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1 Introduction

This is an informal research note which contains statements of results, but
no proofs. The purpose of the note is to describe a coarse isomorphism I
discovered between two seemingly different dynamical constructions, namely

1. The arithmetic graphs associated to outer billiards on kites.

2. The multigrid flow , defined on certain decorated multigrids .

I considered the first construction in my book, Outer Billiards on Kites

[S2]. The arithmetic graphs served as the main tool for understanding the
dynamics of outer billiards on kites. See §2 for definitions. The second
construction, which is quite general, is based on patterns of oriented lines in
the Euclidean plane. See §3 for definitions.

The concrete instance of the multigrid construction that is related to
outer billiards on kites is closely connected to Sturmian sequences . I am
grateful to John Smillie for his beautiful explanation of the renormalization
theory for Sturmian sequences. I am also grateful to Smillie (and also Mark
Sapir) for suggesting to me that my arithmetic graphs might be related to
Sturmian sequences. This connection is far from being worked out.

I call my main result the Coarse Isomorphism Theorem. I have not yet
tried to prove the Coarse Isomorphism Theorem, though I have some idea
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of how it will be done. The Coarse Isomorphism Theorem is supported by
massive computer evidence. I will amply illustrate this note with examples,
taken from the computer program I wrote.

The Coarse Isomorphism Theorem allows one to essentially reduce the
study of outer billiards on kites to the study of certain multigrid flows. I have
not yet tried to deduce corollaries from the Coarse Isomorphism Theorem,
but I can see that the corollaries will be manifold. For instance, the multigrid
flows defined here should enjoy a rich renormalization theory just as Sturmian
sequences do.

The renormalization theory I have in mind should explain the kind of
(coarse) self-similarity one sees in the arithmetic graphs associated to outer
billiards on kites. In [S1] I established some coarse self-similarity proper-
ties of the arithmetic graphs associated to the Penrose kite, the kite that
arises in the Penrose kites-and-darts tilings. Similar results should hold for
any quadratically irrational kite, but the methods in [S1] and [S2] are not
powerful enough to reach these results. The Coarse Isomorphism Theorem
promises to be an effective tool for this.

Naturally, I intend to prove the Coarse Isomorphism Theorem, and also
to study the structure of the associated multigrid flows. However, I imagine
that the various proofs involved will be rather extensive. For now, I just
want to state the main result clearly.

Here is an outline of this note. In §2, I will recall the definition of the
arithmetic graph. In §3, I will define what I mean by the multigrid flow . I
will also describe the concrete examples that arise in the Coarse Isomorphism
Theorem. In §4 will define what I mean by a coarse isomorphism, and I will
state two versions of the main result.
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2 Arithmetic Graphs

2.1 Polygonal Outer Billiards

To define a polygonal outer billiards system, one starts with a convex polygon
P ⊂ R2. Consider a typical point x0 ∈ R2 − P . One defines x1 to be the
point such that the segment x0x1 is tangent to P at its midpoint and P lies
to the right of the ray −−→x0x1. The iteration x0 → x1 → x2... is called the
forwards outer billiards orbit of x0.

x2

x1

x0

P

V

Figure 1.1: outer billiards relative to P .

We denote the outer billiards map relative to P by ψ′, and the square of
the outer billiards map by ψ = (ψ′)2. These maps are defined away from a
countable set of line segments in R2 − P .

We have the equation

ψ(x0)− x0 = 2V. (1)

Here V is a vector that points from one vertex of P to another. The choice
of V depends on x0. The map ψ is a local translation. Equation 1 is the
starting point for the definition of the arithmetic graph.
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2.2 Outer Billiards on Kites

A kite is a convex quadrilateral such one of the diagonals is a line of symmetry.
Each kite is affinely equivalent to the kite K(A) with vertices

(−1, 0); (0, 1); (0,−1); (A, 0); A ∈ (0, 1]. (2)

The case A = 1 corresponds to the square. We ignore this case and take
A ∈ (0, 1). Outer billiards is an affinely natural dynamical system, so the
study of outer billiards on kites reduces to the study of outer billiards on
various K(A).

We will work entire with the square-map ψ. We define Λ to be the set of
points in R2 of the form (2Am+ 2n, 2o), where

• (m,n, o) ∈ Z3;

• m+ n+ o is even.

Examining the possible vectors in Equation 1, for the case of K(A), we get
ψ(p)−p ∈ Λ. Hence the coset Λ+θ is invariant under ψ for any θ ∈ R2. For
almost all choices of θ, the map ψ is entirely defined on Λ + θ. We always
work with such θ.

We want to study how ψ permutes Λ + θ. Given the definition of Λ, it
suffices to consider the case when θ ∈ [0, 2]× [−1, 1]. Reflection in the x-axis
conjugates ψ to ψ−1. Thus, the orbit of (x, y) is conjugate to the orbit of
(x,−y), and it suffices to consider the case when y ≥ 0. For these reasons,
we will always take

θ ∈ [0, 2]× [0, 1] (3)

when we consider the dynamics of ψ on Λ + θ. Figure 2.2 shows K(A), for
A = 1/2, as well as the rectangle [0, 2]× [0, 1].

Figure 2.2: K(1/2) and the rectangle [0, 2]× [0, 1].
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2.3 The Arithmetic Graph

Now we describe the construction of the arithmetic graph. This construction
is related to the lattice vector fields studied by Vivaldi et. al. in [VL]. First
we will describe a general construction, and then we will modify/specialize
the construction to suit our purpose of studying outer billiards on kites. We
work exclusively with the square-map, ψ. Let P be a convex polygon, as
above, with vertices V1, ..., Vn. Let A denote the Z-module of formal linear
combinations of the form

∑
aijVij ; Vij = Vi − Vj; aij ∈ Z.

As in Equation 1, the square of the outer billiards map is a translation by
2Vij for some pair of indices. Thus, one can consider outer billiards orbits
formally as paths in A. This is the general idea. Now we specialize to the
case of kites.

Let θ = (x0, y0) ∈ [0, 1]× [0, 2]. Define

Ξθ = Ξ+

θ ∪ Ξ−

θ ;

Ξ+

θ = {(x, y)| x > 0; y = y0};
Ξ−

θ = {(x, y)| x > 0; y = y0 − 2}. (4)

Then Ξθ is the union of 2 rays. The most symmetric case occurs when y0 = 1.
In this case, Ξ+ = R+ × {−1, 1}.

Our constructions rely on the following lemma, which we will just assume
here.

Lemma 2.1 (Return Lemma) For any point q ∈ Ξθ, with a well-defined

orbit, there are points θ−, θ+ ∈ Ξθ such that θ− lies in the backward orbit of

θ and θ+ lies in the forward orbit of θ.

In [S2], we proved this result when θ = (x0, 1), but the general case is
essentially the same. The Return Lemma allows us to define the first return
map Ψ : Ξθ → Ξθ.

Consider the affine map

τ(x, y) = 2Ax+ 2y + x0 (5)

Let
H = HA,θ = τ−1(R+). (6)
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We consider H to be an open halfplane, except that we include (0, 0) in H.
On H ∩Z2, we define

T (m,n) = θ +
(
τ(x, y), y0 − 1 + (−1)m+n

)
(7)

By construction, T is a bijection from H ∩ Z2 to Ξ+ ∩ Λθ. Now we define
the arithmetic graph as follows. Two points (m1, n1) and (m2, n2) ∈ Z2 ∩H
are joined by a directed edge iff

Ψ ◦ T (m1, n1) = T (m2, n2). (8)

The arithmetic graph is a directed graph. We call this graph Γ̂(θ;A). The

components of Γ̂(θ;A) correspond bijectively with the orbits of ψ on Λθ. The
component Γ(θ;A) containing (0, 0) corresponds to the orbit of θ. Here we
will assume the following result.

Theorem 2.2 (Embedding) The graph Γ̂(θ;A) is a disjoint union of em-

bedded polygons and embedded infinite polygonal arcs. Moreover, each edge

of Γ̂(θ;A) joins a point in Z2 to one of its 8 nearest neighbors.

In [S2] we proved the embedding theorem in case y0 = 1. The proof in the
general case is similar, though we have not written down a proof. The proof
is rather complicated. We don’t actually use the Embedding Theorem for
any purpose in this note, but it is a nice result to keep in mind.

The Temperature: Let θ = (x0, y0). We define the temperature of Γ̂(θ;A)

to be y0. Then the temperature of Γ̂(θ, A) varies between 0 and 1. In [S2] we
made a very detailed study of the graphs of temperature 1. In the next sec-
tion, we will focus on how the graphs change as the temperature drops from
1 to 0. This study will lead naturally to the description of our multigrid flows.

The Rational Case: We can define Γ̂(θ, A) even when A is rational, but
then a bit of care must be taken. The slight technical problem is that T is
not injective on Z2. However, T is injective on disks of radius q, and this
suffices to define Γ̂(θ, A) as above. Let A = p/q. For each temperature y0,

there is some ǫ > 0 such that Γ̂(θ, A) is independent of θ = (x0, y0) as long as
x0 ∈ (0, ǫ). The value of ǫ depends on A = p/q. For example, when y0 = 1,
the largest choice is ǫ = 2/q. (When the temperature is 1, we set ǫ = 1/q

for concreteness.) We will set Γ̂(y0, A) = Γ̂(θ, A) for such values of ǫ. We let

Γ(y0, A) denote the component of Γ̂(y0, A) that contains (0, 0).
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2.4 Some Pictures

In [S2] we drew a great many pictures of Γ(A, p) when p = (x0, 1). For
convenience, we will draw all out pictures relative to the parameter 17/72.
This rational parameter is a close approximation to φ−3, where φ is the golden
ratio. The kite K(φ−3) has some special significance. It is affinely equivalent
to the Penrose kite. We studied outer billiards on the Penrose kite in [S1] as
a prelude to [S2].

Figure 2.3: Γ̂(1, 17/72) in blue and Γ(1, 17/72) in white.

The pink line in Figure 2.3 is ∂H. We have just defined Γ̂ on Z2 ∩ H,
but in fact there is a canonical extension to all of Z2. Our pictures show this
extension.
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Now we start dropping the temperature. Figure 2.4 shows the temper-
ature y0 = 8/21. Since y0 < 1, the component containing (0, 0) is trivial.
(The corresponding point (ǫ, y0) lies inside K(A) in this case. So, we show
some other interesting component.

Figure 2.4: Γ̂(8/21, 17/72) in blue and some component of Γ̂(8/21, 7/72)
in white.

The reader can perhaps see the hint of a “grid” in Figure 2.4. As we drop
the temperature further, the grid becomes more obvious. Figure 2.5 shows
the case when the temperature is 8/55. (In the spirit of the example, we are
choosing temperatures that are ratios of Fibonacci numbers.)
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Figure 2.4: Γ̂(8/55, 17/72) in blue and some component of Γ̂(8/21, 7/72)
in white.

Looking at the figure, we see the following kind of structure emerge. There
seems to be an underlying grid of lines. The orbits essentially follow along
these lines until they reach an intersection. Having reached an intersection,
the orbits turn onto a new line.

As the temperature drops to 0, the grid becomes more and more obvious.
Experimentally, we analyzed the picture carefully for temperatures near 0
and discovered the structure of the grid. Somewhat surprising, there is an
underlying grid at all temperatures, though it is obscured by local fluctu-
ations which are negligible at low temperatures. Our Coarse Isomorphism
Theorem will make all this more precise.
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3 Multigrid Flows

3.1 The Basic Definition

We say that a multigrid is a locally finite union G of oriented lines in the
plane. The local finiteness condition means that every compact set intersects
only finitely many lines. Usually, we assume that the lines are in general
position, meaning that no three are coincident. We say that a decoration of
G is a 2-coloring of the intersection points of the lines of G. We call a vertex
either decorated or plain. We will draw the decorated vertices as dots, and
we will do nothing for the plain vertices.

Say that a unit speed arc in G (that is contained on a single line) obeys
the law if it follows along the orientation of the line. Say that such an arc
breaks the law if it goes against the orientation. Naturally, we have in mind
cars driving along a system of one-way roads.

Let x be a point of G that does not lie on an intersection point. Then
we can define two polygonal arcs starting at x. We call these the forward

arc and the backward arc. We will describe the forward arc. We move along
the line containing x, obeying the law, until we reach an intersection. If the
intersection is plain, we turn onto the new line, so as to obey the law. If the
intersection if decorated, we turn so as to break the law. In general, we do
one of 4 things at an intersection.

• If we are obeying the law and we reach a plain intersection, we turn so
as to obey the law.

• If we are breaking the law and we reach a plain intersection, we turn
so as to break the law.

• If we are obeying the law and we reach a decorated intersection, we
turn so as to break the law.

• If we are breaking the law and we reach a decorated intersection, we
turn so as to obey the law.

In short, we turn at every intersection. At a plain vertex, we continue in our
current state with respect to the law, and at a decorated vertex we switch
states.

In the special case when all the intersections are plain, the forward arc
moves so as to always obey the law, and the backward arc moves so as to
always break the law.
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The union of the forward and backward arcs through x is what we call
the grid orbit of x. This union is either a closed polygon or else an infinite
polygonal arc. This polygon is not necessarily embedded, but it never crosses
itself. That is, the grid orbit has arbitrarily small perturbations that are
embedded. Figure 3.1 shows an example, based on 3 oriented lines. We have
given different colors to the 3 grid orbits. We have also added numbers to
indicate the path traced out by the yellow orbit. In this example, the orbits
travel out to infinity in the obvious way.

5

1

2

3

4

Figure 3.1: Grid Orbits

3.2 Sturmian Grids

We will now describe an infinite union U(c1, c2, c3, λ, σ, ǫ) of oriented lines in
the plane. Here

• c1 < 1/2 determines a locally affine map from Z to R/Z.

• c2 determines the radius of an interval in R/Z.

• c3 determines the center point of the same interval.

• λ ∈ [0, 1) is a number we call the offset .

• σ ∈ (0, 1] is a number that determines the slopes of our lines.

• ǫ ∈ {−1, 1} is a bit that determines the way we orient the lines.
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Here is the construction. Let n ∈ Z. Let [c1(n+λ)] be the class of (c1+λ)n
in R/Z. If [(c1(n + λ)] lies within c2 of the point [c3], then we include the
two lines of slope ±σ, based at the point (n+λ, 0) in our union U . Otherwise
we do not. This gives us our family of lines in U . It remains only to specify
the orientations. If ǫ = 1 we orient the lines of slope −σ downward and the
line of slope σ upward. If ǫ = −1, we do the opposite. We call U a Sturmian

grid .
Now suppose that A ∈ (0, 1) and θ = (x0, y0) ∈ [0, 2] × [0, 1], as in the

previous chapter. We are going to define U(A, θ) to be the union of two
Sturmian grids. Here we are parameters for the first grid.

• c11 = (1− A)/2.

• c12 = y0/4.

• c13 = (1 + x0)/4.

• λ1 = 0.

• σ1 = 1.

• ǫ1 = 1.

Here are the parameters for the second grid.

• c21 = (1− A)/2.

• c22 = (Ay0)/4.

• c23 = (3 + x0)/4.

• λ2 = 1/2.

• σ2 = A.

• ǫ2 = −1.

Given these parameters, we define

U(θ;A) = U1 ∪ U2; Uk = U(ck1, ck2, ck3, λk, σk, ǫk). (9)
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3.3 Some Remarks

To anticipate the Coarse Isomorphism, we will see that the multigrid flow on
U(θ;A), when it is suitably decorated, produces a collection of orbits that is
coarsely identical to the components of the arithmetic graph Γ(θ;A). In the
next section we will explain how the decoration works.

Monotonicity: Before we get to the decoration of our multigrid, we discuss,
in an informal way, what happens as the point θ varies. We are interested
in revisiting the temperature dropping phenomenon discussed in the previ-
ous section. First of all, we have a certain monotonicity phenomenon. Let
θ1 = (x0, y1) and θ2 = (x0, y2). Assume that y2 < y1. Then

U(θ2;A) ⊂ U(θ1;A).

This is immediate from the definitions. The only thing that happens when
we change from θ1 to θ2 is that the corresponding intervals in R/Z shrink
about their midpoints. Considering the variable point θ = (x0, y), we observe
that the two intervals defining U(θ;A) shrink to points as y → 0.

General Position: There are several ways that our grid U = U(θ;A) could
fail to be in general position. First of all, it might happen that at least 3
lines of U are coincident. For each choice of A, there is a 1-dimensional set
of choices of θ which lead this situation. For ease of exposition, we assume
that we have chosen θ to that these triple points do not occur.

Second of all, it might happen that some point [ck1n] is precisely ck2 units
away from [ck3]. Again, for fixed A, this happens for a 1-dimensional set of
choices of θ. We will assume that θ is chosen so that the situation we have
just discussed does not happen.

Our results still work even in these degenerate cases, but the situation
is somewhat more difficult to describe. The situation is that our computer
program is designed to handle all the exceptional cases, but we do not men-
tion them here explicitly. We warn the reader in advance that sometimes we
will draw pictures that contain degenerate cases. We like to draw pictures
for rational parameters, and these tend to contain some degeneracies.
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3.4 Decorations

Let U = U1 ∪ U2, as above. We draw the lines of U1 in blue and the lines of
U2 in red. The blue lines have slope ±1, and the read lines have slope ±A.
Here we explain which intersection points we decorate. We isolate a certain
configuration of lines which we call a k-ladder . Figure 3.2 shows the cases
k = 1, 2, 3. The pattern continues in the obvious way. A k-ladder can point
in one of 4 directions. The bottom row of our picture shows 2 possibilities
for a 3-ladder.

3 3

1

2

Figure 3.2: k-ladders for k = 1, 2, 3.

The blue lines involved in a latter are meant to be as close together as
possible. That is, two consecutive blue lines intersect the x-axis in consec-
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utive integers. Put another way, the blue squares involved in a ladder have
unit length diagonals.

We decorate 2k of the vertices, as shown in Figure 3.2. We call these the
distinguished vertices of the k-ladder. Our configurations are meant to be
embedded inside a larger collection of lines. However, the ladder must be
embedded in the sense that no additional line can intersect the yellow trian-
gular regions defined by the ladder, as shown in Figure 3.2.

Decoration Rule: We decorate an intersection if and only if if it is one
of the distinguished vertices of a ladder.

Let θ = (x0, y0), as above. Here we make some experimental observations
about the decorations of U(θ;A).

• The number of k-ladders in U(θ;A) is monotone increasing as y0 in-
creases and x0 is held fixed. More precisely, as we vary y0 from 0 to 1,
new ladders appear from time to time, but never disappear.

• When y0 < 1/(1 +A) there are no ladders in U(θ;A). In this case, the
grid consists entirely of plane vertices.

• For certain parameters, such as

A =
√
n2 + 1− floor(

√
n2 + 1); n = 1, 2, 3...

and

A = 2
√
n2 + n+ 1− floor(2

√
n2 + n+ 1); n = 1, 2, 3...

there are no ladders at all. Thus, again U(θ;A), has only plain vertices.
We note that the case n = 2 for the first family corresponds to the
Penrose kite parameter

√
5− 2.

• When A < 1/2, there are never any k-ladders for k ≥ 2. More generally,
for any ǫ > 0 there is some N such that there are no N -ladders provided
that A < 1− ǫ. In other words, one only sees long ladders as A→ 1.

We don’t completely understand what properties of the parameters causes
the ladders to appear in the grid, but the decoration of the grid is crucial to
our Coarse Isomorphism Theorem.
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3.5 Some Pictures

Figure 3.3 shows part of U(θ;A) for θ = (1/45, 1) and A = 31/45. We have
shown all the visible decoration. One should be able to see two 2-ladders and
one 1-ladder. Recall that the decorated points come in pairs. Some of the
pairs are so close together that they appear as a single point. The clearest
2-ladder is in the upper left corner.

Figure 3.3: The Decorations for U .

Figure 3.4 shows part of U(θ;A) when θ = (1/11, 1) and A = 4/11. We
have shown several orbits, using different colors. All vertices in sight are
undecorated.
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Figure 3.4: Some multigrid orbits for θ = (1/11, 1) and A = 4/11.

Figure 3.4 shows part of U(θ;A) when θ = (1/72, 1) and A = 17/72. This
time we show a single orbit of the multigrid flow. All vertices in sight are
undecorated.

Figure 3.5: A multigrid orbit for θ = (1/72, 1) and A = 17/72.

Now we compare Figures 2.3 and 3.5. The coordinates we use for the
arithmetic graph do not quite line up with the coordinates we use for our
multigrid. Define

M =

[
1 1

−A B

]
; B = 1 +

1

2A
− A

2
. (10)
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Here M maps the x-axis to the line of slope −A through the origin.

Figure 3.6: Figures 2.3 and 3.5 properly compared.

Here we plot Γ(1, 17/72), the orbit from Figure 2.3, against the image of
the orbit in Figure 3.5 underM . The former is shown in white and the latter
is shown in blue. Notice the close matchup. Figure 3.7 shows a closeup of
the picture, so that the reader can see the orbits better.

18



Figure 3.7: A Close-up of Figure 4.1.

These last two figures illustrate the Coarse Isomorphism Theorem.
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4 The Coarse Isomorphism Theorem

4.1 Nearly Embedded Polygons

We say that a polygon P ⊂ R2 is nearly embedded if P is the limit of
embedded polygons. Just to fix ideas, we insist that P has only finitely many
double points. Figure 4.1 shows a picture of a nearly embedded polygon. We
want to consider the case when P is either a closed polygon, or else an infinite
polygonal arc. In the latter case, we assume that P is properly embedded:
every compact subset of R2 intersects only finitely many segments of P . The
multigrid orbits considered in the previous chapter serve as good examples
of nearly embedded polygons.

Figure 4.1: A good parametrization of a nearly embedded polygon.

We say that a good parametrization of a nearly embedded polygon P is a
parametrization that is the limit of parametrizations of embedded polygons.
The read arrows in Figure 4.1 suggest a good parametrization for the example
shown. The parametrization of the multrigrid orbits that comes from the
dynamics is a good parametrization. When P is closed, we think of the
circle S1 as the domain for the parametrization. When P is open, we think
of R as the domain of the parametrization.

Let P1 and P2 be nearly embedded polygons. We consider the closed case
first. We say that P1 and P2 are K-close if there are good parametrizations
fk : S1 → Pk such that ‖f1(t)− f2(t)‖ ≤ K for all t ∈ S1. When P1 and P2

are open, we make the same definition with R in place of S1.
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4.2 The Coarse Isomorphism Theorem

We say that a polygonal union is a union C of nearly embedded polygons in
the plane. We assume that C is locally finite, in the sense that only finitely
many members of C intersect any given compact subset of R2. We say that
a stabilization of C is a union of the form C ′ = C ∪X where X is a discrete
set of points.

We say that two polygonal unions C1 and C2 are C-coarsely equivalent if
there are stabilizations C ′

1 and C ′

2 of C1 and C2 respectively, and a bijection
φ : C ′

1 → C ′

2 (between members of the two unions) such that correponding
members of the two families are C-close.

Recall that M is the linear transformation defined in Equation 10.

Theorem 4.1 (Coarse Isomorphism I) Let A ∈ (0, 1) −Q be arbitrary.

Let θ ∈ [0, 2] × [0, 1] be such that the arithmetic graph Γ(θ;A) is entirely

defined, and the multigrid U(θ;A) is in general position. Then the union of

components of Γ(θ;A) is CA-coarsely equivalent to the union of orbits of the

multigrid flow on M(U(θ;A)). The constant CA only depends on A. The

function A→ CA is uniformly bounded on (ǫ, 1− ǫ) for any ǫ > 0.

The Coarse Isomorphism Theorem says that there is a bijection between
the sufficiently long components of the arithmetic graph and the sufficiently
long orbits of the multigrid flow. This bijection breaks down for very short
orbits, and the device of stabilization is a succinct way of dealing with the
issue. One can see from pictures that the bijection only breaks down for
orbits whose diameter is less than about 5 units.

For the purpose of studying the large scale structure of the arithmetic
graph (and hence of outer billiards on kites) the coarse equivalence given by
the Coarse Isomorphism Theorem is just about exactly what we want. The
dependence of the constant CA on the parameter is annoying. We discuss
this next.

As A → 0 or A → 1, the best constant CA really does tend to ∞. How-
ever, the mismatch between the multigrid orbits and the arithmetic graph
orbits is caused by a very simple mechanism that we might call spike forma-

tion. (See the figures below.) We can slightly modify our multigrid orbits
and produce a uniform constant. Say that one polygon P ′ is a truncation of
another polygon P if P ′ is obtained from P by replacing some consecutive
pairs of edges of P with single edges. Figure 4.2 shows what we have in mind.
The red dots indicate where we have made the changes.
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Figure 4.2: A blue polygon and its black truncation.

Here is a sharper version of the Coarse Separation Theorem. In this
result, we think that the constant C is about 5.

Theorem 4.2 (Coarse Isomorphism II) Let A ∈ (0, 1)−Q be arbitrary.

Let θ ∈ [0, 2] × [0, 1] be such that the arithmetic graph Γ(θ;A) is entirely

defined, and the multigrid U(θ;A) is in general position. Then the union

of components of Γ(θ;A) is C-coarsely equivalent to the union of suitably

truncated orbits of the multigrid flow on M(U(θ;A)). The constant C is

uniform.

The general position requirement on U(θ;A) is not really necessary for
the Coarse Isomorphism Theorem. However, various complications make the
theorem a bit trickier to state. However, even as stated, our result tells
almost the whole story. For each choice of A, the is just a 1-dimensional
subset of choices of θ for which our results do not apply.

In the next section we will show some pictures of the Coarse Isomorphism
Theorem in action.
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4.3 Some Pictures

The Coarse Isomorphism Theorem is most obvious when the temperature of
the graph is low. Here we show an example when the temperature is 8/55.
The multigrid orbit is shown blue and the arithmetic graph component is
shown in white.

Figure 4.3: A = 17/72 and θ = (1/72, 8/55).

Figure 4.4 shows a picture at temperature 1. One sees this sort of space-
filling behavior when the parameter is a good approximation to 1/2. Notice
that there are certain spikes in the figure where the multigrid orbit deviates
from the arithmetic graph component.
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Figure 4.4: A = 33/67 and θ = (1/67, 1).

Figure 4.5 shows a more dramatic instance of the spiking phenomenon.
Here the parameter A is quite close to 1. The second version of our Coarse
Isomorphism Theorem is meant to deal with precisely this phenomenon. We
get a much better approximation if we simply truncate all these spikes.
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Figure 4.5: A = 231/257 and θ = (1/257, 1).

Finally, we end with a large component of an example we selected at
random.
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Figure 4.8: A = 66/167 and θ = (662/977, 355/523).
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