
Introduction to McBilliards

W. Patrick Hooper and Richard Evan Schwartz ∗

September 28, 2004

Abstract

The purpose of this paper is to describe a computer program we

wrote, called McBilliards, which effectively searches for periodic bil-

liard paths in triangles.

1 Introduction

Let T be a triangle−more precisely, a triangular region in the plane−with
the shortest edge labelled 1, the next shortest edge labelled 2, and the longest
edge labelled 3. A billiard path in T is an infinite polygonal path {si} ⊂ T ,
composed of line segments, such that each vertex si∩si+1 lies in the interior of
some edge of T , say the nith edge, and the angles that si and si+1 make with
this edge are complementary. The infinite sequence {ni} is the orbit type.
A billiard path models the trajectory taken by a frictionless and infinitely
small billiard ball as it rolls on a billiard table shaped like T .

In 1775 Fagnano showed that every acute triangle admits a periodic bil-
liard path. In the early 1990s, Galperin-Stepin-Vorobets [GSV] and inde-
pendently Holt [H] proved that every right triangle admits a periodic billiard
path. Compare [CPK] and [T]. Masur [M] proved that a triangle−and in
fact a general polygon−has a periodic billiard path provided that its angles
are rational multiples of π. Little is known about the case of irrational obtuse
triangles. So far the results along these lines have to do with characterizing
the orbit types which can appear as periodic billiard paths. See [HH].

∗ Supported by N.S.F. Grant DMS-0305047 and also by a Guggenheim Fellowship

1

Recently, we wrote a computer program, McBilliards, which searches for
periodic billiard paths in triangles. Using this program we can obtain various
results. For example, a triangle has a periodic billiard path provided all its
angles are less than 100 degrees [S1]. There is nothing special about the
number 100; it is simply a convenient place to stop computing. We hope
that our program will eventually settle the basic question about existence of
periodic billiard paths in triangles. 1

Our program has a graphical user interface, written in tcl/tk [O], which
makes the organization of data gleaned from the search convenient and effi-
cient. The computational guts of the program are written in C. The graphical
user interface and the initial search program were written by Rich. Pat sub-
sequently redesigned the search algorithm, making is much faster and more
efficient. (Pat’s ideas improved Rich’s initial search algorithm as well.)

The reader can download McBilliards from URL

www.math.umd.edu/∼res/Billiards/index.html.

McBilliards requires a C compiler and a tcl/tk interpreter, items which can
be downloaded free from the internet. We hope to have a Java version avail-
able one of these days. Also, we plan to update McBilliards periodically,
adding new features as we think of them.

The purpose of this article is to describe the basic operation of McBil-
liards. The paper is organized as follows: In §2 we will describe the overall
structure and operation of McBilliards. In §3 we will explain the original
search algorithm employed by McBilliards. In §4 we will explain the im-
proved search algorithm. Actually, the current version of McBilliards uses
two of Pat’s search algorithms, and only one of them is documented here.

Rich would like to thank Curt McMullen for many discussions about
McBilliards and it’s potential uses. He would also like to thank the Max
Planck Institute in Bonn for providing a very stimulating environment in
which some of McBilliards was developed.

1There is a second computer program which searches for periodic billiard paths in

triangles written, inpdendently from us, by Marek Rychlik and Justin Theissen from the

University of Arizona. However, as of this writing, the Rychlik-Theissen program is not

publicly available and we have not been able to find out how the program works or what

results have been obtained from it.

2

2 The Graphical User Interface

2.1 Overview

As we mentioned in the introduction, the graphical user interface portion
of McBilliards−the part with which the user actually interacts−is written
in tcl/tk. When activated, the program pops up as a big rectangular win-
dow. Figure 2.1 shows a schematic picture of the graphical user interface of
McBilliards.

parameter window

unfolding window

console

rational

triangle

console

rational

overlay

console

word

display

search

console

plot

console

memory

post−

script

pop

up

color

selector

labels

controls

button 2

Figure 2.1

In the next sections we will describe the functions of each of these com-
ponents.

3

2.2 Parameter Window

The parameter window represents the parameter space of triangles. The
point (x, y) in the parameter window corresponds to the triangle T (x, y),
two of whose angles are πx/2 and πy/2. The line of right triangles divides
parameter space into the set of acute triangles and the set of obtuse triangles.
The latter set is shaded in Figure 2.2.

Figure 2.2

Clicking the middle mouse button on the point (x, y) selects the triangle
T (x, y) for study. Clicking on the left or right mouse buttons scale the
parameter window, so that the user can zoom in to, or out from, the computer
plots.

The main objects plotted in the parameter window are orbit tiles. We
now explain what these objects are. Given a fixed orbit type W , the set
Tile(W) is the set of points (x, y) such that T (x, y) has a periodic billiard
path of type W . We call Tile(W) the orbit tile associated to W . During
a typical session with the program, the parameter window is partially filled
with a finite list of orbit tiles−the resulting picture looks line an atlas of an
alien world, with each orbit tile being a country and the empty spaces being
the ocean. §3.1 has more info on orbit tiles.

One might choose the word W in some arbitrary way and then try to plot
Tile(W). However, typically Tile(W) is empty. The words W which yield
nonempty orbit tiles are rather special, and need to be found using a search.
We will explain this in the next section.

4

2.3 The Search Console

30
depth

30
depth

orbits: 3

search! search!

search type (4 choices)
basic search

search type (4 choices)
basic search

11
10 10

Figure 2.3

Figure 2.3 shows a picture of the search console. The left half shows what
the console looks like before a search is done and the right half shows what
the picture looks like when (an example) search is done.

Before searching, one selects a triangle T (x, y). The search is done with
respect to this selected triangle. The two buttons at right control the depth of
the search. For instance, when the depth is 30, McBilliards finds all periodic
billiard paths for T (x, y) whose orbit types have even period less than or
equal to 30. (For the measure search the depth has a different but vaguely
related meaning.)

The search! button initiates the search. When the search is done, the
found orbits are “stored” in little boxes which we call orbit boxes. (There are
3 of these in a row.) In the program these boxes are yellow. When one clicks
on a yellow box, the orbit type W corresponding to that word is brought to
the attention of McBilliards, and McBilliards does 3 things:

• Displays W in the word display console.

• Displays the unfolding of T (x, y) in the unfolding window.

• Gives the user the option of plotting the orbit tile associated to W .

We will explain each of these features below. The search type button lets the
user toggle between

• the basic search, described in §3

• the slalom search, described in §4

• the measure search, as yet undocumented

5

• the right angled search, which is a variant of the basic search.

The right angled search, which is a variant of the basic search. The right
angled search looks for periodic billiard paths in right angled triangles. In
this case T (x, y) is replaced by the right triangle T (x′, y′), where

x′ = x + a/2; y + a/2; a = 1 − (x + y). (1)

At the end of a right angled search the found orbit types are “stored” in
green rather than yellow boxes. Otherwise the state of McBilliards is the
same.

There is one subtle point about clicking on the orbit boxes. When one
uses the left button, the word is replaced by it’s left rotation. When one
uses the right button, the word is replaced by it’s right rotation. Here, the
left and right rotations amount to cycling the word one unit clockwise or
counterclockwise. For instance the left rotation of orange is rangeo. When
the middle button is used, the word is not altered at all. We have added
this feature because the McBilliards search considers two words equivalent
if they are rotations of each other. This, strictly speaking, McBilliards finds
not every periodic orbit type, but just every representative of an equivalence
class of periodic orbit types.

2.4 The Word Display Console

Figure 2.4 shows a the word display console when W = 31323213132321.
The triangle T (x, y) is also displayed, as the lightly shaded triangle.

21
131323
313232

size:14 speed:0

13 23

32

12 21

31

Figure 2.4

6

The polygonal curve drawn in the window is a graphical representation
of W , defined as follows. We break W up into couplets, as

W = 31.32.42.13.13.23.21

We assign to each couplet a 6th root of unity, according to the scheme shown
in the right hand side of Figure 2.4. This gives us 7 complex numbers z1, ..., z7.
Our curve has vertices z1, z1 + z2, z1 + z2 + z3, The fact that the curve
is closed is equivalent to the fact that W is a stable periodic orbit. This
is to say that Tile(W) is an open set of parameter space. We will explain
the stability condition in detail in §3. For us, the polygonal curve is simply
another way of representing the word W . When W is long, the polygonal
representation has many advantages over a long string of digits.

The speed button lets you change the rate at which the polygonal path
is drawn. The higher the number, the slower the drawing. This feature is
useful when the polygonal path is not embedded.

The button in the upper right hand corner lets you scroll the word. This
feature is useful when the word is too long to be completely displayed in the
window.

2.5 The Plotting Console and Color Selector

The left side of Figure 2.5 shows a picture of the plotting console when
McBilliards is ready to plot an orbit tile.

mesh
500outline color

outline (y/n)

plot!

100
10

Figure 2.5

The right side of Figure 2.5 shows the color selector. This is a cluster of
3 × 16 squares. The color selector has its own window, at the very top left
of McBilliards. One selects the red/green/blue values of the color and then
the color selector window changes into the selected color. The color selector
is also used to select colors for other parts of McBilliards−e.g. the labels one
can add to the plots.)

7

When McBilliards is ready to plot, it has two pieces of information: the
word W and a point (x, y) ∈ Tile(W). McBilliards then keeps track of an
angle θ, beginning with θ = 0. McBilliards has 4 different plot options:

• The basic plot: McBilliards finds the intersection of the ray Rθ with the
boundary of Tile(W). This intersection point is plotted and then θ is
incremented. Here Rθ is the angle that the ray makes with the positive
x-axis. If the number of data points is N then θ is incremented by
2π/N and a total of N points are used to plot the tile. The numbered
buttons let the user change the value of N . In the example, N = 500.
The higher the value of N , the sharper the plots.

• newton plot: McBilliards finds the vertices of the orbit tile using New-
ton’s method, and then plots the edges between the vertices, again
using Newton’s method. This plot option is more precise than the
basic plot, but still potentially has some bugs in it.

• convex hull: McBilliards finds the vertices by Newton’s method and
then takes the polygon spanned by these vertices. In practice this
polygon is always convex, and hence coincides with the convex hull of
the vertices. The convex hull of the vertices usually contains the tile
as a proper subset.

• inner hull: After computing the polygon spanned by the (say) N ver-
tices, McBilliards inserts a new vertex near the center of each edge,
producing a 2N -gon which seems always to be a proper subset of the
tile.

Typically Tile(W) is nearly a convex polygon, and all the methods above
produce nearly identical shapes.

The plotting console also has a button which lets the user decide whether
or not the plotted tile has an outline or not. Finally, the plotting console has
a second button which lets the user decide on the outline color.

2.6 The Unfolding Window

Given a triangle T = T (x, y) and an orbit type W = (a1, ..., a2k) we define
a sequence T1, ..., T2k of triangles, as follows: We set T0 = T and then in-
ductively define Tj+1 so that Tj+1 and Tj are related by a label-respecting
reflection through the ajth edge of Tj . When we are done we discard T0.

8

We set U(W, T) = {Tj} and call U(W, T) the unfolding of the pair (W, T).
Figure 2.6 shows an example corresponding to the word W from §2.3.

Figure 2.6

The unfolding window plots the unfolding U(W, T) whenever W and T
are given. Figure 2.6 shows an example corresponding to the word W from
§2.3. For instance, if the user clicks the middle mouse button on a point
of Tile(W) then the unfolding U(W, T ′) is drawn, where T ′ is the triangle
corresponding to the clicked point.

We shall only be interested in pairs (W, T) such that the first and last
edges of U(W, T) are parallel. The words W which have this property for
all triangles are precisely the stable words discussed in §2.3. In the stable
situation we rotate the picture so that the axis of the translation carrying
the first side to the last side is horizontal, as in Figure 2.6.

In Figure 2.6 there is a horizontal strip S which separates the “top”
vertices of U(W, T) from the the “bottom” vertices. The boundary of S
contains some of the top vertices and some of the bottom vertices. These
vertices are pointed out by the vertical line segments.

There is a unique label-preserving isometry Ij from Tj to the original
triangle T . The union

2k⋃

j=1

Ij(L
′ ∩ Tj) (2)

is a periodic billiard path in T . The path closes up because the first and last
sides are parallel and the isometries match up the points where L′ cuts these
edges.

As for the plotting window (and the word display window) the graphical
objects in the window can be scaled using the left and right mouse buttons.

9

The color scheme for the unfolding−e.g. the background color or the
triangle color−can be changed using the controls in the small window to the
right of the unfolding window. We will explain this below, in detail.

2.7 Button 2 Controls

The Button 2 Controls determine the behavior of the middle mouse button
when it is clicked on parts of McBilliards. Three of the buttons have to
do with scaling and scrolling. The remaining buttons have to do with the
modofication of the plotted orbit tiles.

Once a group of tiles is drawn, they can be modified in various ways.
Each tile can be

• simply recognized. In the “normal” mode of function, clicking a tile
simply focuses McBilliards’ attention on this tile. For instance, the
word corresponding to the tile is drawn and the unfolding relative to
the word and the selected triangle is drawn.

• deleted;

• recolored;

• raised relative to the other tiles;

• lowered relative to the other tiles;

• cycled−that is, the unfolding for the word is replaced by the unfolding
for the left rotation of the word.

• recentered. When the tile is initially drawn, some center point (x, y) is
used. This center point can be changed.

Each of these options is executed by clicking the middle button on a point
of the tile. The tile console window lets the user set the action of the mid-
dle mouse button−i.e. select which option obtains when the middle mouse
button is clicked.

There is one additional option we have included, which have called slop.
This option tells McBilliards to draw the unfolding U(W, T) even when the
selected triangle T does not correspond to a point of Tile(W). On other
words, the unfolding feature is allowed to “slop over” the edges of the tile.
The slop feature is useful for presenting a more global view of the unfoldings
associated to a word.

10

2.8 The Memory Console

Figure 2.8 shows the memory console.

saveplotread

memory1file:

Figure 2.8

When the user clicks on the strip at top right, McBilliards focuses the
keyboard output to this strip. The user can then select a filename. Many
but not all of the keyboard symbols are available.

A memory file contains a list of triples (Wj, pj , Cj), where j = 1, ..., n.
Here

• Wj is an orbit type of a tile.

• pj ∈ Tile(Wj) is a distinguished point.

• Cj is the color of the tile.

When the read button is clicked, the list of triples is “stored” in the little
boxes from the search console, just as if the orbits were found by a search.
The stored tiles can then be plotted just as above.

When the plot button is clicked, the list of triples is stored and plotted.
Unfortunately, McBilliards cannot be interrupted while it is plotting. So, if
the memory file is big and the computer is slow, the user can be in for a long
wait. (We hope to add an “interrupt” feature soon.) It is usually a good
practice to read the file first, to see how many triples it contains.

When the save button is clicked, the tiles currently plotted in the param-
eter window are saved into the file. By this we mean that each tile is assigned
a triple, which captures the (word,center,color) of the tile. McBilliards will
write over an existing file, but will save the original file as file.bak . However,
if the save button is clicked twice, then all information about the original file
is lost. In other words, the save button should be used with care.

2.9 Pop Up

The region marked Pop Up in Figure 2.1 has two buttons in it:

11

• The object console button calls up a pop-up window which lets the user
recolor, raise, or lower various markings in the parameter window, the
unfolding window, and the word display window.

• The welcome button calls a pop up window which gives instructions to
McBilliards.

Here are the objects in the parameter window which can be modified
using the object console:

• The background color.

• A grid, which indicates the points in parameter space corresponding to
triangles, one of whose angles has the form π/2n, where n = 2, 3, 4....

• A diagonal line which comprises the points in the parameter space
corresponding to right triangles.

• A small crosshairs, which is moved around by rational imcrements from
the rational overlay console.

• A small square cursor which indicates the point clicked by the user.

Here are the objects in the unfolding window which can be modified using
the object console:

• The background color.

• The triangles in the unfolding.

• The edges of the triangles.

• The horizontal lines which comprise the corridor for the strip.

• The vertical lines which mark out the important vertices.

Here are the objects in the word display window which can be modified
using the object console:

• The background color

• The graphical display of the word

12

• The digits of the word

• The big triangle which indicates the selected point in parameter space.

• The edges of the big triangle.

The object console has one last button which let’s you raise, lower, and
recolor the labels you can produce using the labelling window.

2.10 Postscript Window

The postscript window lets the user save pictures of each of the three main
windows into postscript files:

• The parameter window.

• The unfolding window

• The plotting window.

The user can select the bounding box for the postscript file, as well as the
scale factor.

2.11 The Labelling Console

The small window marked labels lets you add labels to the parameter or
unfolding windows and then delete them. When you click on the window,
McBilliards focuses the attention of the keyboard to the strip. The user can
then enter a label. As for the entering of file names, many but not all keys
are available.

2.12 The Rational Overlay Console

Figure 2.12 shows a picture of the rational overlay console. This console
allows the user to locate specific rational points in the parameter window,
by moving a crosshairs around in rational jumps. The cluster of buttons on
in the upper right hand corner allows the user to move a crosshairs around
the parameter window. The button in the northwest corner moves the cross
in the northwest direction, and so forth. The cross moves by rational jumps.

13

The step button controls the size of the jumps. When the dyadic option
is selected, the jumps go by way of dyadic fractions. In this case, a stepsize
of N causes the jumps to be of size 2−N .

point
enter

dyadic
step: 4

reset

track

4

1024
119

7

Figure 2.12

When the Farey option is selected, the jumps move from one level-N
Farey fraction to the next one. The first few levels of Farey fractions are:

0

1
;

1

1

0

1
;

1

2
;

1

1
.

0

1
;

1

3
;

2

3

1

1
.

0

1
;

1

4
;

1

2
;

3

4
;

1

1
.

In general, level N is obtained from level N−1 by using the Farey addition law
on consecutive entries, similar to Pascal’s triangle. Every rational number
appears at some level. The level of p/q is the number of steps in the Euclidean
algorithm applied to (p, q). The Farey option is an efficient way of accessing
all rational numbers.

When activated, the track button lets the user control the location of the
crosshairs by directly clicking on the parameter window. McBilliards then
picks the best rational approximation to the selected point, according to the
stepsize.

14

The two rectangles at lower left display the coordinates of the cross. The
enter point button lets the user select precisely this point on the parameter
window.

2.13 The Triangle Entry Console

Figure 2.13 shows a picture of the triangle entry console. This console lets the
user triangule portions of the parameter window using triangles of rational
coordinates.

2

3

8192

43

217

1

111

5

52

2

1

the vertices
by clicking
triangle
define

triangle # 2
copy # 1
copy

Figure 2.13

The rational coordinates in question are first selected using the rational
overlay console. Once the user has selected a rational coordinate, they can
click on one of the three vertices of the central triangle in the triangle entry
console. Doing so causes McBilliards to assign this rational number to the
relevent vertex of a triangle. When all three vertices have been determined,
the triangle is plotted.

The triangle button lets the user tell McBilliards which triangle to de-
termine with the current mouse clicks. In this way the user can define a
triangulation of the parameter window by triangular regions with rational
vertices. The copy button lets the user copy one triangle to another. This
feature is useful in creating triangulations, since adjacent triangles in the
triangulation will have 2 vertices in common. The copy # button tells Mc-
Billiards which triangle to copy onto the current triangle.

15

As for the rational overlay console, the big rectangles display the coordi-
nates of the vertices.

Once a triangle is plotted, it behaves somewhat like a tile. The user can
recolor, raise and lower the triangle by setting the options in the tile console
and then clicking on the triangle with the middle mouse button.

16

3 The Basic Search Algorithm

The purpose of this chapter is to describe the initial search algorithm used
by McBilliards. In §4 we will describe the improved version.

3.1 Balanced Words and Orbit Tiles

We remind the reader that unfoldings were discussed in §2.6. As in §2.6, the
object U(W, T) refers to the unfolding of a triangle T with respect to a word
W . (Here word and orbit type are used synonymously.)

We say that the word W is balanced if the first and last sides of U(W, T)
are parallel for every triangle T . To understand balancing combinatorially,
we break W into couplets: W = w1w2, w3w4, w5w6, We let Nij denote
the number of occurances of the couplet ij. It is an easy exercise to show
that W is balanced if and only if Ni,i+i − Ni,i−1 is independent of i. This
definition is the same as saying that the polygonal path of §2.4 is closed. For
the remainder of this section we assume that W is balanced.

Figure 2.6

When W is balanced it never happens in our program that the first and
last edges of U(W, T) lie on the same line. See the end of §3.3. Henceforth,
we ignore degeneracy. We say that W has a lane if we can arrange W as
in Figure 2.6, so that some nonempty strip separates the a vertices from
the b vertices. As we saw above, T has a stable periodic orbit of type [W]
provided that W is balanced and U(W, T) has a lane. The orbit is stable
because U(W, T ′) also has a lane for T ′ sufficiently close to T .

If U(W, T) has a lane we define Tile(W) to be the set of all triangles T ′

such that U(W, T ′) has a lane. This definition coincides with the definition
given in §2.2. Then Tile(W) is an open subset of the parameter space of
triangles.

17

3.2 The Weak Test

Figure 3.2 shows a (roughly) drawn picture of an unfolding U(W, T) where
W = 2313213 and T is some triangle.

v1
3

v2

2

1

2

3

3

1

w

Figure 3.2

The word W is not balanced, and so it does not make sense to talk about
Tile(W). However, there certainly are balanced words Ŵ which contain W
as a subword. Note that U(Ŵ , T) can never contain a lane, because the
vertex w lies on the wrong side of the line v1, v2. Thus Tile(Ŵ , T) is empty
for any word Ŵ which contains W . Computationally we test this condition
by computing the sign of the signed area of the triangle ∆(v1, v2, w).

Note that U(W, T) has two special paths, which have have drawn in bold.
When U(W, T) is embedded, these paths are the boundary components of
U(W, T). The weak test is a computational test we apply to the pair (W, T).
It goes as follows:

• Let v1 and v2 be the two endpoints of one of the two special paths.

• Check the sign of the signed area of the triangle ∆(v1, v2, w) for every
vertex w on the other path.

• Reverse the roles of the two paths and repeat.

If we ever get the wrong sign, we way that (W, T) fails the weak test. Thus,
if (W, T) fails the weak test then Tile(Ŵ , T) = φ for any balanced word Ŵ
which contains W as a subword.

18

3.3 The Strong Test

The strong test is what we use to decide W represents an orbit type of a
periodic billiard path on T . First of all, the strong test checks that W is
balanced. If W is not balanced then W fails the strong test. Henceforth
assume that W is balanced.

We distinguish one of the two special paths of U(T, W) and let v1, v2 be
the two endpoints of this path. Let v′

1, ..., v
′

n be the remaining vertices on
this path. We define

m′ = max Area(∆(v1, v2, v
′

j)) (3)

Next, we let w1, ..., wm denote the vertices on the other special path of
U(T, W). We define

m = min Area(∆(v1, v2, wj)) (4)

If we rotate the picture so that the translation taking the first edge of U(W, T)
to the last edge is horizontal, then the areas we have computed are all propor-
tional to the y-coordinates of the vertices. The constant of proportionality
is independent of vertex. Thus, U(W, T) has a lane iff m′ < m. The strong
test computes all the areas and then tests if m′ < m. Thus (W, T) passes
the strong test iff W is the orbit type of a periodic billiard path on T .

Remark: If U(W, T) was such that the first and last edges were collinear,
then we could get “division by zero” errors in our program and it would halt.
In practice this never happens, so we don’t have to worry about this wierd
degenerate situation.

3.4 The Lexi Test

The lexi-test is a test which is applied to words W . A word W fails the lexi-
text iff W contains a subword W ′ which comes before W in the lexicographic
ordering. For instance W = 131213 fails the lexi-test because W ′ = 1213
comes before W in the lexicographic order. Our search algorithm throws out
words which fail the lexi-test because they are redundant.

By throwing out such words, McBilliards does not find all possible (even
length) periodic orbits up to certain depth. Rather, McBilliards finds all
possible equivalence classes of orbit types, where two types are equivalent if
they are rotations of each other.

19

3.5 The Algorithm

The input to the search is an integer D, which defines the depth of the
search, and a triangle T . The search algorithm begins with a list of words
called CONTENDERS and a second list of words called WINNERS. Initially
CONTENDERS consists of the single word 12 and WINNERS is empty. The
algorithm proceeds until CONTENDERS is the empty list, then halts. At
this point, WINNERS is the list of even length balanced words of length less
or equal to D which are orbit types of periodic billiar paths in T .

1. If CONTENDERS 6= ∅ let W be the first word on CONTENDERS.

2. If W fails the lexi test or the weak test, delete W from CONTENDERS
and return to Step 1.

3. If W passes the strong test append W to WINNERS.

4. Let L = Length(W). If L ≤ D−2 then delete W from CONTENDERS
and prepend to CONTENDERS the 4 words W1, W2, W3, W4 which
have length L + 2 and contain W as its initial word. Go to Step 1.

As an example for the last step: if W = 12 then the 4 words are 1212,
1213, 1231, and 1232.

Our algorithm implements a depth first search through the tree of words,
pruning off any branches whose initial node fails the weak test or lexi test.

Remark: The right angled search works just as the balanced search, except
that the balance condition is different. Here we weaken it to the condition
that the difference Nj3−N3j is independent of j = 1, 2 and N12−N21 is even.

20

4 The Slalom Search Algorithm

Our algorithm has the same overall structure as the one described in §3, but
uses a different test, the slalom test , in place of the weak test. Our slalom
test is actually a variant on Graham’s scan for convex hulls of finite point
sets in the plane. To orient the reader, we will first discuss the situation for
planar convex hulls.

4.1 Planar Convex Hulls

Here we will discuss an algorithm for finding the convex hull of a finite list of
points in the plane. The algorithm we describe is related to Graham’s scan,
and works by induction. Here we will explain the induction step. Let Hk

denote the convex hull of the first k points, p1, ..., pk. We would like to find
Hk+1. We assume that the points p1, ..., pk come in cyclic order on Hk. In
our example, shown in Figure 4.1, we have k = 11.

3 4

76
53

12

x

4 5
6

right scan startsleft scan starts

Figure 4.1

If pk+1 ∈ Hk then Hk+1 = Hk. Suppose that pk+1 6∈ Hk. Let x be a
generic point in the interior of Hk. Then there is some index i such that the
line xp crosses the edge pipi+1 in the interior point. We have i = 4 for our
example. We create a provisional version of Hk+1 as follows: We replace ei

by the two edges pipk+1 and pipk+1.
If Hk+1 is convex we are done. Otherwise, we proceed as follows. If

Hk+1 is not locally convex at pi we modify Hk+1 by replacing pi−1pi ∪ pipi+1

with the edge pi−1pi+1. (This has the effect of deleting pi from the list of
relevant vertices.) Next we move left to pi−1 and repeat the procedure. We
stop “scanning to the left” when we reach a vertex at which Hk+1 is locally
convex. In our example, the vertex is p3. Following this, we “scan to the
right”, starting with pi+1, performing the same procedure. The right scan
stops at p7 in our example. When we are finished modifying Hk+1, it is the
convex hull of the first k + 1 points.

21

4.2 The Slalom Test and Convex Hulls

Now we explain the connection between convex hulls and the slalom test.
Like the weak test, the slalom test decides if there is a line segment which
starts in the first triangle of an unfolding, then hits every edge we unfold
along, and ends in the the last triangle of an unfolding. Figure 4.1 displays
an unfolding U(W, T), for some triangle T and for the word W = 13123.
This unfolding should pass the weak test because of the existence of the line
segment L.

0l l 1

r0

r1

r2

r3

1

3

1

3

L 2

Figure 4.2

As discussed in section 3.2, there are two special paths which our line
segment must avoid. In our picture they are darkened and labeled l0l1 and
r0r1r2r3. We call our test the slalom test because it tests to see if there is
a line segment L which “runs the slalom course” set up by these vertices,
passing to the left of the vertices l0l1 and to the right of the vertices r0r1r2r3.
We call the vertices l0l1 left vertices and the vertices r0r1r2r3 right vertices.

We say a line L runs the slalom course given by U(W, T), if it enters the
first triangle of our unfolding, then passes through edges as given by W, and
finally exits through the last triangle of our unfolding.

Now, take an unfolding U(W, T) for which there is an line L which runs
the slalom course as above. Thus the set of all lines S which run the slalom
course given by U(W, T) is non-empty. Define the set

SP =
⋃

L∈S

L ⊂ R
2

The compliment of SP is convex in a sense we describe below. Figure 4.3
displays the region SP for the unfolding shown in figure 4.2.

22

0l l 1

r0

r1

r2

r3

1

3

1

2

3

L

Figure 4.3

Consider the usual embedding of Euclidean plane inside the projective
plane, R

2 ⊂ RP 2, as an affine patch. SP naturally a subset of RP 2. We
say that a subset C ⊂ RP 2 is convex relative to the line L if it is a convex
subset of the affine plane RP 2 \ L. We will call C ⊂ RP 2 relatively convex
if there is a choice of a line L for which C is convex relative to L.

Here is the connection between “running the slalom course” and convex
hulls:

Proposition 4.1 If L ∈ S, then RP 2 − SP is convex relative to L.

The boundary of ∂SP is a polygon in RP 2 whose vertex set is a subset of the
vertices in our unfolding. The vertices in ∂SP have a natural cyclic ordering
and we define C(W, T) to be the cyclically ordered set of these vertices. In
our example we have C(W, T) = {l0l1r0r2}.

We want to know when such a cyclic list of points determines a polygon
which is relatively convex. It is helpful to consider first the analogous question
for convex polyhons. For v1, v2, v3 ∈ R

2 let SA(v1, v2, v3) ∈ {−1, 0, 1} to be
the sign of the area of the triangle v1, v2, v3.

Proposition 4.2 A cyclically ordered set of points v1, . . . , vn defines a con-

vex polygon in the Euclidean plane if and only if

1. The polygon with successive vertices v1, . . . , vn is embedded.

2. SA(vi, vi+1, vi+2) is independent of i.

23

Here (and below) we take indices mod n.
We want a similar fact for our case. One problem is that a cyclically

ordered set of points in RP 2 does not determine a unique polygon, because
there are two choices for an edge joining consecutive vertices. However,
we have additional information about our particular collection of vertices;
they come from an unfolding. We use this information to define a polygon
(v1, ..., vn) whose vertex set is v1, ..., vn. First, we define the function

L : {v1, . . . , vn} → {−1, 1} :

{
−1 if vi is a left vertex
1 if vi is a right vertex

Our points v1, . . . , vn lie in a Euclidean plane embedded into the projective
plane. Given two vertices, a line segment drawn between them is called finite
if it is entirely contained in our Euclidean plane and infinite otherwise. We
define our polygon (v1, . . . , vn) by joining consecutive vertices by an edge
which is finite iff L(vi) = L(vi+1). Thus our cyclically ordered set C(W, T)
and our labeling L determine the polygon uniquely. The polygon (v1, . . . vn)
in turn determines S, the set of lines which run the slalom course given by
U(W, T).

Proposition 4.3 (v1, ..., vn) is convex relative to some line iff

1. (v1, ..., vn) is embedded.

2. SA(vi−1, vi, vi+1) = L(vi−1)L(vi)L(vi+1) for all i.

4.3 The Algorithm

Our algorithm proceeds inductively. The base case is a word of length 2. A
word of length 2 should always pass the weak/slalom test. Here the picture
always looks the same, regardless of the triangle. Our cyclically ordered set
C(W, T) consists of three points, and our labeling L is such that exactly two
labels match. See figure 4.4.

24

r0

r1

l 0

2

3

Figure 4.4

Assuming that there is a line which runs the slalom course set by U(T, W)
we pass to our algorithm the following information:

• T and W ;

• the cyclically ordered set C(W, T);

• the labeling L : C(W, T) → {−1, 1};

• an additional letter l ∈ {1, 2, 3}.

Our algorithm will tell us if there is a line which runs the slalom course given
by U(W ′, T), where W ′ = Wl is the word W with l appended. Further, if
there is such a line, we return with C(W ′, T) and the appropriate labeling
L′. If there is no such line, the unfolding U(W ′, T) fails the slalom test.

We will continue the example set out in figures 4.2 and 4.3. In this case
we have W = 13123 and C(W, T) = {l0l1r0r2}. We will consider the case
l = 1, so that W ′ = 131231. We look at the unfolding U(W ′, T), depicted
below in figure 4.5. Note that the shaded polygon in Figure 4.5 is the set of
lines which run the slalom course for U(W, T)−i.e. C(W, T).

25

0l l 1

l 2

r0

r1

r2

r3

1

3

1

2

3

1

Figure 4.5

In general, one of the special paths of U(W ′, T) will have an additional
vertex v which extends the same special path for U(W, T). Call this vertex
the extending vertex . In the example at hand, the extending vertex is v = l2.
A line runs the slalom course for U(W ′, T) iff it runs the slalom course for
U(W, T) and passes to the left of v = l2. (Were v to extend the right
special path, “left” would be replaced by “right” in the previous sentence.)
Computing C(W ′, T) from C(W, T) and v is analogous to Graham’s scan,
discussed in §4.1. We will present our algorithm below.

For the algorithm, we define a vertex vk in a labeled cyclically ordered set
of points to be good if it satisfies the second criterion of proposition 4.3−i.e.
SA(vk−1, vk, vk+1) = L(vk−1)L(vk)L(vk+1). We let v be the extending vertex
and then run the following algorithm.

• If L(v) = −1 (respectively L(v) = 1) insert v after the last left (respec-
tively right) vertex in C = C(W, T).

• If v is not good, then U(W ′, T) passes the slalom test, v is irrelevant,
and C(W ′, T) = C(W, T). Otherwise...

• Repeat the following until told to BREAK:

– Set w be the vertex which comes immediately after v in the cyclic
ordering.

– If L(v) = L(w) then U(W ′, T) fails the slalom test. (Note: In this
situation, we have eliminated all left vertices or all right vertices,
because v was the last left or the last right vertex.)

26

– if w is good then BREAK, otherwise delete w and continue.

• Repeat the following until told to BREAK:

– Let w be the vertex which comes immediately before v in the cyclic
ordering.

– if w is good then BREAK, otherwise delete w and continue.

• U(W ′, T) passes the slalom test and our cyclic set of points satisfies
proposition 4.3. We return with our modified cyclic set and its labeling.

Now we step through our algorithm for example.

• We add l2 to our cyclic set of points. Now, C = {l0l1l2r0r2}.

• l2 is good. This is because L(l1)L(l2)L(r0) = (−1) · (−1) · 1 = 1. Also,
SA(l1, l2, r0) = 1. Another way to say this is that if we walk from l1
toward l2 in the Euclidean plane, then turn and walk toward r0 we turn
left. This left turn is equivalent to positive signed area.

• We enter the first loop.

– Set w = r0.

– L(w) = 1 while L(v) = −1, so we continue on.

– w = r0 is not good. This is because L(l2)L(r0)L(r2) = (−1)·1·1 =
−1 and SA(l2, r0, r2) = 1. We turn left as we walk from l2 toward
r0 and then toward r2. We delete r0 from our cyclic list of points,
so that now C = {l0l1l2r2}. We continue the loop.

– Set w = r2.

– L(w) = 1 while L(v) = −1, so we continue on.

– w = r2 is good. L(l2)L(r2)L(l0) = (−1) · 1 · (−1) = 1 and
SA(l2, r2, l0) = 1. We turn left in our t rip from l2 to r2 to l0.
Thus we break this loop.

• We enter the second loop.

– Set w = l1.

27

– w = l1 is not good. L(l0)L(l1)L(l2) = −1 and SA(l0, l1, l2) = 1.
We delete w = l1 from our cyclic list, obtaining C = {l0l2r2}. We
continue the loop.

– Set w = l0.

– w = l0 is good. L(r0)L(l0)L(l2) = 1 and SA(r0, l0, l2) = 1. We
break the loop.

• U(W ′, T) passes the slalom test, and C(W ′, T) = {l0l2r2}.

The data returned by our algorithm is displayed in figure 4.6.

l 1

l 2

0l

r0

r1

r2

r3

1

3

1

2

3

1

Figure 4.6

As another example, consider the unfolding for the triangle shown in
Figure 4.6 and the word W = 312. (This unfolding is a subset of the one
shown in Figure 4.6.) Assume our algorithm is given C(W, T) = {l0l1r1} with
the usual labeling. We wish to apply the slalom test with additional letter
l = 1. Thus we consider the unfolding U(W ′, T) where W ′ = Wl = 3121.
We introduce the new point l2, as shown in the right side of figure 4.7. We
note l2 should be a left point, and so L(l2) = −1. We pass this information
to the algorithm, and then run it:

28

l0 l1

l2

r1

r0

3

1
2

1

l0 l1

r1

r0

3

1
2

Figure 4.7

• We add l2 to our cyclicset of points. Now, C = {l0l1l2r1}.

• l2 is good, as L(l1)L(l2)L(r1) = (−1) · (−1) · 1 = 1 = SA(l1, l2, r1).

• We enter the first loop.

– Set w = r1.

– L(w) = 1 while L(v) = −1, so we continue on.

– w = r1 is not good, as L(l2)L(r1)L(l0) = 1 and SA(l2, r1, r2) = −1.
Therefore we delete r1 from our cyclic list of points giving us the
list C = {l0l1l2}. We continue with the loop.

– Set w = l0. (Recall our list is cyclic, so l0 now comes after l2)

– Now L(w) = L(l0) = −1 and L(v) = L(l2) = −1. Thus this exam-
ple fails the slalom test. No line runs the slalom course U(W ′, T).

4.4 Speed

Our algorithm should run very fast. Suppose we wish to run our algorithm
on a triangle T and a word W of length n. Set Wk to be the word consisting
of the initial k letters of W . To apply the slalom test to W we need to
run the algorithm first on our base case U(W3, T), record the result and run
the algorithm on U(W4, T), etc., all the way to U(Wn−1, T). Only then can
we apply the slalom test to U(W, T). But, all of this can be done in O(n)

29

time. The computational time of an algorithm is generally accumulated in
loops. But, each step of our loops results either in deleting a vertex from our
cyclically ordered set C or terminating the loop. We now break our program
into pieces. In each application of the slalom test, we do some initial constant
time setup including adding a vertex to our cyclically ordered set C, we delete
some vertices from the cyclically ordered set, and we terminate the two loops.
The setup and the loop terminations are certainly constant time. Finally, in
all the cumulative applications of the algorithm on U(W3, T) . . . U(Wn, T),
we only add approximately n vertices to our cyclic set. Thus, we can delete
at most n vertices as well. Thus, this whole sequence of applications of the
slalom test runs in O(n) time.

Remarks 4.4 Our methods should slightly improve the strong test from §3 as

well. We can run the same strong test, but vertices in our cyclically ordered

set C(W, T) are the only vertices that need to be checked for the strong test.

Typically C(W, T) is much smaller than the set of all vertices of an unfolding,

so this should speed up the strong test as well.

4.5 Signs of Areas of Triangles

In our original implementation of the slalom test, we encountered bizarre
errors on some long searches. These errors stemmed from numerical er-
rors in computing the signs of the areas of triangles. When we employ the
usual computational methods−e.g. computing with doubles and rounding off
arithmetic operations in the standard way−we find that the sign errors are
sometimes inevitable. We need to use special computing methods to avoid
the sign errors.

One solution is to use an arbitrary precision arithmetic package. Our
code does not do this because these tools are generally not standard across
platforms. We instead compute the sign of areas of triangles explicitly inside
the program. Essentially, computation of the area of a triangle amounts
to computing the determinant of a three by three matrix. Thus we must
compute the sign of the sum of six terms, where each term is a product of (in
our case) two doubles. We compute these terms explicitly without rounding.
Then, we successively take the most significant pieces from the terms and
add them up. If the sum has absolute value so big that adding the less
significant pieces to it can not change its sign, then we are done. Otherwise,
we continue adding less significant pieces.

30

5 References

[CHK] B. Cipra, R. Hanson, A. Kolan, Periodic Trajectories in Right Angled

Billiards , Physical Review E 52 (1995) pp 2066-2071

[GSV], G.A Galperin, A. M. Stepin, Y. B. Vorobets, Periodic Billiard Tra-

jectories in Polygons , Russian Math Surveys 46 (1991) pp. 204-205.

[H] F. Holt, Periodic Reflecting Paths in Right Triangles , Geometriae Dedi-
cata 46 (1993) pp. 70-93

[HH], L Halbeisen and N Hungerbuhler, On Periodic Billiard Trajectories

in Obtuse Triangles, SIAM Review 42.4 (2000) 657-670

[M] H. Masur, Closed Trajectories of a Quadratic Differential and Appli-

cations to Billiards , Duke Math Journal 53, (1986) 307-313

[O] J. Ousterhout, Tcl and the Tk Toolkit , Addison-Wiley Professional Com-
puting Series, 1994

[S] R. E. Schwartz, Slightly Obtuse Triangles have Periodic Billiard Paths,
in preparation

[T] S. Troubetzkoy, Periodic Billiard Orbits in Right Triangles, preprint
2004.

31

