisfy the equations π ◦ρ = π and
π′ ◦ ρ = π′. This implies that g = π′ ◦ π−1 is a well-defined holomorphic self-
map of T . By symmetry g lies in the normalizer of the dihedral group. This
forces g to be one of finitely many maps. Since g varies continuously with
the parameters, g must be the identity. Hence π = π′ and µ(a, b) = µ(a′, b′).

10



Suppose that µ(a, b) = µ(a′, b′). Let t be the translation length of f̃ :
T → T the holomorphic map considered in §2. Likewise define t′. By varying
E1 within the foliation Fc, an operation which does not change µ, we can
arrange that t = t′. But then f and f ′ are the same rotation with respect to
the common metric µ(a, b) = µ(a′, b′). Hence f = f ′. Let p ∈ E0.

q’r r’

E1

E1’

E0

q

p

Figure 3.2

Let q ∈ E1 and q′ ∈ E ′

1 be as in Figure 3.2. Then r = f(p) = f ′(p) = r′. For
typical point p this forces q = q′. Hence E1 and E ′

1 have many intersections.
Hence E1 = E ′

1. Hence (a, b) = (a′, b′). ♠

Henceforth we write µ(c) instead of µ(a, b).

Lemma 3.2 Suppose that E0 is equipped with µ(c). Then the fibers of λ1

are precisely the ellipses in the foliation Pc.

Proof: Let E1 be a generic ellipse in Pc. Let f : E0 → E0 be the map from
§2, defined relative to E0 and E1. Then f is an isometry relative to µ(c).
If we take E1 to be generic then f has infinite order and every orbit of f is
dense. By construction λ1 is constant on a dense set of points of E1. hence
λ1 is constant on E1. Hence E1 is a fiber of λ1. Since the fibers of λ1 are
disjoint and foliate the outside of E0 we see that the foliation by fibers of λ1

must equal Pc. ♠

Now we can relate our grids to Poncelet polygons. Let µ = µ(c) and Let
G(µ, n, p) be a grid based on a Poncelet metric µ. Then the set Pj defined in
Equation 6 lies in a fiber Ej of λ1, and the points of Pj are evenly spaced in
the angular metric on Ej . Hence Pj is a Poncelet n-gon defined relative to
(E0, Ej). Independent of j we get the same grid. Conversely, and Poncelet
n-gon defined relative to a pair (E0, E1), with E1 in the foliation Pc, sets up
a Poncelet grid of the form just discussed, for µ = µ(c).
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3.3 Symmetry of Angular Fibers

We let µ = µ(c) be as in the previous section and we consider a grid G(µ, n, p).
Let µj be the angular metric on Ej . In particular, µ = µ0. Say that a
linear map is diagonal if it is represented by a diagonal matrix, and positive
diagonal if it is represented by a diagonal matrix with positive entries. There
is a unique positive diagonal map δj : Ej → E0.

Lemma 3.3 δj(µj) = µ.

Proof: Without loss of generality we take j = 1. We set δ = δ1. We use the
notation from §2. Let µ̃ be the metric on Ẽ0, induced from the flat metric
on T . The map π : Ẽ0 → E0 carries µ̃ to µ, the Poncelet metric on E0. Let
µ′ = δ(µ1). We would like to show that µ′ = µ.

Recall that T is the set of pairs (q, l) where q ∈ E1(C) and l is a line
containing q and tangent to E0(C). We define σ : T → E1(C) by the formula

σ(q, l) = q. (8)

An argument like one given in §2.1 shows that σ is a holomorphic double
branched covering from T to E1(C), such that σ(Ẽ0) = E1. The points
of any Poncelet polygon defined relative to (E0, E1) are evenly spaced with
respect to µ1. This means that µ1 = σ(µ̃). Therefore

µ′ = π′(µ̃); π′ = δ ◦ σ (9)

The maps π and π′ are both holomorphic branched coverings from T to
E0(C). Both maps carry Ẽ0 to E0. This means that π′ = φ2 ◦ π ◦ φ1 where
φ1 is a vertical translation of T and φ2 is a complex projective automorphism
of E0(C). Now φ1 is an isometry in the flat metric on T . That is φ1(µ̃) = µ̃.
Hence π′(µ̃) = φ2(π(µ)). Since φ2(π(µ)) and π(µ) both have dihedral sym-
metry, φ2 must act isometrically on E0. Hence π′(µ̃) = π(µ̃). ♠

The following result summarizes the symmetry of the angular fibers of
the Poncelet grid:

Lemma 3.4 Let {Ei} denote the collection of ellipses determined the grid
G(µ, n, p), where µ is a Poncelet metric. Then the positive diagonal map δij

which carries Ei to Ej also carries Pi to Pj.
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Proof: We order the points of Pj so that Pj is a convex polygon inscribed
in Ej . Then the points of Pj are evenly spaced in the angular metric on
Ej . Likewise, the points of Pi are evenly spaced in the angular metric on
Ei. Note that δij = δ−1

j δi. From Lemma 3.3, the map δij is an isometry
relative to the angular metrics on Ei and Ej . This means that δij(Pi) and
Pj are equivalent to each other by an isometric rotation. Let τ(p) denote
the translation length of this isometric rotation. If we vary p, the polygons
Pi and Pj rotate isometrically along Ei and Ej respectively. Hence τ(p) is
independent of p ∈ E0. When p = (1, 0) we see, by symmetry, that both
Ei and Ej contain a point on the x-axis. Therefore τ((1, 0)) = 0. Hence
τ(p) = 0 for all p. Therefore δij(Pi) = Pj . ♠

3.4 Symmetry of Radial Arms and Fibers

Let G be a Poncelet grid, defined relative to a Poncelet metric µ0 on E0. We
call the sets Qj , defined in Equation 6, the radial arms. Each Qj includes in
a radial fiber Hj . We say that a radial arm is generic if it is not contained
in one of the coordinate axes.

Lemma 3.5 Suppose Qi and Qj are generic radial arms. Then there is a
diagonal map Uij such that Uij(Qi) = Qj.

Proof: Let Qi(0), Qi(1), ... be the points of Qi, listed in the linear order
they inherit from their inclusion in Hi. We label so that Qi(0) ∈ E0. For
any k ∈ {1, ..., (n + 1)/2} the two points Qi(k) and Qj(k) are contained in
the ellipse Ek of the foliation Pc. Here c is such that µ0 = µ(c). Let µk be
the angular metric on Ek.

Let X denote the positive x-axis in R
2. Lemmas 3.3 and 3.4 together

imply that the (counterclockwise) µk-distance from Ek ∩ X to Qi(k) coin-
cides with the (counterclockwise) µ0-distance from E0 ∩ X to Qi(0). Hence
δk(Qi(k)) = Qi(0)). Here δk is as in Lemma 3.3. Our result is independent
of the index i. Since neither Qi(0) nor Qj(0) is contained in the coordinate
axes, there is a diagonal map U such that U(Qi(0)) = Qj(0). Since U and
δk commute,

U(Qi(k)) = Uδ−1

k (Qi(0)) = δ−1

k (U(Qi(0)) = δ−1

k (Qj(0)) = Qj(k). (10)

Since this works for all k we have U(Qi) = Qj . ♠
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Lemma 3.6 Suppose that H1 and H2 are generic radial fibers. Then there
is a diagonal map T such that T (H1) = H2. Moreover, T is an isometry
relative to the two radial metrics.

Proof: For each n we choose a Poncelet grid Gn = G(n, p, µ). We always
choose p = H1 ∩ E0. We let Q1,n be the radial arm of Gn contained in H1.
We let Q2,n be the radial arm of Gn closest to H2. We let H2,n be the radial
fiber containing Q2,n. There is a linear map Tn such that Tn(Q1,n) = Q2,n.
This map is determined by where it sends q, and limn→∞ Tn(q) = H2 ∩ E0.
Therefore, the limit T = lim Tn exists. Note that Q1,n becomes arbitrarily
dense in H1, and the points of Q1.n are evenly spaced in the radial metric
on H1. Likewise Q2,n becomes arbitrarily dense in H2,n and the points of
Q2,n are evenly spaced in the radial metric on H2,n. Furthermore H2,n → H .
These facts all combine to show that T (H1) = H2 and that T is an isometry
relative to the two metrics. ♠

Corollary 3.7 Suppose that G and G′ are two Poncelet grids defined relative
to µ and having the same number of points. Then each generic radial arm of
G is equivalent to each generic radial arm of G′ via a diagonal map.

Proof: This follows from Lemma 3.6, from the fact that the points of a ra-
dial arm are evenly spaced relative to the radial metric of the corresponding
radial fiber, and from the fact that both radial arms contain a point on E0. ♠

3.5 Radial Arms are Hyperbolas

As above, all our constructions are done relative to a Poncelet metric µ = µ(c)
on E0. Let H be a generic radial fiber. Let X and Y be the coordinate axes.
We parametrize H as

H(t) = (α(t), β(t)),

where t is the radial distance−i.e. the distance in the radial metric−from
H(t) to H ∩E0. Let Et be the ellipse in the foliation Pc which contains H(t).
Let a(t) > b(t) > 1 be the two constants defining Et.

Lemma 3.8 There exist constants c′ and c′′ (depending on H) such that
c′α(t) = a(t) and c′′β(t) = b(t).
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Proof: First we deal with α(t). Let {H ′

n} be a sequence of radial fibers of
µ, contained in the positive quadrant, such that H ′

n → X. By Lemma 3.6
there is a positive diagonal map T ′

n such that T ′

n(H) = H ′

n. Since T ′

n is an
isometry relative to the radial metrics, we have T ′

n(H(t)) → Et ∩ X = a(t).
One of the diagonal entries of the matrix representing T ′

n tends to 0 while
the other one tends to a(t)/α(t) = c′. The maps T ′

n are independent of t.
Hence c′ is independent of t. That is, c′α(t) = a(t). The proof for β(t) is the
same, except we use Y in place of X. ♠

Looking at Equation 2 we see that the curve t → (a(t), b(t)) lies in a
hyperbola H0. Lemma 3.8 now says that there is a diagonal map TH such
that

TH(a(t), b(t)) = (α(t), β(t)) ∀t. (11)

Hence H is contained in the hyperbola TH(H0).

3.6 Radial Arms are Poncelet Polygons

We continue the notation from the previous section. In particular, H is
a generic radial fiber. Let EH ⊂ RP

2 be the hyperbola which contains H .
Then there are 3 components of EH−E0. One of the noncompact components
is H . Without loss of generality we suppose that H has nontrivial intersection
with the positive quadrant. Then H ∩R

2 has two components, one of which
is contained in the positive quadrant and one of which is contained in the
negative quadrant.

EH ∩E0 consists of 4 points. Let H denote the set of real conics H ′ such
that EH ∩ H ′ = EH ∩ E0. In other words, all the conics in H contain the
same 4 points of E0. Some members of H, such as E0, are ellipses. The other
members of H are hyperbolas.

We now make some constructions based on some H ′ ∈ H. Some of these
constructions turn out to be independent of H ′ and others do not. Let
EH(C) denote the complexification of EH . Let T (H ′) to be the set of pairs
(q, l) where q ∈ EH(C) and l is a line containing q and tangent to H ′(C).
We have the double branched covering

σ : T (H ′) → EH(C); (q, l) → q.

The branch points are EH ∩ H ′ and do not depend on H ′ ∈ H. Since the
branch points do not depend on H ′, the isometry type of T (H ′) is indepen-
dent of H ′.
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Let H̃ = σ−1(H). The set H̃ is fixed under the antiholomorphic isometry
(z, w) → (z, w). Hence H̃ is a geodesic. H is homeomorphic to a line segment,
and the endpoints of H are two points of E0 ∩ H . The map σ : H̃ → H is a
double branched cover, branched over the endpoints. Thus H̃ is topologically
a circle and topologically σ folds H̃ in half to produce H . We say that the
Poncelet metric on H is the metric which makes the map σ : H̃ → H a
local isometry away from the branch points. Given that the isometry type
of T (H ′) does not depend on H ′, the poncelet metric on H is independent
of H ′.

We say that a critical Poncelet polygon on H is a set of the form σ(Q̃)
where Q̃ ∈ H̃ is the orbit of one of the critical points of σ under f̃ . As we
will discuss below, this situation arises when H ′ is a hyperbola but not when
H ′ is an ellipse. Recall that H also has a radial metric, defined in terms of
the Poncelet metric µ on E0.

Lemma 3.9 On H, the poncelet and radial metrics coincide.

Proof: Since the Poncelet metric on H is independent of H ′ ∈ H we will
take H ′ = E0. Figure 3.3 shows a picture. We shall work with a Poncelet
grid G = G(µ, p, n) which is invariant under the map (x, y) → (−x, y). We
can arrange this by taking p ∈ Y , the y-axis.

Half of EH is shown. The shaded disk is the one bounded by E0. Let
Q0, Q1, ... be the points on Q = G ∩ H , labelled so that successive points
move away from E0. The first n/4 of these points lie in the same component
of H ∩ R

2. Let Qk = Q0 ∪ Q2 ∪ ...Q2k.
Let k = Floor(n/8). We define g : Qk−1 → Qk by g(Qi) = Qi+2. Looking

at Figure 3.3, and recalling the definition of f̃ we see that σ conjugates g
either to f̃ 2 or to f̃−2. This means that the points Q0, Q2, ..., Qk are evenly
spaced with respect to the Poncelet metric on H . But these points are also
evenly spaced with respect to the radial metric on H . By increasing the num-
ber of points in G (and adjusting H if necessary) we can make the points
of Qk as dense as we like in the relevant connected component of H ∩ R

2.
Hence, the two metrics agree on an open subset of H . Being analytic, they
agree everywhere on H . ♠
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Figure 3.3

Remark: We had to use the map f̃ 2 (or f̃−2) because f̃ does not preserve H̃ .
The point here is that the corresponding map f : EH → EH swaps the left
and right components of branch of the hyperbola shown in Figure 3.3. (We
are only interested in the portion of this hyperbola outside the shaded disk.)
The right branch is one of the components of H ∩ R

2 but the left branch is
not a subset of H . On the other hand, when H ′ is a hyperbola then f̃ does
preserve H̃. We can see this by applying a projective transformation to the
whole picture, so that both H and H ′ are transformed into ellipses, as shown
in Figure 3.4. Here H is the topmost component of EH − H ′. This is the
reason why, for our next construction, we need to consider members of H
rather than just E0.

17
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H’

Figure 3.4

Now we know that the radial and Poncelet metrics on H coincide. Given
H ′ ∈ H we normalize our metric on T (H ′) so that H̃ = σ−1(H) has length
1. We can choose H ′ so that the translation length of f̃ is any desired
r ∈ (0, 1/2). Now suppose that G is a Poncelet grid, Q is a radial arm and H
is the radial fiber which contains Q. We can choose a hyperbola H ′ ∈ H so
that the translation length of F̃ coincides with the spacing between the suc-
cessive points of Q. Let x ∈ H ′ be the branch point such that σ(x) = Q∩E0.
Let Q̃ be the orbit of x under f̃ . By construction σ(Q̃) = Q. Thus Q is a
critical Poncelet polygon.

Remark: There are (n + 1)/2 points in a radial arm which is based on
the grid G(n, p, µ). One might ask why there aren’t n points. The idea is
that the map σ is two-to-one on the set Q̃ − x and one-to-one on x. So, Q̃
has n points whereas its image has only (n + 1)/2 points.

3.7 The Double Foliation

If G is a Poncelet grid then there is a finite union {Ej} of ellipses and a
finite union {Hj} of hyperbolas such that G ⊂

⋃
Ej and G ⊂

⋃
Hj. There

is some constant c ∈ (0,∞) such that Ej is an angular fiber relative to the
Poncelet metric µ(c). At the same time, Hj is a radial fiber relative to the
same metric. As we have already seen in §3.2 the foliation Pc is the set of all
angular fibers. We let Qc denote the set of all radial fibers.

Let SP denote the set of 4 complex lines satisfying ±icx± dy = 1, where
c and d are as in Equation 2. We have already seen that every ellipse in Pc
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(when complexified) is tangent to the 4 lines in SP . Now we establish the
same result for the hyperbolas in Qc.

Lemma 3.10 There is a set SQ of 4 complex lines such that every hyperbola
in Qc (when complexified) is tangent to the 4 lines of SQ.

Proof: Let H be a generic fiber. Let T (H) be the complex torus defined rel-
ative to the pair (E0, H), as in §2.1. We have the covering map T (H) → E0,
which is branched over the 4 points of E0. The complex structure on T (H)
is determined by the 4 branch points on E0. Let S(H) be the set of 4 lines
tangent to E0 at the 4 branch points. By construction H is tangent to the 4
lines of S(H). We already know that the radial fibers, equipped with their
radial metrics, are (generically) isometric to each other via diagonal maps.
The same argument as in Lemma 3.1 shows that the complex structure on
T (H) is independent of H . The complex structure on T (H) is determined
by the points on E0 over which π is branched. Hence S(H) is independent
of H . Setting SQ = S(H), we get the result of this lemma. ♠

Lemma 3.11 SQ = SP .

Proof: Both SP and SQ are dihedrally invariant sets. Thus, it suffices to
show that the line ixc + dy = 1 lies in SQ. This line contains the points
(−i/c, 0) and (0, 1/d). Both these points are contained in the plane Π, given
in Equation 3.

Each radial fiber H is given by an equation of the form −ex2 + fy2 = 1
where e, f > 0. From this fact it is easy to see that H(C) ∩ Π is an ellipse.
Both SQ∩Π and H(C)∩Π have dihedral symmetry. Figure 3.5 shows the only
possibility. The 5 ellipses drawn show different choices of H . As H converges
to one of the coordinate axes, the ellipse H(C) ∩ Π degenerates either to a
horizontal line segment or to a vertical line segment. To figure out the lines
in SQ ∩Π we just have to find the endpoints of the degenerate line segments.
We will show that the endpoints of the horizontal degenerate line segment
are (±i/c, 0) and the endpoints of the vertical degenerate line segment are
(0,±1/d). This fact establishes our claim that the line icx + dy = 1 lies in
SQ.
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Figure 3.5

Let TH and H0 be as in Equation 11. We refer to the notation used in the
proof of Lemma 3.8, and suppose that H is a radial fiber close to the x-axis.
In this case, α(t) is close to a(t) and β(t) is close to 0. This means that

TH ∼
[
1 0
0 0

]
,

where ∼ is an approximation which improves as H converges to the x-axis.

Lemma 3.12 The ellipse H0(C) ∩ Π intersects the horizontal axis in the
point (±i/c, 0).

Proof: To find the intersection points we set b = 0 in Equation 2 and then
solve for a. ♠

Given our lemma, we know that H(C) ∩ Π very nearly intersects the
horizontal axis in the points (±ic, 0). Taking the limit we see that (±i/c, 0)
are the endpoints of the degenerate horizontal line segment, as desired. The
same argument shows that (0,±i/d) are the endpoints of the degenerate ver-
tical line segment. ♠

Setting S = SP = SQ we have the set of 4 lines advertised in §1. We have
now verified all the claims made in Theorem 1.1.
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