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Abstract

We prove that a smooth embedded paper Moebius band must have
aspect ratio greater than

√
3. We also prove that any sequence of

smooth embedded paper Moebius bands whose aspect ratio converges
to
√

3 must converge, up to isometry, to the triangular Moebius band.
These results answer the mimimum aspect ratio question discussed by
W. Wunderlich in 1962 and prove the more specific conjecture of B.
Halpern and C. Weaver from 1977.

1 Introduction

1.1 The Triangular Moebius Band

To make a paper Moebius band you give a 1 × λ strip of paper an odd
number of twists and then join the ends together. For long strips this is
easy and for short strips it is difficult or impossible. Let me first discuss a
beautiful example, known as the triangular Moebius band . Figure 1a shows
the triangular Moebius band. It is based on a 1×

√
3 strip.
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Figure 1a: The triangular Moebius band
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The strip in Figure 1a is lightly shaded on one side and darkly shaded on
the other. First fold the flaps in to make a rhombus, then fold the rhombus
in half like a wallet. This folding brings the two ends together with a twist.
The dotted segment indicates where the ends are joined. The bold segment
indicates the “wallet fold”. The dotted and bold segments together make a
pattern like a T. The pinstriping exhibits the strip as a union of line segments,
disjoint except at the endpoints, which stay straight during the folding.
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Figure 1b: The triangular Moebius band: another view

Figure 1b shows another view. Here we start with a symmetric trapezoid
rather than a rectangle, but we get the same object when we fold and join
the sides together. The bold edge indicates where the sides are joined. The
dotted and bold segments again make a “T-pattern”.

The triangular Moebius band goes back at least to the 1930 paper [Sa]
of M. Sadowski. Technically, it does not quite fit the definition of a (smooth,
embedded) paper Moebius band that we give below, but it is the limit of
such. The triangular Moebius band is probably best considered as a folded
ribbon knot . See [DL] for this point of view.

1.2 The Minimum Aspect Ratio Question

The triangular Moebius band looks like an extremely efficient construction.
Can we do better in terms of making λ smaller? To answer this question in
a meaninful way, we first need a formal definition.

Definition: A smooth paper Moebius band of aspect ratio λ is an infinitely
differentiable isometric mapping I : Mλ → R3, where Mλ is the flat Mobius
band obtained by identifying the length-1 sides of a 1×λ rectangle. That is:

Mλ = ([0, λ]× [0, 1])/ ∼, (0, y) ∼ (λ, 1− y). (1)

An isometric mapping is a map which preserves arc-lengths. The map is an
embedding if it is injective, and an immersion in general. Let Ω = I(Mλ).
We often write I : Mλ → Ω. We call Ω embedded when I is an embedding.
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The early papers of M. Sadowsky [Sa] and W. Wunderlich [W] treat both
the existence and differential geometry of smooth paper Moebius bands. (See
[HF] and [T] respectively for modern English translations.) The paper [CF]
gives a modern differential geometric framework for developable surfaces like
Ω. The papers [CK], [KU], [RR] and [Sab] are all studies of the differential
geometry of paper Moebius bands. I learned about paper Moebius bands
from the great expository article [FT, Chapter 14] by Dmitry Fuchs and
Sergei Tabachnikov.

Why bother with smooth maps? Well, if you just look at ways of folding
paper up to make a Moebius band you can get weird examples which render
the main question meaningless. For instance, you could fold any rectangle
(e.g. a square) like an accordion into a thin strip, twist, then tape. The
smooth formalism efficiently rules out the Moebius-accordion and other kinds
of origami monsters. They are not limits of smooth paper Moebius bands.
In contrast, the triangular Moebius band is the limit of smooth (embedded)
paper Moebius bands. See [Sa], [HW], and [FT]. Basically you just use a
slightly longer piece of paper and round out the sharp folds.

I imagine that the minimum aspect ratio question has been around for as
long as people have been making paper Moebius bands, but in any case W.
Wunderlich discusses this in the introduction of his 1962 paper [W]. In their
1977 paper [HW], Ben Halpern and Charles Weaver study the minimum
aspect ratio question in detail. They prove two things.

• For smooth immersed paper Moebius bands one has λ > π/2. More-
over, for any ε > 0 one can find an immersed example with λ = π/2+ε.

• There exists some ε0 > 0 such that λ > π/2+ε0 for a smooth embedded
paper Moebius band. This ε0 is not an explicit constant.

On the last line of [HW], Halpern and Weaver conjecture that λ >
√

3 for
a smooth embedded paper Moebius band. In this paper I will resolve the
Halpern-Weaver conjecture.

Theorem 1.1 (Main) A smooth embedded paper Moebius band has aspect
ratio greater than

√
3.

Theorem 1.2 (Triangular Limit) Let {In : Mλn → Ωn} be a sequence of
smooth embedded paper Moebius bands with λn →

√
3. Then, up to isometry,

In converges uniformly to the map giving the triangular Moebius band.
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1.3 Outline of the Proofs

Let I : Mλ → Ω be a smooth embedded paper Moebius band. A bend on Ω is
a line segment B′ which cuts across Ω and has its endpoints in the boundary.
It is a classic fact that Ω has a continuous foliation by bends. See §2.1. The
bend foliation may not be unique, but we choose a bend foliation once and
for all. The bends in the foliation vary continuously and are pairwise disjoint.

Given a bend B′, we call the inverse image B = I−1(B′) a pre-bend . It is
a classic fact that pre-bends are line segments. (Proof: If not, then there are
points p, q ∈ B whose distance in Mλ is less than the distance in R3 between
I(p) and I(q). This contradicts the fact that I : Mλ → R3 is distance non-
increasing.) The inverse image of our bend foliation is a foliation of Mλ into
pre-bends. This is just like the pinstriping in Figures 1a and 1b except that
in the smooth case even the endpoints are disjoint.

We say that a T -pattern on Ω is a pair of bends which lie in perpendicular
intersecting lines. Look again at the right sides of Figures 1a and 1b. We
call the T -pattern embedded if the two bends are disjoint. In §2.2 we prove

Lemma 1.3 (T) A smooth embedded paper Moebius band has an embedded
T -pattern.

Here is the idea. The space of pairs of unequal bends in our bend foliation
has a 2-point compactification which makes it into the 2-sphere, S2. We
define a pair of odd functions on S2 which detect a T -pattern when they
have a common zero. We apply the Borsuk-Ulam Theorem to get a common
zero. In §2.3 we prove

Lemma 1.4 (G) A smooth embedded paper Moebius band with an embedded
T -pattern has aspect ratio greater than

√
3.

Here is the idea. Let (T ′, B′) be the embedded T -pattern. We cut open
Mλ along the pre-bend T = I−1(T ′), and the result is a bilaterally sym-
metric trapezoid τ . See Figure 2 below. We then solve an optimization
problem which involves mapping τ into R3 with constraints coming from the
geometry of trapezoids and T -patterns. The Main Theorem is an immediate
consequence of Lemma T and Lemma G.

In §2.4 we prove the Triangular Limit Theorem by examining what the
proof of Lemma G says about a minimizing sequence of examples.
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1.4 Additional Material and Context

The proofs are done after §2, but I include some more material. In §3 I
comment on the proofs and also give additional context. In §4 I give an
elementary and self-contained proof of a special case of [HN, §3, Lemma 2],
the result that underlies the existence of the bend foliation.

The topic of paper Moebius bands is adjacent to a number of different
subjects. The paper [CKS] and [DDS] consider the related question of tying
a piece of rope into a knot using as little rope as possible. The papers [D]
and [DL] consider folded ribbon knots. [DL, Corollary 25] is in some sense
a special case of our two results, and [DL, Conjecture 26] is a variant of
the Halpern-Weaver Conjecture in the category of folded ribbon knots. Our
Main Theorem incidentally resolves this folded ribbon knot conjecture. Some
authors have considered “optimal Moebius bands” from other perspectives,
either algebraic [Sz] or physical [MK], [SH]. I will discuss some of these
things in §3.4.

In §3.5 I discuss multi-twist Moebius bands, and some new results about
them, namely [BS], [H], and [S3].

This paper is an outgrowth of my earlier paper [S1]. In [S1] I (correctly)
prove that λ ≥ φ = (1+

√
5)/2, but I also make an idiotic mistake: Somehow I

thought that when you cut openMλ along a pre-bend you get a parallelogram.
This mistake invalidates my final bound, a weird and forgettable algebraic
number in (φ,

√
3). This paper supersedes [S1] and is independent from it.
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I thank Brienne Brown, Matei Coiculescu, Robert Connelly, Dan Cristofaro-
Gardiner, Elizabeth Denne, Ben Halpern, Dmitry Fuchs, Javier Gomez-
Serrano, Aidan Hennessey, Anton Izosimov, Jeremy Kahn, Rick Kenyon,
Stephen D. Miller, Noah Montgomery, Sergei Tabachnikov, and Charles
Weaver for helpful discussions about this subject. I especially thank Matei
for suggesting that I try for a “mapping proof” of Lemma T as opposed to
the kind of proof I had previously. That suggestion led me to find a really
nice proof of Lemma T that greatly simplified this paper. Jeremy Kahn’s
remarks about the Borsuk-Ulam Theorem also helped streamline the proof of
Lemma T. Finally, I thank the anonymous referees for insightful and helpful
comments which improved the exposition of the paper.
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2 Proofs of the Results

2.1 Existence of a Bend Foliation

Let I : Mλ → Ω be a smooth embedded paper Moebius band. Recall that a
bend is a line segment that cuts across Ω and has its endpoints in ∂Ω.

Theorem 2.1 Ω has a foliation by bends.

We derive Theorem 2.1 from a classic result. As always for manifolds
with boundary, the smoothness of the map I means that I has a smooth
extension to a neighborhood of each boundary point. Thus, it makes sense
to speak of the mean curvature of Ω even at points of ∂Ω. Let Ωo denote the
interior of Ω. Let U ⊂ Ωo denote the subset having nonzero mean curvature.

Lemma 2.2 Each p ∈ U lies in a unique bend γ. Every point along γ has
nonzero mean curvature, even the endpoints.

Lemma 2.2 follows from either of the two essentially identical results,
[CL, p. 314, Lemma 2] and [HN, §3, Lemma 2]. In §4 I give an elementary
and self-contained proof of Lemma 2.2.

Proof of Theorem 2.1: Let U∗ denote the union of all the bends through
points of U . We obtain U∗ from U by adding in the endpoints of the bends.
No two bends of U∗ can intersect, even at the boundary. The reason: If they
did intersect, then the point of intersection would have two distinct straight
lines through it and hence zero mean curvature. This contradicts Lemma
2.2. Hence U∗ actually has a foliation by bends. The fact that no two bends
in this foliation intersect implies that they vary continuously.

Let τ ′ be a component of Ω − U∗. If τ ′ has empty interior then τ ′ is a
line segment, the limit of a sequence of bends. In this case τ ′ is also a bend.
Suppose τ ′ has non-empty interior. Since all points of τ ′ have zero mean
curvature, τ ′ lies in a single plane. (One way to see this is to note that the
Gauss map is constant in τ ′.) Let τ = I−1(τ ′). The map I|τ : τ → τ ′ is
an isometric embedding between planar regions, and also the domain τ is
convex – just a trapezoid. This implies that I|τ is a global isometry and
in particular maps line segments to line segments. Now we foliate τ by line
segments interpolating between the two pre-bends in ∂τ . The image under
I|τ of this foliation of τ is a bend foliation of τ ′. Doing this construction on
all such components, we get our bend foliation of Ω. ♠
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2.2 Proof of Lemma T

Let I : Mλ → Ω be a smooth embedded paper Moebius band. We first give
some definitions.

Recall from §1.3 that a pre-bend is the pre-image of a bend. The pre-
bends are embedded line segments in Mλ which have their endpoints in ∂Mλ.

The centerline of Mλ is the circle ([0, λ] × {1/2})/∼. The centerline of
Ω is the image of the centerline of Mλ under the map I. These centerlines
are topological circles and I is a diffeomorphism between them.

Each bend u has exactly 2 unit vectors ±−→u parallel to it. We call either
one an orientation of u.

Intersection with the Centerline: We are in a Moebius band, so a pre-
bend u, being embedded, must intersect the centerline exactly once. Here is
an alternate proof: Let `(·) denote length. If `(u) <

√
1 + λ2 we can move u

by an isometry so that it misses the vertical sides of [0, λ]× [0, 1]. But then u
clearly intersects the centerline exactly once. So, if u intersects the centerline
more than once, we have `(u) ≥

√
1 + λ2 > λ. But ∂Ω = I(∂Mλ) is a loop

that contains the endpoints of the bend I(u), and `(I(u)) = `(u) > λ. Hence
`(∂Ω) > 2λ. But `(∂Ω) = `(∂Mλ) = 2λ, a contradiction.

The Circle of Bends: The bend foliation of Ω guaranteed by Theorem
2.1 may not be unique. We simply choose one. Call it β. We mention again
that the bends in β are segments which vary continuously and are pairwise
disjoint. We parametrize the bends of β by R/2π, as follows: Since I is an
embedding, our result about pre-bends implies that each bend of Ω intersects
the centerline of Ω exactly once. We associate to each bend the point where
it intersects the centerline, and then we identify the centerline with R/2π.

The Cylinder and the Sphere: Let Υ be the topological cylinder of pairs
(x0, x1) ∈ (R/2π)2 with x0 6= x1. A point (x0, x1) ∈ Υ corresponds to a pair
(u0, u1) of unequal bends. We let Υ be the compactification of Υ obtained by
adding 2 points: ∂+ (respectively ∂−) is the limit of pairs (x0, x1) where x1

is just ahead (respectively just behind) x0 in the cyclic order on R/2π. The
space Υ is homeomorphic to S2, the 2-sphere. See §3.1 for an explicit homeo-
morphism. The map Σ(x0, x1) = (x1, x0) extends to a continuous involution
of S2 that swaps the two points ∂+ and ∂−. The explicit homeomorphism in
§3.1 conjugates Σ to the antipodal map of S2.
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Propagating the Orientations: We orient R/2π. Let (x0, x1) ∈ Υ. There
is a unique embedded, locally linear, positively oriented path t→ xt in R/2π
which joins x0 and x1. This path is short (respectively long) when (x0, x1)
is near ∂+ (respectively ∂−). Let ut be the bend associated to xt. We write
−→u 0  

−→u 1 when there is a continuous orientation of the bends {ut} that
restricts to −→u 0 and −→u 1. Note that −−→u 0  −−→u 1 and, since Ω is a Moebius
band, −→u 1  −−→u 0. Also −→u 1 → ±−→u 0 when (x0, x1)→ ∂±.

The Map: Let mj be the midpoint of uj. Using the dot product (·) and the
cross product (×) define F = (g, h) : Υ→ R2, where

g(x0, x1) = −→u 0 · −→u 1, h(x0, x1) = (m0 −m1) · (−→u 0 ×−→u 1). (2)

This definition is independent of the chosen orientation since −−→u 0  −−→u 1.
Also, F extends continuously S2 with F (∂±) = (±1, 0). Since −→u 1  −−→u 0

we have F ◦ Σ = −F . Why? Well, clearly g(x1, x0) = −g(x0, x1), and

h(x1, x0) = (m1−m0) ·(−→u 1×(−−→u 0)) = (m1−m0) ·(−→u 0×−→u 1) = −h(x0, x1).

The Borsuk-Ulam Theorem says that (0, 0) ∈ F (S2). Since F (∂±) 6= (0, 0)
we have (0, 0) ∈ F (Υ). See the remark below for a self-contained proof.

Endgame: Let (u0, u1) be the bends corresponding to (x0, x1) ∈ F−1(0, 0).
First, u0 and u1 are disjoint because they belong to the same foliation. Sec-
ond, −→u 0 and −→u 1 are orthogonal because g(x0, x1) = 0. Third, −→u 0 and −→u 1

and m0 − m1 are all orthogonal to −→u 0 × −→u 1 because h(x0, x1) = 0, and
this easily implies that u0, u1 are coplanar. Hence (u0, u1) is an embedded
T-pattern. This proves Lemma T.

Remark: Here is a self-contained proof that (0, 0) ∈ F (Υ). Suppose not.
If γ is a continuous path in S2 which goes from ∂+ to ∂−, then F (γ) goes
from (1, 0) to (−1, 0), misses (0, 0), and winds some half integer w(γ) times
around the origin. All choices of γ are homotopic to each other relative to
∂±, so w(γ) is independent of γ. But consider γ′ = Σ(γ), re-oriented so that
it goes from ∂+ to ∂−. Since F ◦ Σ = −F the image F (γ′) is obtained by
rotating F (γ) by 180 degrees about (0, 0) then re-orienting it so that it goes
from (1, 0) to (−1, 0). But then w(γ′) = −w(γ), a contradiction.
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2.3 Proof of Lemma G

Let ` denote arc length. Let 5 be a triangle with horizontal base. Let ∨ be
the union of the two non-horizontal sides of 5.

Lemma 2.3 If 5 has base
√

1 + t2 and height h ≥ 1 then `(∨) ≥
√

5 + t2,
with equality iff 5 is isosceles and h = 1.

Proof: This is an exercise in high school geometry. Let p1, p2, q be the
vertices of 5, with p1, p2 lying on the base. Let p′2 be the reflection of p2 in
the horizontal line through q. Note that5 is isosceles iff p1, q, p

′
2 are collinear.

By symmetry, the triangle inequality, and the Pythagorean Theorem,

`(∨) = ‖p1 − q‖+ ‖q − p′2‖ ≥ ‖p1 − p′2‖ =
√

1 + t2 + 4h2 ≥
√

5 + t2.

We get equality if and only if p1, q, p
′
2 are collinear and h = 1. ♠

Let I : Mλ → Ω be a smooth embedded paper Moebius band with an
embedded T -pattern. Let S ′ = I(S) for any S ⊂ Mλ. We have `(γ) = `(γ′)
for any curve γ ⊂Mλ.

We rotate Ω so that one of the bends of the T -pattern, T ′, lies in X-
axis and the other bend, B′, lies in the negative ray of the Y -axis. Next,
we let B = I−1(B′) and T = I−1(T ′) be the corresponding pre-bends. We
emphasize that B and T are disjoint embedded line segments.

We cut Mλ open along T to get a bilaterally symmetric trapezoid τ . We
normalize τ so that the parallel sides are horizontal. Reflecting τ in the
coordinate axes if needed, we arrange that u, v, w, x are mapped to Ω as
in Figure 2. The quantities t and b (which are both positive in the case
depicted) respectively denote the horizontal displacements of T and B.
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Figure 2: The trapezoid τ (left) and the T-pattern (right).
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With Lemma 2.3 in mind, note that the shaded triangle 5 has

base = `(T ′) = `(T ) =
√

1 + t2, height > `(B′) = `(B) =
√

1 + b2 ≥ 1.

Let H = H1 ∪ H2 and D = D1 ∪ D2. We have H ′, D′ ⊂ R3, so you should
imagine you are floating in space above Figure 2 and looking down. Now
H ′ connects the endpoints of T ′. Also, D′ connects the endpoints of T ′ and
contains u. From this structure, and from Figure 2 (left), we have

`(H) + `(D) = 2λ.

`(D)− 2t = `(H).
√

1 + t2 = `(T ′) ≤ `(H ′) = `(H).
√

5 + t2 <∗ `(∨) ≤ `(D′) = `(D). (3)

The starred inequality is Lemma 2.3. Equation 3 give us

α(t) :=
√

1 + t2 +
√

5 + t2 < `(H) + `(D) = 2λ.

β(t) := 2
√

5 + t2 − 2t < 2`(D)− 2t = `(D) + `(H) = 2λ. (4)

Hence
2λ > max(α(t), β(t)). (5)

Let t0 = 1/
√

3. We have

• α(t0) = β(t0) = 2
√

3.

• α is increasing on (0,∞). Hence α(t) > 2
√

3 if t > t0.

• β is decreasing on R. Hence β(t) > 2
√

3 if t < t0.

Hence λ >
√

3. This proves Lemma G.
Our proof of the Main Theorem is done.

2.4 Proof of the Triangular Limit Theorem

Figure 3 shows what Figure 2 looks like when we make the construction for
the triangular Moebius band with respect to the T -pattern depicted on the
right side of Figure 1b.
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Figure 3: Figure 2 for the triangular Moebius band.

Let {In : Mλn → Ωn} be as in the Triangular Limit Theorem. We run the
construction of Lemma G for each n and analyze what happens as n → ∞.
We use the same notation as in the proof of Lemma G, except that we add
subscripts to indicate the dependence on n.

The Range: Since max(α(tn), β(tn)) → 2
√

3 we have tn → 1/
√

3. Hence
`(T ′n)→ 2/

√
3. Since λn →

√
3 and `(5n) ≤ 2λn, we have

lim sup `(5n) ≤ 2
√

3. (6)

The base of 5n converges to 2/
√

3 and the height is always greater than
1. Lemma 2.3 combines with Equation 6 to show that 5n converges (up to
isometries) to an isosceles triangle of base 2/

√
3 and height 1. This is the

shaded equilateral triangle 5 shown in Figure 3 (right). We normalize by
isometries so that we get actual convergence.

The Domain: Since `(∂Ωn) − `(5n) → 0 and also v′n converges to the
midpoint of T ′n, all the slack goes out of Equation 3, and

lim `(H ′n,1) = lim `(H ′n,2) = 1/
√

3, lim `(D′n,1) = lim `(D′n,2) = 2/
√

3. (7)

Since `(Hn,1) = `(H ′n,1), etc. τn converges (up to isometries) to τ , the trape-
zoid in Figure 3 (left). We normalize so that we get actual convergence.

The Boundary Map: The arcs H ′n,1, H
′
n,2, D

′
n,1, D

′
n,2 converge as sets to the

line segments connecting their endpoints because `(∂Ωn)−`(5n)→ 0. Since
In is length preserving, In converges uniformly to a linear isometry when
restricted to each of Hn,1, Hn,2, Dn,1, Dn,2. Hence In converges on ∂Mλn to
the piecewise linear isometry associated to the triangular Moebius band.
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The Whole Map: We divide Mλ into 3 triangles. See Figure 4.
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p p'

Figure 4: Figure 2 revisited

Consider the restriction of In to the left triangle 4n. First, In is a linear
isometry on wnxn = Tn. Second, In converges to a linear isometry on wnun =
Dn,1. Third, In converges to a linear isometry on xnun because ‖x′n− u′n‖ →
‖xn − un‖ and In is distance non-increasing. In summary, In converges to
a linear isometry on ∂4n. Since In is distance non-increasing, this implies
that In converges to a linear isometry on 4n. The same argument works for
the other 2 triangles. Hence In converges to the piecewise linear isometry
associated to the triangular Moebius band.

Our proof of the Triangular Limit Theorem is done.

Remark: The proof is done, but we have a bit more to say. Let pn be
the midpoint of xnun. The point p′n converges to the midpoint of x′nu

′
n. The

bend β′n through p′n has its endpoints on H ′n,1 and D′n,1, and this forces one
endpoint of β′n to converge to x′n and the other to u′n. This means the pre-
bend βn = I−1

n (β′n) converges to xnun. In other words, the left dotted line
in Figure 4 is, for large n, quite close to a pre-bend. The same argument
works for the right dotted line. From this, we see that the pre-bend folia-
tion of Mλn converges to the pinstriping shown in Figures 1a (left) and 1b
(left). Likewise, the bend foliation of Ωn converges to the pinstriping shown
in Figures 1a (right) and 1b (right).
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3 Discussion

3.1 An Explicit Homeomorphism

Referring to the proof of Lemma T, here we give an explicit homeomorphism
from S2 to Υ. We identify ∂+ and ∂− respectively with the north and south
pole of S2. We parametrize S2 − ∂± by (θ, φ), where θ ∈ R/2π is the
longitude and φ ∈ (0, π), the angle with ∂+, is the latitude. The antipodal
map is (θ, φ) → (π + θ, π − φ). We get a homeomorphism between S2 − ∂±
and Υ with the correspondence (θ, φ)↔ (Xθ−φ, Xθ+φ). This conjugates Σ to
the antipodal map, and extends to a homeomorphism between S2 and Υ.

3.2 Paths of Oriented Lines

Anton Izosimov and Sergei Tabachnikov independently suggested to me the
following generalization of Lemma T.

Lemma 3.1 Suppose {Lt| t ∈ [0, 1]} is a continuous family of oriented lines
in R3 such that L1 = Lopp

0 , the same line as L0 but with the opposite ori-
entation. Then there exist parameters r, s ∈ [0, 1] such that Lr and Ls are
perpendicular intersecting lines.

Proof: This has the same proof as Lemma T, once we observe that our
function h, defined in Equation 2, is more natural than we have let on.
The points m0,m1 in the definition of h could be any points on u0, u1 and we
would get the same result. g and h are invariants of pairs of oriented lines. ♠

Sergei also suggested to me a beautiful alternate formalism for Lemma
T: the dual numbers . These have the form x+ εy where x, y ∈ R and ε2 = 0.

Relatedly, the dual vectors have the form −→a + ε
−→
b , where −→a ,

−→
b ∈ R3 and

again ε2 = 0. In this context, the dot product of two dual vectors makes
sense as a dual number. See [HH] for an exposition.

Each oriented line ` ⊂ R3 gives rise to a dual vector ξ` = −→a + ε
−→
b where

−→a is the unit vector pointing in the direction of ` and
−→
b = `′ × −→a . Here

`′ ∈ ` is any point. All choices of `′ give rise to the same
−→
b ; this vector is

called the moment vector of `. This formalism identifies the space of oriented
lines in R3 with the so-called study sphere consisting of dual vectors ξ such
that ξ · ξ = 1. The dual dot product ξ` · ξm vanishes if and only if ` and m
are perpendicular and intersect.
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3.3 Interpretations of Smoothness at the Boundary

Our map I : Mλ → Ω is a smooth isometric embedding. The domain of I is
a smooth manifold with boundary. Whenever we have a situation like this,
the notion smoothness at the boundary really means that we can extend the
definition of I at each boundary point to a larger open manifold so that the
extension is smooth. In our situation we can use compactness to say that
there is some ε > 0 such that I extends smoothly to

M ε
λ = [0, λ]× (−ε, 1 + ε)/∼, (0, y) ∼ (λ, 1− y). (8)

A stronger interpretation would be that for some ε the extension is also
an isometric embedding. With this interpretation the proof of Lemma 2.2
(given below in §4) would be easier. We wouldn’t need to treat boundary
points in a special way. A weaker interpretation would be that I is merely
continuous on Mλ and a smooth isometric embedding on the interior of Mλ.
Our standard interpretation steers a middle ground between these extremes.

Let us say that the Main Theorem[ is the Main Theorem for the strong
version kind of smooth embedded paper Moebius bands. Let us say that the
Main Theorem] is the Main Theorem for the weak version kind of smooth
embedded paper Moebius bands. We use similar notation for other concepts.
Obviously, our theorems imply our theorems[, and in turn our theorems]

would imply our theorems. Actually the reverse is also true.
Given a smooth] embedded paper Moebius band we have a trimming

operation: We can restrict I to the thinner Moebius band

[0, λ]× (ε, 1− ε)/∼, (0, y) ∼ (λ, 1− y). (9)

Then we can rescale and domain and range to get a smooth[ embedded paper
Moebius band of aspect ratio

√
3/(1− 2ε). Applying the Main Theorem[ we

see that λ >
√

3(1 − 2ε). Letting ε → 0 we get λ ≥
√

3. Suppose λ =
√

3.
Then we consider a sequence of trimmings with ε→ 0. The Triangular Limit
Theorem[ says that these converge to the triangular Moebius band. But this
implies that our map I : Mλ → Ω is the triangular Moebius band. This is a
contradiction. Hence λ >

√
3. Thus, the Main Theorem[ and the Triangular

Limit Theorem[ imply the Main Theorem]. A similar argument shows that
the Triangular Limit Theorem[ implies the Triangular Limit Theorem].

In short, we really don’t need to fuss about the exactly what happens at
the boundary of a smooth embedded paper Moebius band.
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3.4 Related Topics

Square Peg: Around the time I got interested in the Halpern-Weaver Con-
jecture I had been thinking about the Toeplitz Square Peg Conjecture, which
asks if every continuous loop in the plane contains 4 points which make the
vertices of a square. See [Mat] for a fairly recent survey. One can view a
T -pattern as a collection of 4 points in the boundary of the Moebius band
which satisfy certain additional constraints – e.g. they are coplanar. Put
this way, a T -pattern is sort of like a square inscribed in a Jordan loop.

Quadrisecants: The idea for Lemma T is also similar in spirit for the
idea developed in [DDS] concerning 4 collinear points on a knotted loop.
These so-called quadrisecants play a role similar to Lemma T in getting a
lower bound for the length of a knotted rope.

Folded Ribbon Knots: Elizabeth Denne pointed out to me the connec-
tion between paper Moebius bands and folded ribbon knots . Her paper with
Troy Larsen [DL] gives a formal definition of a folded ribbon knot and has
a wealth of interesting constructions, results, and conjectures. See also [D],
a survey article.

Informally, folded ribbon knots are the objects you get when you take
a flat cylinder or Moebius band, fold it into a knot, and then press it into
the plane. Associated to a folded ribbon knot is a polygon, which comes
from the centerline of the object. Even though the ribbon knot lies entirely
in the plane, one assigns additional combinatorial data which keeps track
of “infinitesimal” under and over crossings as in a knot diagram. So the
associated centerline is really a knot (or possibly the unknot).

[DL, Corollary 25] proves our Main Theorem in the category folded rib-
bon Moebius bands whose associated centerline is a triangle. This is a finite
dimensional problem. [DL, Conjecture 26] says that [DL, Corollary 25] is
true without the very strong triangle restriction. This is an infinite dimen-
sional problem like the Halpern-Weaver Conjecture. The combination of our
Main Theorem and the Triangular Limit Theorem implies [DL, Conjecture
26]. One takes arbitrarily nearby smooth approximations, as in [HW], and
then applies our results to them.
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3.5 More Twists

The Halpern-Weaver Conjecture is one of infinitely many similar kinds of
questions one can ask about paper Moebius bands. For instance, one trans-
late the many conjectures made in [DL] about folded ribbon knots into the
broader language of paper geometry.

Twisted Cylinders: One can make a twisted cylinder by taking a 1 × λ
strip of paper, giving it an even and nonzero number of twists, and then
joining the ends together. The essential feature of twisted cylinders is that
their two boundary components make a nontrivial link.

There are two optimal limiting shapes which have interpretations as
folded ribbon knots. Both are folding patterns which wrap a 1 × 2 strip 4
times around a right-angled isosceles triangle. In [S3] I prove that a twisted
cylinder has aspect ratio greater than 2 and that any minimizing sequence
converges on a subsequence to one of the two optimal models. This result
also confirms the n = 1 case of [DL, Conjecture 39]. The proof is somewhat
similar to what I do in this paper, though the fine-scale details are different.
Noah Montgomery (private communication) independently came up with a
proof of the cylinder result. His elegant proof is different than mine.

Three Twist Moebius Bands: What happens when you insist that a pa-
per Moebius band have least 3 twists? An essential feature of these objects
is that their boundaries are knotted. I think it follows from the Triangular
Limit Theorem and from compactness that there is some ε0 such that the
aspect ratio of a multi-twisted paper Moebius band is at least

√
3 + ε0.

Brienne Brown did some experiments with these objects and found two
candidate optimal models. We call these the crisscross and the cup. Both
are made from a 1 × 3 strip of paper. The crisscross is planar, and has an
interpretation as a folded ribbon knot. The cup is not-planar: It is a double
wrap of 3 mutually orthogonal right-angled isoceles triangles arranged like 3
faces of a tetrahedron. We wrote about this in [BS], and conjecture there
that λ > 3 for an embedded multi-twisted paper Moebius band.

Multi-Twist Examples: Recently, Aidan Hennessey [H] proved the very
surprising result that one can make a cylinder or a Moebius band with any
number of twists using a 1 × 8 strip. For Moebius bands only, his bound is
better: you can do it with a 1× 6.25 strip of paper.
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4 Appendix: Proof of Lemma 2.2

We give a self-contained proof of Lemma 2.2. Let S2 be the unit 2-sphere.
The Gauss map, which is well defined and smooth on any simply-connected
subset of Ω, associates to each point p ∈ Ω a unit normal vector np ∈ S2.
Let dnp be the differential of the Gauss map at p. Since the curvature Ω is
0 everywhere, dnp has a nontrivial kernel. The point p has nonzero mean
curvature if and only if dnp has nontrivial image.

Let U be as in Lemma 2.2, the subset of Ωo with nonzero mean curvature.
Let p→ np be a local choice of the Gauss map. We can rotate and translate
so that near the origin U is the graph of a function

F (x, y) = Cy2 + higher order terms. (10)

Here C > 0 is some constant. The normal vector at the origin is n0 = (0, 0, 1).
The vector v0 = (1, 0, 0) lies in the kernel of dn0. Let w0 = (0, 1, 0). Let Π0 be
the plane spanned by w0 and n0. The image of Π0 ∩U under the Gauss map
is (near n0) a smooth regular curve tangent to w0 at n0. The sign depends
on the choice of local Gauss map.

Working locally, we have three smooth vectorfields:

p→ np, p→ vp, p→ wp = vp × np. (11)

Here vp is the kernel of dnp and × denote the cross product. Let Πp be the
plane through p and spanned by wp and np. From our analysis of the special
case, and from symmetry, the image of Πp∩U under the Gauss map is (near
np) a smooth regular curve tangent to wp at np. The asymptotic curves are
the smooth curves everywhere tangent to the v vector field.

Lemma 4.1 The asymptotic curves are line segments.

Proof: Let γ be an asymptotic curve. The Gauss map is constant along γ.
Each point in γ has a small neighborhood V which is foliated by asymptotic
curves that transversely intersect each plane Πp when p ∈ γ ∩ V . Hence the
image of V under the Gauss map equals the image of Πp∩V under the Gauss
map. This latter image is a smooth regular curve tangent to wp at np. Since
this is true for all p ∈ γ ∩ V and since np is constant along γ, wp is constant
along γ. Hence vp is constant along γ. Hence γ is a line segment. ♠
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The nonzero mean curvature implies that γ is the unique line segment
through any of its interior points. We first rule out the possibility that γ
reaches ∂U before it reaches ∂Ω. Assume for the sake of contradiction that
this happens. We normalize as in Equation 10.

We now allow ourselves the liberty of dilating our surface. This dilation
preserves all the properties we have discussed above. By focusing on a point
of γ sufficiently close to ∂U and dilating, we arrange the following:

• A neighborhood V of Ωo is the graph of a function over the disk of
radius 3 centered at the origin.

• Given p ∈ V let p′ be the projection of p to the XY -plane. We have
|p′1 − p′2| > (2/3)|p1 − p2| for all p1, p2 ∈ V .

• γ ⊂ U contains the arc connecting (0, 0, 0) to (3, 0, 0), but (0, 0, 0) 6∈ U .

Let a ∈ (0, 3). At (a, 0, 0) we have va = (1, 0, 0) and wa = (0, 1, 0) and
na = (0, 0, 1). Let Πa be the plane {X = a}. Near (a, 0, 0), the intersection
Ua = U ∩ Πa is a smooth curve tangent to wa at (a, 0, 0).

Let ζ = (1, 0, 0). Fix δ > 0. By continuity and compactness, the asymp-
totic curves through points of U1 sufficiently near ζ contain line segments
connecting points on U2 to points on Uδ. Call these connectors . There exists
a canonical map Φδ : U1 → Uδ defined in a neighborhood of ζ: The points
q ∈ U1 and Φδ(q) ∈ Uδ lie in the same connector.

Lemma 4.2 Φδ expands distances by less than a factor of 3.

Proof: Let `1 and `2 be two connectors. Let aj = `j ∩ U1. Let bj = `j ∩ Uδ.
For any set S let S ′ be the projection of S to R2. We have the bounds

|a′1 − a′2|
|a1 − a2|

,
|b′1 − b′2|
|b1 − b2|

∈
[

2

3
, 1

]
,

|a′j − b′j|
length(`′j)

< 2.

Geometrically, a′j is very nearly the midpoint of `′j and b′j is the closer of the
two endpoints. Since `′1 and `′2 are planar and disjoint, our last inequality
(and essentially a similar-triangles argument) gives |b′1 − b′2|/|a′1 − a′2| < 2.
Putting everything together, we have |b1 − b2|/|a1 − a2| < 3. ♠

Fix ε > 0. The mean curvature along Uδ tends to 0 as δ → 0. If we
choose δ sufficiently small then the Gauss map expands distances along Uδ in
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a neighborhood of (δ, 0, 0) by a factor of less than ε. Combining Lemma 4.2
and the fact that nq = nΦδ(q), we see that the Gauss map expands distances
by at most a factor of 3ε along U1 in a small neighborhood of ζ. Since ε is
arbitrary, w1 ∈ ker(dnζ). But v1 ∈ ker(dnζ) by definition. Hence dnζ is the
trivial map. The contradicts the fact that ζ ∈ U .

Now we know that the interior of γ lies in U . Next, we show that the mean
curvature cannot vanish at an endpoint of γ. As discussed in §3.3, there is
some ε > 0 so that I has a smooth extension to the fatter open Moebius band
M ε

λ described in Equation 8. If we knew that this smooth extension was also
an isometric embedding, we could just use our previous argument exactly as
is. (Compare the discussion in §3.3.) But, even if the extension is not an
isometric map, we can still use the essentially the same argument. This time
our open disk of radius 3 is divided into two sides, a lightly shaded familiar
side consisting of projections of points of Ω and a darkly shaded mystery side
consisting of projections of points of I(M ε

λ)−I(Mλ). The common boundary
of these regions is curve, transverse to the x-axis, which is a projection of
I(∂Mλ). Figure 5 shows what we are taking about.

Figure 5: The connectors lie on the familiar side.

In the argument above, we can take the connectors to all lie in the familiar
side, as shown in Figure 5. Then we can run exactly the same argument with-
out ever entering into the mystery side. We then get the same contradiction
as above. Hence the mean curvature does not vanish at an endpoint.

This completes the proof of Lemma 2.2.
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(1996) pp 511-521

[Sa], M. Sadowski, Ein elementarer Beweis für die Existenz eines abwickel-
baren MÖBIUSschen Bandes und die Zurückführung des geometrischen Prob-
lems auf einVariationsproblem. Sitzungsberichte der Preussischen Akad. der
Wissenschaften, physikalisch-mathematische Klasse 22, 412–415.2 (1930)

[Sab] I. Kh. Sabitov, Isometric immersions and embeddings of a flat Möbius
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