
Outer Billiards, the Arithmetic Graph, and

the Octagon

Richard Evan Schwartz ∗

July 1, 2010

1 Introduction

B. H. Neumann [N] introduced outer billiards in the late 1950s and J. Moser
[M1] popularized the system in the 1970s as a toy model for celestial mechan-
ics. Outer billiards is a discrete self-map of R2 − P , where P is a bounded
convex planar set as in Figure 1.1 below. Given p1 ∈ R2 − P , one defines
p2 so that the segment p1p2 is tangent to P at its midpoint and P lies to
the right of the ray −−→p1p2. The map p1 → p2 is called the outer billiards map.
The map is almost everywhere defined and invertible. See [T1] for a survey
of outer billiards.
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Figure 1.1: Outer billiards relative to P .
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Usually, the main object of study is the orbit {pn} of the point p1. These
orbits are both complicated and interesting. When P is a convex polygon,
the orbits frequently have a fractal structure. Aside from a few cases, the
structure of the orbits is not yet well understood.

It turns out that it is sometimes productive to study not the orbit it-
self but rather a certain acceleration of the orbit. Roughly speaking, the
acceleration we have in mind amounts to considering the first return map to
a certain infinite strip in the plane. We call this acceleration the pinwheel
dynamics , because it is based on the pinwheel map that we studied in [S3].
We give a full account of the pinwheel map in §2.2 and recall some of the
results of [S3] in §2.5. We point out, however, that this paper does not rely
on any of the results in [S3]. The work here is self-contained.

The first purpose of this paper is to introduce an object called the arith-
metic graph. The arithmetic graph is a polygonal path Γ(P, p) ⊂ Rn that
one associates to the pinwheel dynamics of p = p1. One can view this graph
as a geometric incarnation of the symbolic coding of the pinwheel dynamics.
The arithmetic graph is quite similar to the lattice paths studied by Vivaldi
et. al. [V] in connection with interval exchange transformations. We will
define the arithmetic graph in §2.3, right after defining the pinwheel map.

In case P is a kite – i.e. a convex quadrilateral having a diagonal that is
a line of symmetry – we have studied the arithmetic graph in great detail.
In [S1] we analyzed the graph Γ(P, p), where P is the Penrose kite and p is a
specially chosen point. For this pair, we showed that Γ(P, p) is coarsely self-
similar , in the sense that a certain rescaled limit of Γ(P, p) is a self-similar
fractal curve. See §4.1 for a formal definition of what we mean by a rescaled
limit .

We used the coarse self-similarity of the arithmetic graph in this case to
conclude that the orbit of p is unbounded relative to P . This provided the
first example of an outer billiards system with unbounded orbits. In [S2] we
studied the arithmetic graphs relative to kites in general, and showed that
outer billiards has unbounded orbits when defined relative to any irrational
kite. In §3.1 we will show some of the nicest pictures of arithmetic graphs
associated to kites.

The irrational kites are the only known examples 1 of polygons for which
outer billiards has unbounded orbits. Since the arithmetic graph turns out

1It is worth mentioning that Dolgopyat and Fayad show in [DF] that outer billiards
also has unbounded orbits when defined relative to a semi-disk.
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to be a decisive tool for establishing the unboundedness results for kites, we
think that it will also be a useful tool for polygonal outer billiards more gen-
erally. Compare Theorem 2.3 (a result quoted from [S3]) and the discussion
following it.

Even in the case when all the orbits are known to be bounded, as they are
for so-called quasi-rational polygons – see [VS], [K], [GS] – we think that
the arithmetic graph should shed light on the dynamics. (See the end of §2.5
for a definition of quasi-rational .) In particular, the arithmetic graph sheds
light on the dynamics relative to the regular polygons. The regular polygons
are nice examples of quasi-rational polygons.

The vertices of a regular polygon have coordinates that lie in a cyclotomic
field. When p lies in this same field, one can view certain projections of Γ(p)
as “Galois conjugates” of the orbits. In somewhat the same way that the full
list of Galois conjugates of an algebraic number sheds light on the number,
the arithmetic graph sheds light on the orbits associated to a polygon with
algebraic vertices.

This brings us to the main purpose of our paper. We will concentrate on
outer billiards for the regular octagon, a polygon that we scale so its vertices
are the 8th roots of unity. The outer billiards dynamics for the regular
octagon are well understood from certain points of view, but we will show
that the study of the arithmetic graphs in the regular octagon case leads to
a big surprise: There is a fractal loop Γ in R4 which has the following three
properties.

• One planar projection π3 of Γ is an embedded fractal loop reminiscent
of the Koch snowflake. See Figure 1.2 below. We call this fractal the
snowflake. We give a precise definition in §4.2.

• Another planar projection π2 of Γ is a fractal set reminiscent of the
Sierpinski carpet. See Figure 1.3 below for an approximate picture.
We call this fractal the carpet . We give a precise definition in §4.4.

• Γ is the rescaled limit of the arithmetic graphs associated to any se-
quence of odd periodic orbits. We give a precise definition of rescaled
limit in §4.1.

It turns out that all the periodic orbits intersect a certain strip in 3k

points for some integer k. See §7.4. We call the orbit odd if k is odd. In
Figure 1.2, the odd orbits are arithmetically closed orbits are lightly colored.
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What we actually prove is slightly weaker than what we have just said. For
technical reasons, we only consider odd orbits that lie outside the first layer
of big grey octagons in Figure 1.3.

Figure 1.2: The snowflake and the carpet

Figure 1.3: Periodic orbits associated to the octagon

By considering the correspondence between our two fractals, we produce
a surjective continuous map from the snowflake to the carpet. This map is
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“symmetry respecting” in a certain formal sense that we discuss in §4. See
§4.6 for a description of the map from the snowflake to the carpet. What
is surprising is that this canonical map between two seemingly unrelated
fractals actually arises “naturally”, in connection with outer billiards on the
octagon.

For the sake of comparison, we now discuss the situation for other regular
polygons.For n = 3, 4, 6, outer billiards on the regular n-gon is rather trivial
and easy to describe. In all these cases, there is a familiar periodic tiling of
the plane, such that the dynamics permutes the tiles. In the case n = 4 we
get the usual square tiling. In the cases n = 3, 6 we get a tiling by hexagons
and triangles.

For the case n = 5, Tabachnikov [T2] analyzes the situation in detail.
The recent paper [BC] builds on the work in [T2] and describes the sym-
bolic dynamics for the periodic orbits in great detail. We are interested in
something different, namely the pinwheel dynamics, but the two are closely
related. In the case of the regular pentagon, our construction produces a pair
of embedded fractal curves, both akin to the Koch snowflake, that arise as
geometric limits of arithmetic graphs associated to periodic orbits. See §3.2.
For the sake of brevity, we do not present proofs of the statements we make
for the regular pentagon. We are mainly interested in the octagon, and the
analysis we give in the case of the octagon could be fairly easily redone for
the pentagon.

The four cases n = 5, 10, 8, 12 are all quite similar to each other, and
possible to understand completely. In these cases, outer billiards on the
regular n-gon has an efficient renormalization scheme that allows one to
give (at least in principle) a complete description of what is going on. The
special properties of these values of n is that the corresponding nth roots of
unity lie in quadratic number fields. In the case n = 10, we get the same
two snowflakes as in the case n = 5. We leave the case n = 12, which
is mildly more complicated than any of the other quadratic cases, to the
experimentally minded reader.

For any other positive integer n, outer billiards on the regular n-gon is
not well understood at all. For the sake of comparison, we will draw some
pictures of arithmetic graphs associated to the regular 7-gon. See §3.4. In
this case, the pictures reveal an explosion of complexity in a geometrically
striking way. Our 4 figures in §3.4 give only the faintest hint of the complex-
ity.
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Here is the plan of the paper.

• Basic Definitions: In §2 we will define the arithmetic graph, and give
explicit formulas in the case of the regular octagon.

• A Picture Gallery: In §3 we draw the arithmetic graphs for many
examples, including the regular octagon. After reading §3.3, the reader
should have a good intuitive idea of what our main theorem will say,
even though we defer the formal statement until §5.1.

• Carpet and Snowflake: In §4 we define the snowflake and carpet
fractals precisely, and discuss the relationship between them.

• Reduction to a Small Region: We state our main result, Theorem
5.2, at the beginning of §5. In §5 we reduce Theorem 5.2 to the study
of periodic points in a very small region R1.

• Toy Example of Renormalization: In §6 we study a simple and
well-known polygon exchange map that arises in connection with outer
billiards on the regular octagon. The material in this chapter is not
strictly necessary for our formal proof, but the system we study here is
closely related to the one that comes from the pinwheel map.

• Pinwheel Dynamics: In §7, we describe the dynamics of the pinwheel
map on the region R1. Actually, we reduce an even smaller region, R,
which is the top half of R1. The dynamical system on R is the main
dynamical system of interest to us. Both the pinwheel map and the
system from §6 have a period 3 renormalization that is the key to their
analysis.

• Substitution Scheme: In §8 we study the arithmetic graphs pro-
duced by the dynamics on R. Using the renormalization scheme, we
describe an efficient 2-part method for generating the projections of the
arithmetic graph of interest to us. The first part of the method is com-
binatorial, and involves a substitution scheme for numerical sequences.
The second part is geometrical, where we replace each number in the
created string by a certain vector. We call this second half the vector
assignment.
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• Fixed Point of Renormalization: In §9 we modify the construction
presented in §8, keeping the combinatorial part the same but changing
the vector assignment. We see that the substitution scheme produces a
kind of renormalization operator defined on the vector space of all pos-
sible vector assignments. This fixed point corresponds to the Perron-
Frobenius eigenvector. By taking the fixed point of our operator as the
new vector assignment, we produce a nicer family of curves that has
the same rescaled limit.

• Self-Similar Pattern Matching: In §10 we check by a combina-
tion of direct calculation and induction that our improved curves from
§9 have the snowflake and the carpet as their limit. The key idea is
that the improved curves and the fractals from §4 are self-similar in
compatible ways. The final analysis completes the proof of the Main
Result.

The reader might be interested to know that we have made two java pro-
grams, OctoMap 1 and OctoMap 2 , which illustrate the mathematics in this
paper. OctoMap 1 illustrates the snowflake and carpet fractals in great de-
tail, and gives an interactive demonstration of the material in §4. OctoMap
2, a much more extensive program, starts with the dynamical system pro-
duced in §7 and illustrates all the key ideas that go into the proof of the
Main Theorem. In particular, one can use OctoMap 2 to survey all the com-
putations we describe in §7-10. One can find our applets, respectively, at the
following address:

• http://www.math.brown.edu/∼res/Java/OctoMap/Main.html

• http://www.math.brown.edu/∼res/Java/OctoMap2/Main.html

We strongly encourage the reader to look at these applets while reading this
paper. They relate to this paper the same way that a cooked meal relates to
a recipe.

I’d like to thank Gordon Hughes and Sergei Tabachnikov about interesting
and inspiring conversations about outer billiards on regular polygons.
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2 The Arithmetic Graph

2.1 Strip Maps

Let Σ ⊂ R2 be an infinite strip. Let V be a vector whose tail lies on one
edge of Σ and whose head lies on the other. All this is shown in Figure 2.1.

p

f(p)
VΣ

Figure 2.1: A strip map

To (Σ, V ) we associate a strip map f : R2 → Σ, defined by f(p) = p+nV ,
where n ∈ Z is chosen so that p + nV ∈ Σ. In the example shown, we have
n = 2.

Remarks:
(i) f is not everywhere defined. It is not defined on a certain countable family
of lines that are parallel to Σ. In particular f is not defined on the boundary
of Σ.
(ii) The pair (Σ,−V ) gives rise to the same map as the pair (Σ, V ).
(iii) In case Σ is the horizontain strip bounded by the lines y = 0 and y = 1,
and V = (0, 1), the map map f has the formula f(x, y) = (x, [y]), where [y]
is the fractional part of y. In this case, f is not defined on the horizontal
lines of integer height. Any other strip map is conjugate to this one by some
affine transformation.
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2.2 The Pinwheel Map

Let P be a convex n-gon. To P we associate n special pinwheel strip. Each
pinwheel strip Σ is such that one component of ∂Σ contains an edge e of P ,
and vertices of P farthest from this boundary component lie on the centerline
of Σ. See Figure 2.2

v

V

w

L

p

Σ

Figure 2.2: A pinwheel strip associated to a regular octagon

We orient the boundaries of a pinwheel strip Σ so that a person walking
along a boundary component would see Σ on the left. Thus, the two boundary
components are oriented in opposite directions. Say that a pointed strip is a
strip, together with a choice of boundary component. We think of a pointed
strip as pointing in the direction of the orientation on its preferred boundary
component. To each n-gon we associate 2n pointed strips, 2 per pinwheel
strip. We denote pointed strips by a pair (Σ, L), where L is a boundary
component of the strip Σ.

To the pair (Σ, L) we associate a vector V as follows. We choose ǫ > 0
and let p be a point which is ǫ units from L, outside of Σ, and 1/ǫ units
away from the origin. Of the two possible locations for p that the above
conditions determine, we choose the one toward which L points. Figure 2.2
shows what we mean. We then let V = φ2(p) − p. Here φ2 is the square of
the outer billiards map. Our definition is independent of ǫ, provided that ǫ
is sufficiently small.
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In general, V = 2(w − v), where v is the vertex bisecting the segment
joining p to φ(p) and w is the vertex bisecting the segment joining φ(p) to
φ2(p). It is not hard to check that Σ and V are related as in §2.1.

1

2C

4

14

0

5

6

7

8

9

10
11

12 13

15

3

Figure 2.3: The pointed strips associated to a regular octagon

Thus, we have associated to P a total of 2n triples (Σk, Lk, Vk). Here
(Σk, Lk) is a pointed pinwheel strip and Vk is the associated vector. We
cyclically order these 2n triples in the following way. We choose a large
circle C centered at the origin, and orient C counterclockwise. Each pair
(Σk, Lk) determines a point ck ∈ C, namely the intersection point of Lk ∩ P
towards which Lk points. We order our triples so that the points c1, ..., c2n

occur in counterclockwise order along C. Figure 2.3 shows these points, in
case P is the regular octagon. In Figure 2.3 we highlight the pointed strips
Σ15 and Σ0 = Σ16.
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Let fk be the strip map associated to the pair (Σk, Vk). We say that the
pinwheel map is the composition

Φ : f2n ◦ . . . ◦ f0 : Σ0 → Σ0 (1)

We say that p ∈ Σ0 is preferred if, for all x ∈ P , the vector p−x has pos-
itive dot product with vectors parallel to L0. We call the subset of preferred
points the preferred half of Σ0 and denote it by H0. We usually restrict Φ to
H0. Note that Φ need not carry H0 to H0. However, if p ∈ H0 is sufficiently
far from Σ0 −H0 then Φ(p) ∈ H0.

Remark: For our purposes here, the boundary of H0 (that separates H0

from Σ0 − H0) is not important. What is important is the end of Σ0 that
H0 determines. Below, and just for the case of the regular octagon, we will
replace H0 by a similar set, namely Σ1

0 below, that is invariant under Φ.

Let φ denote the outer billiards map and let φ2 be the square of the outer
billiards map. Let O+(φ2, p) denote the forwards φ2-orbit of p.

Lemma 2.1 The following is true for all points p ∈ H0 that lie sufficiently
far from P . Let q be the first point in O+(φ2, p) that lies in H0. Then
q = Φ(p).

Proof: For each point p ∈ R2 − P for which φ2 is well-defined, there is a
vector V (p) such that φ2(p) − p = V (p). The function p → V (p) is locally
constant. Let ∆ be the disk bounded by the large circle C, as in Figure 2.2.
Let Wk be the open acute wedge shaped region of R2 − ∆ bounded by the
lines Lk−1 and Lk. The vector Vk has the property that V (p) = Vk for at
least some points p ∈Wk. But one can check easily that φ2 is defined on all
of Wk provided that the circle C is taken large enough. Hence V (p) = Vk for
all p ∈Wk.

Starting at p = p0 ∈ W1 ∩ H0, the successive points in O+(φ2, p0) have
the form p0 + mV1 for m = 1, 2, 3.... This continues until we reach a point
p1 = p0 + m1V1 ∈ Σ1. But then p1 = f1(p0). Starting at p1 ∈ W2 ∩ Σ1, the
successive points in O+(φ2, p1) have the form p1 +mV2 for m = 1, 2, 3.... This
continues until we reach a point p2 = p1 +m2V2 ∈ Σ2. But then p2 = f2(p1).
Continuing in this way, we get pn ∈ Σ0. But pn and p0 lie in opposite com-
ponents of Σ − ∆. We have gone halfway around. Continuing the process,
we finally arrive at p2n = q = Φ(p0) ∈ H0, as claimed. ♠
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2.3 The Arithmetic Graph

Let p = p0 ∈ Σ0 be a point. As in the proof of Lemma 2.1, there are integers
m1, ..., m2n such that

pk := fk(pk−1) = pk−1 +mkVk ∈ Σk. (2)

Let v1, ..., vn be the vertices of P , ordered clockwise around P . Let
e1, ..., en be the standard basis of Rn. For each vector V = Vk there are
indices i and j such that Vk = 2(vi − vj). Of course, i and j depend on k,
but we are suppressing this from our notation. We define

Ṽ = 2(ei − ej); k = 1, ..., 2n. (3)

We define

Φ̃(p) =
2n∑

k=1

mkṼk; Φ̃k+1(p) = Φ̃(Φ̃k(p)). (4)

We define Γ(P, p) to be the polygonal path in Rn that starts at 0 and has

consecutive vertices Φ̃(p), Φ̃2(p), etc.

Remarks:
(i) It might seem at first that Φ̃ is somehow a “lift” of Φ to Rn. This is only

partially true. What is true is that Φ̃k is a map from Σ0 to Rn. This map is
only defined on points where Φk is well defined.
(ii) By construction the arithmetic graph is a lattice path in that its vertices
lie in Zn. As remarked in the introduction, one should compare the lattice
paths of [V].
(iii) There is a constant C ′, depending only on P , such that |mk+n−mk| < C ′.
The reason is that the successive points p1, ..., p2n are the vertices of a convex
polygon that is centrally symmetric to within a bounded error. Hence, the
edges of Γ(P, p) have length at most C, for some constant C depending only
on P . This property is important when we take rescaled limits of the graph.
(iv) There is an obvious projection π : Rn → R2 given by π(ek) = vk. By
construction, p + π(Γ(P, p)), meaning the translation of π(Γ(P, p)) by p, is
exactly the forwards Φ orbit of p. What makes Γ(P, p) interesting is that
sometimes other projections are much more revealing. We will illustrate this
in the next chapter with many examples.
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2.4 Formulas for the Octagon

Since we are concentrating on the regular octagon, it seems worthwhile giving
explicit formulas in this case. Recall that the vertices of the regular octagon
are ωk for k = 0, ..., 7. We let (ij) denote the line through ωi and ωk, oriented
from i to j. We let k(ij) denote the image of (ij) after we apply reflection
in ωk. Finally, we let [ij] denote the vector that points from ωi to 2ωj − ωi.
The vector −[ij] is literally the negative of [ij].

0

Σ0

Σ0
13

V0 L

1

0

75

4

6

2

Figure 2.4: The triple (Σ0, L0, V0).

Definition: The shaded region in Figure 2.4 is the subset of Σ0 to the right
of the line y = 2 +

√
2. We let Σ1

0 denote this set.

To illustrate our notation by way of example, The triple (Σ0, L0, V0) is
specified by

0 : 6(23) (23) − [26]. (5)

We first list L0, then the other component of Σ0, and then V0. See Figure
2.4.
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The listing for (Σ2, L2, V2) is obtained from the one for (Σ0, L0, V0) simply
by incrementing all the indices by 1. That is

2 : 7(34) (34) − [37].

And so on.

1

V1
1

1

0

7
6

5

4

3

2

Σ

L

Figure 2.5: The triple (Σ1, L1, V1).

The triple (Σ1, L1, V1) is specified by

1 : (67) 3(67) [63] (6)

See Figure 3.4.
The listing for (Σ3, L3, V3) is obtained from the one for (Σ1, L1, V1) simply

by incrementing all the indices by 1. That is

3 : (70) 4(70) [74]

And so on.
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2.5 Discussion

Lemma 2.1 gives a precise relationship between the pinwheel map and the
outer billiards map for points in H0 that are far from P . The relationship
between φ2 and Φ for points near P is rather subtle, and it was the purpose
of the paper [S3] to explain the relationship. Here we summarize some of
the results from [S3]. These results are not needed for this paper, but they
are worth knowing.

Let O+(Φ, p) denote the forward Φ-orbit of p ∈ H0. Here is a consequence
of our work in [S3]

Theorem 2.2 Suppose that all our constructions are made with respect to
a convex polygon with no parallel sides. Then, the following holds for any
sufficiently large disk ∆ centered at the origin. Let p ∈ Σ0 − ∆. Then
O+(φ2, p) returns to H0 − ∆ if and only if O+(Φ, p) returns to H0 − ∆, and
the two points of return are the same.

There are two subtle points to Theorem 2.2. First, the forward orbits
of p, in either case, might wind many times around P before returning to
H0−∆0. Second, Lemma 2.1 only applies to points of H0 that are sufficiently
far from P . After our orbits exit H0 − ∆, then might wander quite close to
P and only “come back out” much later on. However, magically, they “come
back out” in exactly the same way. One consequence of Theorem 2.2 is

Theorem 2.3 Suppose that all our constructions are made with respect to
a convex polygon with no parallel sides. The pinwheel map Φ has unbounded
orbits relative to P if and only if outer billiards has unbounded orbits relative
to P .

We only proved these results for polygons without parallel sides because
we wanted to avoid certain technical complications. We fully expect that
the same results hold for all convex polygons. However, we have not yet
worked out the details. For the present paper, which deals (rigorously) just
with the regular octagon, we will prove something stronger than Theorem
2.2. Namely, in §5.3 we prove

Lemma 2.4 (Invariance) For k = 1, 2, 3... let Σk
0 ⊂ Σ0 be the subset con-

sisting of points lying to the right of the line x = k(1 +
√

2) . Then Σk
0.

Φ-invariant for all k ≥ 1
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The argument in Lemma 2.1 works directly for all orbits in Σ1
0. Ac-

cordindly, for points in Σ1
0, we can be sure that the pinwheel dynamics and

the first return dynamics of the square outer billiards map coincide.
The Invariance Lemma implies that all forward orbits of both φ and Φ are

bounded. By symmetry, the same goes for the backwards orbits. Hence, the
Invariance Lemma implies Theorem 2.3 for the regular octagon. Compare
§5.3.

The Invariance Lemma is a special case of a general result concerning
quasi-rational polygons. The polygon P is called quasi-rational if it may be
scaled so that

area(Σk ∩ Σk+1) ∈ Z ∪∞
for all k = 1, ..., 2n. Here indices are taken mod 2n, as usual. In case no
sides of P are parallel, the above areas are all finite. For regular polygons,
one can scale so that all the finite areas are 1. Hence, regular polygons are
quasi-rational. Likewise, polygons with rational vertices are quasi-rational.

As we mentioned in the introduction, it is proved in [VS], [K], and [GS]
that all outer billiards orbits are bounded for a quasi-rational polygon. In
[S3] we give a self-contained proof of this result, in case P has no parallel
sides.
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3 Examples of Arithmetic Graphs

3.1 Rational Kites

As in [S2] we let K(A) be the kite with vertices

(−1, 0); (0, 1); (0,−1); (A, 0); A ∈ (0, 1). (7)

The case A = 1 corresponds to the square, a trivial case we ignore. K(A) is
called (ir)rational iff A is (ir)rational.

When A = p/q, we call the point (1/q, 1) the fundamental point , for
reasons we explain in great detail in [S2] and briefly as follows. The orbit
of any point (x, 1) has the same combinatorics as the point (1/q, 1) for any
0 < x < 2/q. For this reason, the point (1/q, 1) is a representative of the
dynamics of points “arbitrarily close” to the top vertex of K(p/q) and on the
same horizontal line as the vertex.

We will consider the arithmetic graphs

Γp/q = Γ(K(p/q), (1/q, 1)) (8)

for various choices of p/q. We will draw a certain projection of this graph into
the plane. We will not specify the projection we use explicitly because it is
tedious to do so. The fact is that Γp/q lies in a thin neighborhood of a 2-plane
in R4 and a random projection will produce pictures very similar to ours.
Indeed, any projection looks about the same, up to an affine transformation
of R2.

Consider the rational sequence {an} which starts 0, 1 and obeys the rule
an = 4an−1 + an−2. This sequence starts out

0, 1, 4, 17, 72, 305, . . .

We have
lim

n→∞
an−1/an =

√
5 − 2 = φ−3.

Here φ is the golden ratio. The kite K(φ−3) is affinely equivalent to the
Penrose kite. The first four quotients are

1/4 4/17 17/72 72/305 . . .

Figure 3.1 shows ΓA for the first four of these quotients.
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Figure 3.1: ΓA for A = 1/4, 4/17, 17/72, 72/305.

We want to emphasize that our projection is such that the vertices of
these polygons all lie in Z2. Were the polygons drawn to scale, each one
would be about φ3 ≈ 4.23 times as large as the predecessor. However, when
we rescale them so that they are about the same size, a fractal structure
emerges. Later in the paper, we will formalize what we mean to taking the
rescaled limit of a sequence of arithmetic graphs, but we hope that the above
informal discussion makes the general idea clear.

Another nice sequence of pictures is given by the quotients of the rational
sequence {an} where a0 = 1 and a1 = 2 and an = 2an−1 + an−2. In this case
lim an−1/an =

√
2 − 1. One of the quotients is 169/408. Figure 3.2 shows

the picture of the corresponding arithmetic graph. One can see the fractal
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structure emerging just from this single polygon.

Figure 3.2: ΓA for A = 169/408.

There is one interesting feature of Kp/q that one sees almost immediately.
If pq is even, then Kp/q is a closed embedded loop. If pq is odd, then Kp/q

is an open embedded polygonal curve. The difference derives from the fact
that the orbit of (1/q, 1) is stable when pq is even and unstable when pq is
odd. By this we mean that a small change in the kite parameter destroys
the orbit of (1/q, 1) when pq is odd, but not when pq is even. We prove the
above statements in [S2].

My program Billiard King 2 allows the reader to draw these pictures
for any (smallish) rational parameter. Our monograph [S2] discusses these
graphs in great detail. In fact, one could consider [S2] as an exploration of
the arithmetic graphs associated to kites.

2You can download this program from my website http://www.math.brown.edu/∼res
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3.2 The Regular Pentagon

Let P be the regular pentagon. We scale P so that its vertices have the form
ωk for k = 0, 1, 2, 3, 4. Here ω = exp(2πi/5) is the usual primitive 5th root
of unity. In this case, we have maps πk : R5 → C given by

πk(X) =

4∑

j=0

xjω
kj. (9)

Here X = (x0, x1, x2, x3, x4). The map π1 is just the projection mentioned
above. Note that πk and π5−k agree up to complex conjugation. Thus, the
only remaining interesting projection is π2.

Relative to any convex polygon, any periodic point x lies in a convex
polygon Px consisting of points that have exactly the same dynamics. The
outer billiards map moves the tile Px around isometrically. The pictures we
show of outer billiards will draw the orbits of these tiles, rather than the
orbits of individual points, because the pictures are more revealing. Figure
3.3 shows the picture for the regular pentagon.

Figure 3.3: Some of the periodic orbits for the regular pentagon
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In the case of the regular pentagon, there are two kinds of orbits, those
lying in regular pentagon tiles and those lying in regular 10-gon tiles. This
is worked out in [T2], and also discussed in [BC]. The smaller the tile, the
longer the periodic orbit.

The left half of Figure 3.4 shows a plot of π2(Γ(P, p)), where p is a point
of Σ0 that lies inside a pentagonal tile. We choose the period to be fairly
long, so that the actual size of the graph is quite large. One can see the
emerging fractal structure in the rescaled picture. The right half of Figure
3.4 shows the corresponding picture for a periodic point that lies inside a 10-
gon tile. The reader can probably see that these tiles somehow fit together
“hand-in-glove”.

Figure 3.4: Some of the periodic orbits for the regular pentagon

Any choice of long periodic orbit will yield a picture that is essentially
identical to one of the two above. In the case of the regular pentagon, the
arithmetic graphs lie within a thin tubular neighborhood of a 2-plane in R5.
Any other projection of the graph would look like an affine image of one of the
two pictures shown above. This is why we say that, in the regular pentagon
case, there are two fractal curves that somehow control the structure of the
pinwheel dynamics.

As we remarked in the introduction, we do not offer proofs of these results,
because we will give complete proofs of the analogous results for the regular
octagon.
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3.3 The Regular Octagon

Let P be the regular octagon. We scale P as in §2.4, and we define the
projection maps as in §3.2. In the case, there are two interesting projections,
π2 and π3. (It turns out that π4 always maps the graph into a line segment.)

As we discuss in the introduction, in connection with Figure 1.3, we call
a periodic orbit odd if it intersects Σ1

0, the half-strip from Figure 2.4., in 3k

points, for k odd. It turnso out that “half” the periodic orbits that start in
Σ1

0 have this property. The odd periodic orbits are the lightly colored ones in
Figure 3.5 that happen to intersect Σ1

0. This includes all the lightly colored
octagons that lie outside the first large ring of 8 octagons.

Figure 3.5: The tiling associated to the octagon
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Figure 3.6 shows some π3 projections of the arithmetic graphs associated
to odd orbits. For π3, the projections corresponding to the even orbits look
similar. Note that Figure 1.2, which was drawn using the subdivision method
discussed in §4.2, emerges as we rescale the pictures.

Figure 3.7: The snowflake emerges.

Now we are going to show the π2 projections of the same orbits.
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Figure 3.7: The carpet emerges in the odd case.

For the even orbits, the π2 projection is an open curve that looks fairly
similar. We refer the reader to the program OctoMap 2, where one can see
much better pictures, in both the odd and even cases.

3.4 The Regular Heptagon

We can make the same constructions for the regular heptagon as we made
for the regular pentagon and octagon. The analogue of Figure 3.3 exists,
but is not yet understood. The two interesting projections in this case are
π2 and π3. Unlike the two cases we considered above, there is an explosion
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of distinct pictures in this case. Sometimes the π2 projection looks nicer
and sometimes the π3 projection looks nicer. Sometimes both projections
look incomprehensibly complex. Here are two simple examples, both π2

projections.

Figure 3.10: Some examples associated to the regular 7-gon.

These examples do not even begin to capture the vast array of pictures
one sees for the regular 7-gon. We encourage the experimentally-minded
reader to explore the situation for themselves.

25



4 The Snowflake and the Carpet

4.1 The Hausdorff Topology

Let K1, K2 ⊂ R2 be two compact subsets. We define δ(K1, K2) to be the
smallest ǫ such that K1 is contained in the ǫ-tubular neighborhood of K2

and vice versa. The function δ is known as the Hausdorff distance between
K1 and K2. Given any compact subset Ω ⊂ R2 we let M(Ω) denote the set
of compact subsets of Ω. Equipped with the function δ, the space M(Ω) is
itself a compact metric space.

When we have a sequence of uniformly bounded compact subsets {Kn}
and we say that it converges, we mean that it converges in M(Ω) for some
large compact Ω that contains all the individual sets. The set Ω just serves
as a kind of container, so that we can speak about the convergence as taking
place within a compact metric space. The notion of convergence we get
is independent of the choice of Ω. Indeed, we could say more simply that
Kn → K iff d(Kn, K) → 0. We call K the Hausdorff limit of {Kn}.

One case of interest to is is when we have a sequence {Pn} of polygons
whose diameter tends to ∞. If we can a compact subset K and a sequence
of similiarities {Sn} such that Sn(Pn) → K in the Hausdorff topology, then
we call K a rescaled limit of {Pn}. In this case, the contraction factor of Sn

necessarily tends to 0.

4.2 The Snowflake

We call the snowflake I3. Figure 4.1 shows the subdivision of a right-angled
isosceles triangle into 5 smaller ones. If the long side of the triangle has
length 1, then the square on the right hand side of the figure has side length√

2 − 1. The three small triangles in the middle have the same size.

Figure 4.1: Subdivision rule

To produce the snowflake, we start with the union of 8 isosceles triangles
shown at the top right in Figure 4.2. Then we apply the subdivision rule
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iteratively. The Hausdorff limit is our snowflake. We denote this limit by I3.

Figure 4.2: Producing the snowflake by iteration.

One nice feature of our construction is that I3 contains all the vertices
of the triangles at every stage of the construction, and the union of these
vertices is dense in I3. Moreover, all these vertices lie in Z[ω], where ω is the
usual primitive 8th root of unity. The triangles in our pictures are 2 colored
in a natural way, according as to whether they point inward or outward.
Assuming that we label a triange 0 if it points inward and 1 if it points
outward, our subdivision rule changes the colors according to the following
rule:

0 → 10001; 1 → 01110. (10)

We will see the significance of this structure below when we examine the
carpet.
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4.3 A Hidden Symmetry of the Snowflake

For any right isosceles triangle T , let L(T ) denote the curve one obtains by
iterating the basic snowflake substitution rule and taking a limit. Assuming
that T has a distinguished side σ, let L(T, σ) denote the portion of L(T )
whose endpoints are the endpoints of σ.

2

T1

TT

Figure 4.3: Some special triangles

Let T , T1, and T2 be the three right isosceles triangles shown in Figure
4.3. The two triangles T1 and T2 have the same size as each other, and are√

2 − 1 times as large as T . Let A = L(T, σ), where σ is the edge of T
bounded by the two white vertices. Let A1 = L(T1, σ1), where σ1 is edge of
T1 bounded by the white and black vertex. Define A2 = L(T2, σ2) similarly.

Lemma 4.1 A = A1 ∪ A2.

Proof: Let d be the Hausdorff distance between A qnd A1 ∪ A2. The
substitution of T consists of 5 smaller triangles, T ′

1, ..., T
′
5, with T ′

1 = T1 and
T ′

2 ∪ T ′
3 related to T2 just as T1 ∪ T2 is related to T . There are edges σ′

2 and
σ′

3 of T ′
2 and T ′

3 such that σ2 = σ′
2 ∪ σ′

3. The remaining triangles T ′
4 and T ′

5

lie to the left of the bottom white vertex of T .
Since T1 = T ′

1, we have A1 ⊂ A. At the same time, the pair of arcs
(A,A1∪A2) is similar to the pair of arcs (A2, A

′
2∪A′

3), where A′
2 = L(T ′

2, σ
′
2)

and A′
3 = L(T ′

3, σ
′
3). From this we see that the Hausdorff distance between A

and A1 ∪A2 is the same as the Hausdorff distance between A2 and A′
2 ∪A′

3.
But, by scaling, the latter distance is (

√
2 − 1)d. So, we have the equation

d = (
√

2 − 1)d,

which of course forces d = 0. ♠
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4.4 The Carpet

We call the carpet I2. The carpet is produced by substitution rule that is
combinatorially identical to the one that produces the snowflake. This time,
we have two shapes, parallelograms and trapezoids. The initial shapes have
their vertices in Z2. Our figures below are accurate.

Figure 4.4 illustrates how the parallelogram P is replaced by the sequence

SP (P ) = T1 ∪ P2 ∪ P3 ∪ P4 ∪ T5

of 5 smaller parallelograms and trapezoids.

Figure 4.4: Substitution rule for the parallelogram

Figure 4.5 shows how the trapezoid T is replaced by the sequence

ST (T ) = P1 ∪ T2 ∪ T3 ∪ T4 ∪ P5

of smaller parallelograms and trapezoids. We say sequence here rather than
union because the pieces in the sequence ST (T ) overlap each other. To make
the substitution clear, we first draw P1 ∪ T2 ∪ T3. Then we add P4 and P5.
The partition is invariant under reflection in the vertical line of symmetry.

Figure 4.5: Substitution rule for the trapezoid
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Let X be a cyclically ordered finite list of parallelograms and trapezoids,
similar to the ones above. We let |X| be the union of shapes in X. We let
SP (X) denote the result of substituting SP (P ) for all parallelograms P ∈ X.
Likewise we define ST (X). Note that SP (X) and ST (X) both have natural
cyclic orders, inherited from the ordering on X. Our carpet is

I2 = lim
n→∞

|I2(n)| I2(n) = SP (ST (I2(0)). (11)

Here I2(0) is a union of 8 copies of T arranged in a square pattern that winds
around twice. (We use 8 rather than 4 so that the seeds for I2 and I3 have
the same cardinality.) Figure 4.6 shows the sets I2(n) produced by iterated
substitution, for n = 0, 1, 2, 3. Since the pieces in overlap, there is more than
one partition we could draw. We have chosen the partition in which every
trapezoid is drawn above every parallelogram.

Figure 4.6: Iterating the substitution rule
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4.5 Another View of the Carpet

Figure 4.7 shows another substitution rule that generates I2. In Figure 4.7,
we are showing how to replace a square by a subset of a square. Here we
think of the dark triangles and quadrilaterals as markings that tell us how
to orient the pieces when we iterate the basic rule. We obtained this rule
by looking at Figure 4.6. The fractal obtained from this alternate rule is a
subset of the Sierpinski carpet. It is obtained from the Sierpinski carpet by
systematically deleting certain squares.

Figure 4.7: An alternate substitution rule

Lemma 4.2 I2 is the fractal produced by the alternate substitution rule.

Proof: We will start with the original rule and keep modifying it until we
get to the alternate rule. Along the way, we show that the modifications
don’t change the limiting fractal.
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For starters, we divide each parallelogram in half. In this way, we interpret
the original substitution rule as a being generated by a rule for trapezoids
and a rule for isosceles triangles. The left hand side of Figure 4.8 shows the
new SP (P ), The right hand side of Figure 4.8 shows the new ST (T ).

Figure 4.8: The first modification

We have redrawn the second halves of Figures 4.4 and 4.5. In the case of
Figure 4.5, we have drawn all the trapezoids on top. In drawing this piece,
we arbitrarily chose to draw the left (divided) parallelogram on top of the
right one. The substitution rule for the isosceles triangle does not respect
the symmetry of the triangle. We record the asymmetry by orienting the
hypotenuse of each triangle, as shown. The new substitution rule clearly
generates I2. We still call our new rules SR and ST . Here R stands for a
right isosceles triangle and T still stands for the trapezoid.

Figure 4.9 shows two successive modifications of the rule for ST .

Figure 4.9: Two modifications of ST .

For the first modification, we add another trapezoid to ST (T ). This
new trapezoid appears in SR(ST (T )), so the new rule rule generates the
same limit. We give the same names to our new substitution rules. For the
second modification, we delete two of the isosceles triangles. Call the deleted
triangles R1 and R2. Observe that SR(Rk) ⊂ ST (T ) for k = 1, 2. Therefore,
the latest subdivision rule has the same limit as the original. We again call
the generators of the rule ST and SR. This time ST and SR replace one piece
by a union of pieces that have pairwise disjoint interiors.

From here it is a simple exercise to check that SR ◦ ST implements the
rules shown in Figure 4.7. ♠

32



4.6 The Map from the Snowflake to the Carpet

The initial seed for I3 is a cyclically ordered list I3(0) of 8 isosceles triangles
τ1, ..., τ8. The initial seed for I2 is a cyclically ordered list I2(0) of 8 trapezoids
T1, ..., T8, which wrap around twice, as we have already mentioned. We have
a correspondence Ti ↔ τi between the two seeds.

Since the two substitution rules are combinatorially identical, we induc-
tively get a surjective map from the triangles in I3(n) to the quadrilaterals in
I2(n). This map respects the cyclic ordering on both sets, and it also respects
the relation of descendence. Say that a shape τn of Ij(n) is a descendent of
a shape τm of Ij(m) if the substitution rule, applied n − m times, to τm,
produces a list of shapes that contains τn.

We define φ : I3 → I2 by taking the limit of our correspondence. Given
x ∈ I3 we can find a sequence {τn} of triangles, with τn ∈ X3(n), that accu-
mulates on x. We define φ(x) to be the limit of the corresponding quadrilat-
erals in I2.

Lemma 4.3 φ is well-defined.

Proof: Suppose that {τ ′n} is another sequence of triangles that converges to
x ∈ I2. Let Sn and S ′

n be the shapes of I2(n) corresponding respectively to
τn and τ ′n. It suffices to prove that diam(Sn ∪ S ′

n) → 0.
Call two triangles in I3(m) close if they are either identical or else con-

secutive in the cyclic order. Let dn be the largest integer such that τn and
τ ′n are descendents of close triangles in I3(dn). Since the distance between τn
and τ ′n converges to 0, and I3 is evidently an embedded curve, dn → ∞.

We make the same definitions as above for I2. We can find close shapes Σn

and Σ′
n in I2(dn) such that Sn is a descendent of Σn and S ′

n is a descendent of
Σ′

n. Note that Σn and Σ′
n have intersecting boundaries in all cases. Also, the

diameters of these shapes tends to 0 with n. Hence diam(Σn ∪Σ′
n) → 0. Fi-

nally, we have Sn ⊂ Σn and S ′
n ⊂ Σ′

n. Hence diam(Sn∪S ′
n) → 0 as desired. ♠

Essentially the same proof shows that φ is continuous. Since all the ap-
proximating correspondences are surjective, φ is surjective as well.

Remark: Note that we could get an equally canonical map if we compose φ
with some isometry of I2 or I3. This basic (though trivial) ambiguity comes
up in Statement 3 of our Main Theorem below.

33



4.7 Geometry of the Map

Now we give some geometrical information about the map φ : I3 → I2 defined
in the previous section. Note that I3 contains the vertices of triangles in I3(n)
for all n. Say that a special point of I3 is a right-angled vertex of I3(n) for
some n. The set A3 of special points is dense in I3.

Say that a special point of I2 is a midpoint of the long edge of some
trapezoid in I2(n). We could equally define the special points to be the
centers of the parallelograms. The two definitions coincide. Let A2 denote
the set of special points of I2. The set A2 is the set of midpoints of the
edges of the countable family of squares that arises from the substitution
rule explained in §4.5.

Lemma 4.4 φ(A3) = A2.

Proof: Let v ∈ A3 be some point. Then v is the right-angled vertex of
a triangle τ0 of I3(n) for some n. Note that v is also the right vertex of a
triangle τk of I3(n + k) for k = 1, 2, 3... The triangles τ1, τ2, ... all have the
same type, either inward pointing or outward pointing.

Consider the outward pointing case first. In this case the quadrilateral
Tk of I2(n+k) corresponding to τk is a trapezoid. Inspecting our subdivision
rule, we see that Tk+1 is the middle trapesoid of ST (Tk). Looking at Figure
4.5, we see that Tk and Tk+1 have a common distinguished point. This holds
for all j. Hence

⋂
Tk = φ(v) is the common distinguished point of all these

trapezoids. Hence φ(v) ∈ A2.
In the inward pointing case, the quadrilateral Pk corresponding to τk is a

parallelogram. Here Pk+1 is the middle parallelogram of SP (Pk). But these
parallelograms have a common center. The intersection

⋂
Pk = φ(v) is this

common center. Looking at Figure 4.5 again, we see that the centers of the
parallelograms coincide with distinguished points of trapezoids. So, again
φ(v) ∈ A2.

Our argument so far shows that φ(A3) ⊂ A2. Any x ∈ A2 is the distin-
guished point of some trapezoid T of some I2(n). But then there is a triangle
τ of I3(n) which corresponds to τ . By construction x = φ(v), for the right
vertex v of τ . Therefore φ(A3) = A2. ♠

Let B3 ⊂ I3 denote the set of points that are acute vertices of triangles
in I3(n) for all the different n. Then B3 is dense in I3. Let B2 ⊂ I2 denote
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the set of vertices of quadrilaterals in I2(n) all the different n. The set B2 is
the set of corners of the distinguished squares mentioned above in connection
with A2. The curve I3 looks “oscillatory” in the neighborhood of any x ∈ B3.
Any line through x intersects I3 infinitely often in every neighborhood of x.

Lemma 4.5 φ(B3) = B2.

Proof: The proof is similar to the one for the previous result, so we will be
a bit sketchy. Any x ∈ B3(n) is the acute vertex of a triangle τk in I3(n+ k).
The triangle τk+1 is either the first or last triangle in the list of 5 triangles in
I3(n+k+1) that replaces τk. Whether τk+1 is “first” or “last” is independent
of k.

Let Tk be the quadrilateral of I2(n+k) corresponding to τk. By construc-
tion, these quadrilaterals all share a common vertex, and φ(x) must be this
common vertex. This shows that φ(B3) ⊂ B2. The proof that B2 ⊂ φ(B3) is
just as in the previous result. ♠

Remark: It is worth pointing out one more feature of the map φ: It is far
from 1 to 1. The set I2(n), considered as a list of quadrilaterals, contains
multiple copies of the same trapezoid. Many trapezoids appear 2n times in
I2(n). From this we see that, for any n, there are 2n segments of I3 that φ
identifies. For this reason, the canonical surjection from I3 to I2 is a many-to-
one map. We think if it is a kind of fractal version of the universal covering
map from the line to the circle.

4.8 A Hidden Symmetry of the Carpet

The snowflake has a hidden symmetry, as discussed in §4.3. Given the close
correspondence between the carpet and the snowflake, we would expect a
combinatorially identical hidden symmetry to appear for the carpet. This is
indeed the case. In this section we describe the symmetry and sketch the
proof.

The hidden symmetry of the carpet manifests itself in two ways, and this
at first seems different from what happens with the snowflake. However, in
the case of the snowflake, there are really two kinds of right-angled isosceles
triangles, so the symmetry there actually does arise in two ways.
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Figure 4.7: Some special quadrilaterals.

The left side of Figure 4.7 shows a large parallelogram and two smaller
shaded trapezoids. We can generate a subset of a suitably scaled copy of the
carpet starting with the large parallelogram as a seed and then considering
the portion of the resulting limit that connects the two white dots in Figure
4.7. Let A denote the resulting set. Likewise, we start with each shaded
trapezoid as a seed, and consider the portion of the resulting limit that
connects a black dot to a white dot. Let A1 and A2 be the resulting sets.

The right hand side of Figure 4.7 shows a trapezoid and two shaded
parallelograms. We let B and B1 and B2 be the portions of carpets produced
by the same construction as we did for the As, but interchanging the roles
of black and white.

Lemma 4.6 A = A1 ∪ A2 and B = B1 ∪ B2.

Proof: The proof here is formally isomorphic to what we did for the snowflake.
We omit the details. ♠
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5 The Main Result

5.1 Statement of the Result

Let ω = exp(2πi/8) be the usual primitive 8th root of unity. Let P be the
regular octagon whose vertices are powers of ω. Let Σ0 be the pinwheel strip
associated to P as in §3.3. Let Σ1

0 ⊂ Σ0 denote the half-strip that lies to the
right of the line x = 1 +

√
2. See Figure 5.1.

Σ0
1

Figure 5.1: The relevant sets

§7.5 we prove

Lemma 5.1 Relative to the the pinwheel map for the regular octagon, any
periodic orbit that intersects Σ1

0 nontrivially does so in exactly 3k points for
some k = 0, 1, 2....

Given a periodic point x ∈ Σ1
0, we define |x| to be the exponent k such

that the pinwheel orbit of x intersects Σ1
0 exactly 3k times. We call a sequence

{xn} ∈ Σ1
0 a good sequence if |xn| → ∞ as n→ ∞ and he congruence of |xn|

mod 4 is odd, and independent of n.

37



Recall that π2 and π3 are the projections from R8 to R2 defined in the
previous chapter. Define

s2 =
√

3; s3 = 1 +
√

2. (12)

Let φ : I3 → I2 be the canonical surjection described above.

Theorem 5.2 (Main Theorem) Let {xn} be a good sequence. Also, let
An ⊂ R8 be the arithmetic graph of xn. Then the following is true.

1. π2(An) and π3(An) are closed polygons for all n.

2. Let Sk,n be dilation by s
−|xn|
k about the origin. Then the following limit

exists.
Γk = lim

n→∞
Sk,n ◦ πk(An).

3. Γ3 = I3, where I3 is scaled so that one of the 8 isosceles triangles in its
seed has vertices

(0, 0); (1/2,−s3/2) (−s3/2,−1/2).

4. Γ2 = I2, where I2 is scaled so that its center is (3/2, 3/2) and one of
its main corners is (−3/2, 3/2).

5. Identifying points on π3(An) and π2(An) if they come from the same
point on An, we get a polygonal surjectin

φn : S3,nπ3(An) → S2,nπ2(An).

We have limn→∞ φn = F ◦φ. Here F is an isometry of I2 and φ : I3 →
I2 is the canonical surjection from the snowflake to the carpet.

Remarks:
(i) Experimentally, we see that Theorem 5.2 also holds when we consider se-
quences of points in Σ0−Σ1

0, but these cases lead to annoying complications.
We are interested in establishing a nice robust version of the phenomenon,
but not necessarily the sharpest possible version.
(ii) The limits are exactly the same when |xn| ≡ 1 mod 4 and when |xn| ≡ 3
mod 4. The only thing that changes is the global isometry F . In the former
case, F is orientation preserving (and can be taken to be the identity) and
in the other case F is orientation reversing.

The rest of the paper is devoted to proving Theorem 5.2.
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5.2 Restricting the Domain

Let P be the regular octagon, and let Σ0 be the pinwheel strip described in
§2.4. Consider the octagons

O±
k = P + k(

√
2 + 1,±1); k = 1, 2, 3 . . . (13)

O+
k and O−

k share a common vertex and fit inside Σ0 as shown in Figure
5.2. Figure 5.2 shows the cases k = 1, 2, but the remaining cases look the
same.

R1

Figure 5.2: The region R1.

We let Rk be the region of Σ0 bounded by O+
k ∪ O−

k and O+
k+1 ∪ O−

k+1.
Figure 5.2 shows the region R1, which is the main region of interest to us.
Note that Rk is translation equivalent to R1 for all k ≥ 1, so the picture in
Figure 5.2 is typical.

The first purpose of this chapter is to prove the Invariance Lemma. This
result implies that each Rk is forward invariant under the pinwheel map.
Following this, we will prove

Lemma 5.3 Each Rk is an invariant set for the pinwheel map. Furthermore,
if Theorem 5.2 is true for sequences in R1 then it is true as originally stated.
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5.3 The Pattern of Octagons

let P be as above. The octagons we described above are part of the infinite
pattern of octagons shown in Figure 5.3. Figure 5.3 shows a part of an
infinite set of octagons that, as it turns out, is invariant under the outer
billiards map. Figure 5.3 also shows the strip Σ0.

Figure 5.3: Octagonal orbits

The 8 dark rows of octagons are obtained by translating the central one
by a vector of the form

kωn(
√

2 + 1, 1); k, n ∈ Z; ω = exp(2πi/8). (14)

The remaining octagons interpolate between these dark ones. The octagons
are situated in such a way that the outer billiards map is entirely defined on
the interior of each one. The octagons come in an infinite family of rings, or
necklaces N1, N2, N3, .... The octagons O±

k are precisely the two octagons of
Σ0 ∩Nk. Compare [GS] and [K].
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Lemma 5.4 Each necklace is an outer billiards orbit. Moreover, the region
between consecutive necklaces is invariant under the outer billiards map.

Proof: We change notation slightly. Let O(n, k; 0) be the octagon we get by
translating the central one by the vector in Equation 14. Let O(n, k; i) denote
the octagon that is i “clicks” away from O(n, k; 0) going counterclockwise
around Nk.

The outer billiard map has the same action on all the octagons lying on
the vertical line segment between O(−1; k; 0) and O(1, k;−1) because such
octagons all lie in the sector shown in Figure 5.4. The outer billiards map
reflects each of the octagons under construction through the apex of the
sector in Figure 5.4. We check easily that the action is as follows.

O(−1, k; 0) → O(4, k; 1); O(1, k;−1) → O(5, k; 0). (15)

O(−1,2;0)

O(1,2;−1)

O(−1,1;0)

O(1,1;−1)

Figure 5.4: Octagons in a sector

The octagons O(4, k; 1) and O(5, k; 0) have their centers on the same
vertical line segment L, as shown for k = 2 in Figure 5.4. By symmetry, the
octagons between O(−1, k; 0) and O(1, k;−1) map to the octagons of the
grid that have their centers on L. These octagons all belong to Nk. For the
remaining octagons in Nk, the result follows from the 8-fold symmetry of the
picture.

Call two octagons O1 ∈ Nk and O2 ∈ Nk+1 close if they are as close
together as possible. Two close octagons determine a polygonal region “be-
tween them” like the one that is shaded in Figure 5.4. Call such a region a
buffer . If the two octagons belong to the sector from Figure 5.4, then the
buffer is mapped between Nk and Nk+1. But then, by symmetry, all buffers
are mapped between Nk and Nk+1. But every point between Nk and Nk+1 is
contained in a buffer. ♠
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5.4 Invariant Domains in the Strip

Let Σ′
0 denote those points in Σ0 that lie to the central octagon P . A point

p lies in Σ′
0 if every vector pointing from P to p has positive x coordinate.

Let Φ′ : Σ′
0 → Σ′

0 be the first return map of the φ2, the square outer billiards
map.

Corollary 5.5 For k ≥ 2 the set Rk is invariant under Φ′.

Proof: For k ≥ 2, the region between Nk and Nk+1 intersects Σ′
0 exactly in

the set Rk. ♠

Remark: The region between N1 and N2 intersects Σ0 in a set that is some-
what larger than R1., as one can see by looking carefully at Figure 5.3. It is
for this reason that Corollary 5.5 fails for R1.

Corollary 5.6 For k ≥ 4 the set Rk is invariant under Φ, the pinwheel map.

Proof: For k ≥ 4 the argument in Lemma 2.1 goes through, and shows that
Φ = Φ′. ♠

Below we will prove the following result.

Lemma 5.7 Let µ = 1, 2, 3... Let p ∈ R1 and

q = p+ 2µ(
√

2 + 1, 1) ∈ R1+λ.

Then the arithmetic graphs Γ(p) and Γ(q) coincide.

Corollary 5.8 The set Rk is Φ-invariant for all k ≥ 1.

Proof: By Lemma 5.7, translation by the vector 4(
√

2+1, 1) conjugates the
action of Φ on R1 to the action of Φ on R5. We already know that R5 is
invariant under Φ and the conjugation property implies the same result for
R1. A similar argument takes care of R2 and R3. We have already handled
the remaining cases. ♠
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Remark: Note that Φ and Φ′ do not coincide on R1, because Corollary 5.5
is false for R1 whereas Corollary 5.8 is true. These maps in fact coincide for
k = 2, 3, 4....

Proof of the Invariance Lemma: We want to show that Σk
0 is Φ invariant.

Let N+
k be the set of half-octagons obtained by taking the right halves of all

the octagons in Nk. Since φ2 is a piecewise translation, the setN+
k is invariant

under φ2. But then the set

Sk = N+
k ∩ Σ0

is Φ′ invariant for k ≥ 4. Hence, by the argument in Lemma 2.1, the set Sk

is Φ-invariant for k ≥ 4. As in the proof of Corollary 5.8, we now conclude
that Sk is Φ invariant for all k = 1, 2, 3... Finally

Σk
0 = Sk ∪ Rk+1 ∪ Sk+1 ∪Rk+2 . . . .

We have decomposed Σk
0 into Φ invariant sets. Hence Σk

0 is also Φ invariant.
♠

Proof of Lemma 5.3: Suppose we want to prove Theorem 5.2 for a sequence
of periodic points {xn} in Σ1

0. Since Φ is the identity on each of the orbits
Nk, we have xn ∈ Rkn

for large n. Chopping off the initial portion of the
sequence, we can assume that xn ∈ Rkn

for all n.
By Lemma 5.7, we can find a point yn ∈ R1 ∪ R2 such that xn and yn

have the same arithmetic graph. Hence, it suffices to prove Theorem 5.2 for
the sequence {yn} ∈ R1 ∪R2.

The intersection R1 ∪ R2 is a single point, namely ζ = (2 + 2
√

2, 1). We
call two points specially related if reflection through ζ interchanges the two
points. We check by hand the following property, which we call Property P :
If y and z are specially related then Φ(y) and Φ(z) are specially related and

Φ̂(y) + Φ̂(z) = 0.
From Property P we see that the arithmetic graphs of y and z are iso-

metric to each other. Using this basic principle, we can replace each yn ∈ R2

by the specially related point zn without changing the isometry type of the
rescaled limits of the arithmetic graphs. ♠

Remark: In §7 we will explain in detail how we actually check Property P.
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5.5 Equivalent Points in Strips

The rest of the chapter is devoted to the proof of Lemma 5.7. In this section
we make a general observation about strip maps. In the section following
this one, we will apply our observation to the case of the regular octagon.

Let Σ1 and Σ2 be non-parallel strips. Let V and W1,W2 be the three
vectors shown in Figure 5.3. We say that p, q ∈ Σ1 are related if p− q = kW1

for some integer k. Likewise, we say that p, q ∈ Σ2 are related if p− q = kW2

for some integer k.

B1

W2

V A C

A

C

B

W

Figure 5.4: A Strip map

Lemma 5.9 Let f be the strip map associated to (Σ2, V ). If p, q ∈ Σ1 are
related then f(p), f(q) ∈ Σ2 are related.

Proof: Our statement is an affinely invariant one. So, we normalize our
strips so that they are perpendicular and each have width 1. In this case, f
translates the horizontal squares A,B,C, ... to the vertical squares with the
same labels. If p, q ∈ Σ1 are related then they are in the same positions rel-
ative to the horizontal squares that contain them. But then f(p), f(q) ∈ Σ2

are in the same position relative to the vertical squares that contain them.
Hence f(p) and f(q) are related. ♠
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5.6 Proof of Lemma 5.7

We first prove Lemma 5.7 in case that λ = 2µ is even.
We define

W2n = W2n+1 = 2ωn(
√

2 + 1, 1). (16)

The vector W0 = W1 is parallel to both pointed strips Σ0 and Σ1. The vector
W2 = W3 is parallel to both Σ2 and Σ3, and so on.

We say that two points p, q ∈ Σk−1 are equivalent

q − p = µWk−1; µ ∈ Z. (17)

We let µk−1(p, q) be the integer in Equation 17.
Let fk be the strip map associated to (Σk, Vk), as in §2.3. Let mk(p) be

as in Equation 2. That is,

fk(p) = p+mk(p)Vk. (18)

Lemma 5.10 Let f = fk. If p, q ∈ Σk−1 are equivalent and k is odd, then
f(q), f(q) are equivalent in Σk and

µk(f(p), f(q)) = µk−1(p, q); mk(p) = mk(q).

Proof: By rotational symmetry, it suffices to consider the case when k = 1.
Suppose that k = 1. Note that Σ0 ∩ Σ1 is a strip parallel to W0 = W1. So,
p ∈ Σ0 ∩ Σ1 if and only if q ∈ Σ0 ∩ Σ1. Suppose that p, q ∈ Σ0 ∩ Σ1. Then
f(p) = p and f(q) = q. Also, W1 = W0. Hence f(p) and f(q) are equivalent
in Σ1 and

µ1(f(p), f(q)) = µ0(p, q); f1(p) = f1(q) = 0.

If p, q ∈ Σ0 − Σ1 then p+ V1 ∈ Σ1 and likewise q + V1 ∈ Σ1. Here

f1(q) − f1(p) = q − p.

Hence
µ1(f(p), f(q)) = µ0(p, q); f1(p) = f1(q) = 1.

♠
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Lemma 5.11 Let f = fk. If p, q ∈ Σk−1 are equivalent and k is even, then
f(q), f(q) are equivalent in Σk and

µk(f(p), f(q)) = µk−1(p, q); mk(q) = mk(p) + µk−1(p, q).

Proof: By rotational symmetry, it suffices to consider the case k = 2. In
this case, the strips Σ1 and Σ2, as well as the vectors W1 and W2 and V = V2

are related precisely as discussed in §5.5. Lemma 5.9 now implies that p and
q are equivalent in Σ2 and µ2(p, q) = µ1(p, q).

Referring to Figure 5.4, which is an affine image of the octagon picture,
the number µ1(p, q) counts the number of parallelograms one needs to shift
in order to move p over to q. For instance, if p were in parallelogram A and
q were in parallelogram C in Figure 5.4, then µ0(p, q) = 2. From Figure 5.4,
we see clearly that m2(q) = mk(p) + µ1(p, q). ♠

Now we can finish the proof of Lemma 5.7. Suppose that p, q ∈ Σ0 are
equivalent. Let µ = µ0(p, q). Then, referring to Equation 4, we have

Φ̂(q) − Φ̂(p) =

8∑

i=1

(mk(q) −mk(p))Ṽk =1
∑

k even

µṼk =2 0. (19)

Equality 1 comes from Lemmas 5.10 and 5.11, and Equality 2 comes from
the fact that Ṽ6− = Ṽ2 and Ṽ8 = −Ṽ4.
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6 A Toy Model

6.1 The Map

The work in the previous chapter reduces the proof of Theorem 5.2 to the
study of the pinwheel map Φ : R1 → R1, where R1 is shown in Figure 5.2.
This first return map turns out to be a polygon exchange map. In this
chapter, we will briefly discuss a simpler but related polygon exchange map.

Though the simpler map is not the one we will ultimately study in our
proof of Theorem 5.2, we think that it will prepare the reader for the more
complicated system we do study. First, the basic shapes that arise in the
simple system here arise in the more complicated system we study later.
Second, both the system here and the one we do study have a renormalization
scheme. It is the renormalization scheme for the first return map that leads
to the self-similar nature of the arithmetic graphs.

The dynamical system we study here is well known, and indeed also arises
in the study of outer billiards: It is the first return map to a certain invariant
domain for a dynamical system generated by the outer billiards map and the
rotational symmetry group of the regular octagon. Compare [T2] and [BC].
The system is a self map of the kite-shaped region X, shown as the shaded
region in Figure 6.1. The region X is best defined in terms of a large regular
octagon. The smaller regular octagon, which is a subset of X, is drawn in
for later reference.

Figure 6.1: The region X.

As shown in Figure 6.2, the region X can be partitioned in two ways into
right angled isosceles triangles,

X = A1 ∪ B1 = A2 ∪ B2. (20)
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There is a unique orientation-preserving isometry φA : A1 → A2. The
map φA rotates 3π/4 radians clockwise about the center of the small octagon
in Figure 6.1. Likewise, there is a unique orientation preserving isometry
φB : B1 → B2. The map φB rotates π/4 radians counterclockwise about the
center of the big octagon in Figure 6.1. We have a map φ : X → X which
restricts to φA on A1 and φB on B1. The map φ is defined except on the
segment common to A1 and B1.

A

B

A

1B

1

2

2

Figure 6.2: Two partitions of X.

6.2 The Renormalization Scheme

Let O ⊂ X denote the inner octagon in Figure 6.1. By construction, the
center of O is a fixed point of φ, and every point of O has period 8 with
respect to φ.

A’1

2A’

A’3

B’

B’

B’

1

2

1

Figure 6.3: Renormalization Scheme
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Let X ′ be the shaded component of X−O shown in Figure 6.3. We have
partitioned X ′ into two pieces, which we call A′

1 and B′
1. The third power φ3

maps X ′ to itself. Figure 6.2 shows the pieces A′
2 = φ(A′

1) and A′
3 = φ(A′

2)
and B′

2 = φ(B′
1) and B′

3 = φ(B′
2).

We have not drawn A′
4, B

′
4 ⊂ X ′, but we observe that A′

4 and B′
4 relate

to A′
1 and B′

1 in the same say that A2 and B2 relate to A1 and B1. More
precisely, there is an orientation reversing dilation Θ : X ′ → X such that

Θ−1 ◦ φ ◦ Θ = φ3 (21)

on X ′. The map Θ is the remormalization map. Having Θ by itself is nice,
but we have a second property that really pins things down. Namely,

X − O = X ′ ∪ φ(X ′) ∪ φ2(X ′). (22)

In other words, every point of X − O lies in the orbit of a point in X ′.

6.3 The Periodic Points

Our remormalization scheme allows us to get a complete understanding of
the periodic points of φ. The octagon O consists of points having period 8.
(The center is the one point of O that has period 1.) For our purposes, it is
nicer to think of O as having period 1 as a tile. The set O is preserved by
φ. We set O0 = O.

By equation 21, the region X ′ contains a small octagon

O′
0 = Θ−1(O0) (23)

that has tile-period 3. We set

O′
k+1 = φ(O′

k). (24)

The tiles O′
k for k = 0, 1, 2 all have tile-period 3. They comprise a tile-orbit.

Now we iterate. By Equation 21, the three octagons

O′′
3k = Θ−1(O′

k); k = 0, 1, 2 (25)

all have tile-period 9. Setting

O′′
k+1 = φ(O′′

k), (26)

we produce 9 small octagons O′′
0 , ..., O

′′
8 that all have tile-period 9. Next, we

produce 27 small octagons O
(3)
k for k = 0, ..., 26, all having tile-period 27.

Figure 6.4 shows some of these octagons.
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Figure 6.4: Cascade of periodic tiles

Thus, we have produced, for each n = 0, 1, 2, 3..., a periodic octagonal tile
having tile-period 3n. We claim that every periodic point is contained in one
of these octagons. To see this, we use Equation 22. Clearly, the only periodic
points of order 1 lie in O0. Suppose N is the smallest positive integer for
which we have not proven our result. Let y′ be a periodic point of period N .

Since N > 1, we have y′ ∈ X − O. By Equation 22, the point y′ lies in
the orbit of some point x′ ∈ X ′. Let x = Θ(x′). Note that φ(X ′) and φ2(X ′)
are disjoint from X ′. Since φN(x′) = x′, we must therefore have N = 3M for
some integer M . But then, by Equation 21, we see that x has period M . By
induction, x lies in one of our octagonal tiles. But then, by construction, so
does x′. Now we know that x′ is one of the periodic points we have already
studied. So, the same goes for y′, the original point of interest to us.

Using the renormalization scheme, we have been able to classify all the
periodic points of the system. Incidentally, we note that the complement of
the octagons has dimension larger than 1, and the set of points where some
iterate of φ is undefined has dimension 1. Therefore, φ has some aperiodic
points. This is the same argument Tabachnikov [T2] gives for the regular
pentagon.
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7 The Pinwheel Dynamics

7.1 The Partition

We will work with the region R1 from Lemma 5.3. Both sides of Figure 7.1
show R1. Note that R1 is the union of 4 copies of the region X from the
previous chapter.

Figure 7.1: The region R1, inside the strip Σ0.

Figure 7.1 shows the action of Φ on R1. The left hand side of the figure
shows the partition of R1 into the maximal pieces on which Φ and Φ̂ are
constant, and the right hand side shows the images of these pieces under Φ.
We will give coordinates for these tiles below.

Just knowing that Φ is a piecewise translation, we can nearly pin down
the action of Φ from Figure 7.1. The problem is that there are some pairs
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of triangles, having identical shading, that are translates of each other. Such
pairs are specially situated: One triangle in each such pair lies on the left
hand side of R1 and the other triangle lies in the right hand side. To pin
down the action of Φ exactly, we mention that Φ maps any triangle on the
left (respectively right) hand side of R1 to a triangle on the right (respec-
tively left) hand side of R1.

Remark: It seems worth also mentioning that Φ maps any quadrilateral or
pentagon on the left (respectively right) hand side of R1 to another quadri-
lateral or pentagon on the left (respectively right) hand side of R1. Finally,
Φ fixes each of the central octagons.

Φ has one obvious symmetry and one hidden symmetry. Let ρ1 be the order-2
rotation about the center point of R1. Then Φ commutes with ρ.

To describe the hidden symmetry, we observe that it is better to think of
R1 as a subset of an infinite cylinder. Define σ(x, y) = (x, y+2). The squared-
map σ2 maps the bottom boundary of Σ0 to the top one. The quotient,
obtained by identifying the two boundary components, is a cylinder. We
think of R1 as a subset of this cylinder, so that certain pieces on the top of
R1 are contiguous with pieces on the bottom.

This point of view makes the picture look more symmetric. Consider
the magenta pentagon K ′ shown on the middle left hand side of Figure 7.1.
Let K ′′ be the magenta triangle such that K = K ′ ∪K ′′ is a kite, isometric
to the rest of the kites in the picture. Φ(K ′) lies at the very top of R1

and Φ(K ′′) lies at the very bottom. Under the identification we have been
discussing, Φ(K ′′) is just the continuation of Φ(K ′). So, when we think of
R1 as a subset of a cylinder, K is a single tile on which Φ is constant. The
other pentagon/triangle pair on the left hand side of Figure 7.1 has the same
analysis. Considered this way, we see that the partition of R1 consists just
of kites, triangles, and octagons.

Finally, we mention the hidden symmetry. Once we interpret R1 as being
a subset of the cylinder, Φ commutes with σ.

Remark: It turns out that Φ̂ does not share the same symmetries. That is,
it is not true that the maps Φ̂ and Φ̂ ◦ ρ and Φ̂ ◦ σ coincide. However, as we
will see, there is some relation between these maps.
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7.2 Notation and Coordinates

This section does not contribute to the mathematics at all. We include it for
readers who would like to see explicit coordinates to that they can reproduce
our experiments and calculations on their own. Let

s =
√

2 + 1. (27)

Let O3 be the red octagon in Figure 7.1. The octagon O3 has radius 1/s.
By this we mean that the distance from the center of O3 to any vertex is
1/s. We point out another octagon, O4, of radius 1/s2. The octagon O4 is
homothetic to O3, and the rightmost vertex of O4 coincides with the leftmost
vertex of O3. Both O3 and O4 are periodic tiles for Φ. See Figure 7.2 below.
Now we distinguish 4 special points.

• The point c1 = (3s, 1)/2 is the center of R1.

• The point c2 = (3s, 3)/2 is the center of the top half of R1.

• The point c3 = (2 +
√

2, 2) is the center of O3.

• The point c4 = (2
√

2, 2) is the center of O4.

Let ρk denote counterclockwise rotation by 2πk/8 about ck.

0
1

3
B

B
B

B2

B4

c4 c3

Figure 7.2: Some polygons of interest.
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Figure 7.2 shows 4 shaded polygons. For these polygons, we will use a
second labelling scheme in which O4 = B0. Figure 7.2 shows the B labels.
The union B2∪B3 is the kite that lies to the left of the red octagon in Figure
7.1. We have tried to shade B3 in such a way that we point out O4 ⊂ B3.

The vertices of 2B3 are

(5s−6, 2s−1) (4s−4, 4s−6) (3s−2, 2s−1) (s+3, 3s−3) (2s+1, s+2).
(28)

We divide these coordinates in half to get the coordinates of B3.
The vertices of 2B1 are given by

(2s, 4); (3 + s, 3s− 3); (3s− 2, 2s− 1). (29)

We divide these coordinates in half to get the coordinates of B3.
We can deduce the remaining coordinates just from what we have already

given. For instance,

B4 = ρ5
4(B1); B2 = ρ3

4(B1). (30)

The remaining polygons in the partition of R1 all have the form

ρa1

1 ◦ ρa2

2 ◦ ρa3

3 (B); a1, a2 ∈ {0, 1}; a3 ∈ {3, 5}. (31)

Here either B = Bj or B = B2 ∪ B3.
Now we explain briefly how we verify that the return map Φ is as stated.

We explain this for B3. The check is the same for the remaining files. Recall
that Φ = f16◦ ...◦f1, where fk is the strip map associated to the pair (Σk, Vk).
We verify that there are integers m1, ..., m16 such that

• B1
3 := B3 +m1V1 ∈ Σ1.

• B2
3 := B1

3 +m2V2 ∈ Σ2.

• B3
3 := B2

3 +m3V3 ∈ Σ3.

And so on. By convexity we just have to check this on the vertices of B3.
This is a short calculation we omit. This calculation shows not only that
Φ(B3) = B16

3 , but also that Φ̂ is constant on the interior of B3.
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7.3 The Compressed System

Let R ⊂ R1 denote the top half of R1. The region R is colored red and
magenta on the left half of Figure 7.1. Note that R is a fundamental domain
for the action of σ on R1. We define a new dynamical system Ψ : R → R as
follows: Ψ(p) = Φ(p) if Φ(p) ∈ R and Ψ(p) = σ ◦ Φ(p) if Φ(p) 6∈ R. In other
words, we use the action of σ to move everything into R.

Figure 7.3: The compressed system

The compressed system has 22 regions. The regions B0, ..., B4 are as in
Figure 7.2. For the record, here are the remaining regions.

• B5 = ρ5
3(B1) and B6 = ρ5

3(B2 ∪B3) and B7 = ρ5
3(B4).

• B8 = ρ2
3(B1) and B9 = ρ2

3(B2 ∪B3) and B10 = ρ2
3(B4).

• Bk+11 = ρ4
2(Bk); k = 0, ..., 10.

The regions B5, B6, B7 all lie in the upper right corner of R. The regions
B8, B9, B10 lie in the middle of R on the left side. The remaining 11 regions
are symmetrically placed with respect to the first 11. Again for the record,
the red colored regions are

Bi+11j ; i = 2, 4, 6, 7, 8, 9; j = 0, 1. (32)

We will use this notation system in the next chapter, just so that we can list
things in a completely explicit way.
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Figure 7.3 does for Ψ what Figure 7.1 does for Φ. The left hand side
shows the partition of R into maximal regions on which Ψ is constant. The
blue polygons are the ones on which Ψ = Φ and the red polygons are the
ones on which Ψ = σ ◦ Φ. The right hand side shows the images of these
pieces under Ψ. Once we mention that Ψ is a piecewise translation that maps
all the triangles on the left (respectively right) side of R to triangles on the
right (respectively left) side of R, the partitions alone determine Ψ. We also
remark that Ψ maps the kites and pentagons on the left (respectively right)
side of R to the left (respectively right) side of R.

The map Ψ has a symmetry that it inherits from Φ, and also a new one.
First, Ψ commutes with the rotation ρ2 about the center point of R. Second,
the partition on the right hand side of Figure 7.3 is a mirror image of the
one on the left. (The line of symmetry joins the centers of the red octagons.)
Finally, Ψ moves the one partition to its mirror image by way of translations.

7.4 Classification of Periodic Orbits

Lemma 7.1 p ∈ R is a periodic point for Ψ if and only if p is a periodic
point for Φ.

Proof: We write φ0 = ψ0 = p. Let φn be the nth iterate of φ0 under Φ and
let ψn be the nth iterate of ψ0 under Ψ. Since Φ commutes with σ, we have

φn = σdn(ψn) (33)

where dn counts the number of k ∈ {0, ..., (n− 1)} for which ψk lies in a blue
region in the partition of R (on the left side of Figure 7.3.)

Suppose that p has Φ-period n. Then φn = φ0. This means that
σdn(ψn) = ψ0. Since both ψn and ψ0 belong to R, we must have dn even.
Hence ψn = ψ0. This shows that the p is periodic for Ψ. On the other hand,
suppose that p has Ψ-period n. Then ψn = ψ0. If dn is even then φn = φ0.
If dn is odd, then d2n = 2dn because ψn+k = ψk for each k = 0, ..., n. Hence
φ2n = φ0. Hence p is Φ-periodic. ♠

Figure 7.4 shows the beginning stages of a packing of octagons in R. As
we will see momentarily, every periodic point of Ψ lies in one of the octagons
in this packing.
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Figure 7.4: Image of the central portion

We will establish the result about the packing using a renormalization
scheme that is very similar to the one used in the previous chapter. The
remormalization scheme is based on the dilation

Θ(z) = az + b; a = (s+ 1) + i(s+ 1); b = −3i(s + 1) (34)

We have Θ(S) = R, where S ⊂ R is the portion of R between the two
octagons O1, O2 ⊂ R. The left hand side of Figure 7.4 below shows R in
blue. We will use the renormalization scheme to classify the periodic points
of Ψ.
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Lemma 7.2 Let Ok
1 = Θ−k(O1) and Ok

2 = Θ−k(O2). Then

• There is a self-similar packing of regular octagons in S, each of which
is translation equivalent to Ok

1 (or Ok
2) for some k. (See Figure 7.4.)

• Every periodic point of Ψ belongs to one of the octagon interiors, and
its period is the same as the tile-period of the octagon containing it.

• Every octagon in the packing has tile period 3k for some k = 0, 1, 2, ...,
and such an octagon either lies in the orbit of Ok

1 or the orbit of Ok
2 .

These are the blue octagons in Figure 7.4.

Proof: We see by inspection that φ3(S ′) ⊂ S ′. Indeed, the left hand side of
Figure 7.5 shows S in blue, the middle picture shows Ψ(S) in blue, and the
right hand side shows Φ2(S) in blue.

Figure 7.5: Image of the central portion

Lemma 7.3 Every Ψ-periodic point in R has period 3k for some k = 0, 1, 2...

Proof: A short calculation establishes the following two facts.

Θ−1 ◦ Ψ ◦ Θ|S = Ψ3; R−O1 −O2 = S ∪ Ψ(S) ∪ Ψ2(S). (35)

The same analysis as in the previous chapter produces the packing of oc-
tagons, together with the claims about their tile periods. The only new
feature of the situation here is that the map Ψ is a piecewise translation,
whereas the map from the previous chapter had a rotational component.
Since Ψ is a piecewise translation, each point in a octagonal tile has exactly
the same period as the tile itself. ♠
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7.5 Proof of Lemma 5.1

Thanks to the analysis done in §5 it suffices to prove that every periodic
point of R1 has Φ-period 3k for some k = 0, 1, 2, .... We have already worked
out the structure of the periodic points of the Ψ-system, and we will use this
to get the desired information about the periodic points of the Φ-system.

There is a 2 to 1 map F : R1 → R. which, by construction, carries
periodic points of Φ to periodic points of Ψ. Moreover, this map conjugates
the action of Φ on R1 to the action of Ψ on R. From this, we see that every
Φ-periodic orbit has period either 3k or 2 × 3k.

A parity check rules out the second possibility. Given a Ψ-periodic orbit
p0, p1, ..., pN−1, we let σi = 0 if p0 lies in a blue region of R and other wise
σi = 1. We just need to check that

∑N−1
i=0 σi is even. We check that the

parity of the sum is preserved under the renormalization operation. Since
the sum obviously works out for the large octagons – i.e., when N = 1, it
works out in general.

The parity check is a finite calculation, as we now explain. Suppose we
start with a point z ∈ R. Let w0 = Θ−1(R). Let wj = Ψj(w0). We just have
to prove that

σ ≡ σ0 + σ1 + σ2 mod 2. (36)

Given the nature of Ψ, we only need to check this equation for 1 point in
each of the 22 regions. Here are the results for the first 11 regions

0 : 0 1 1 1
1 : 0 0 0 0
2 : 1 0 0 1
3 : 0 0 0 0
4 : 1 1 0 0
5 : 0 1 0 1
6 : 1 1 1 1
7 : 1 1 1 1
8 : 1 1 1 1
9 : 1 1 1 1
10 : 0 1 0 1

The pattern repeats exactly for the second 11 regions.
This completes the proof of Lemma 5.1.
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8 Generating the Arithmetic Graph

8.1 The Basic Approach

Let R1 be our basic region, partitioned as on the left hand side of Figure 7.1.
To each region r ∈ R1 we choose and p ∈ r and define

gk(r) = πk(Φ̂(p)). (37)

Here Φ̂(p) ∈ Z8 is the vector from Equation 4. Since Φ̂ is constant on the
region r, we see that our definition is independent of the choice of p ∈ r. If
p is part of some orbit, then gk(p) ∈ R2 is the side of the edge of πk(Γ) that
corresponds to (p,Φ(p)).

Given an initial point p0 ∈ R1 we consider the forward orbit p0, p1, p2, ...
We have a sequence of regions r0, r1, r2, ... and a corresponding sequence
gk(r0), gk(r1), gk(r2), ... These vectors are the successive sides of the projection
πk ◦ Γ(p).

8.2 The Compressed Approach

Given the nice renormalization scheme we discussed in the previous chapter,
we prefer to work with the compressed system Ψ : R → R, as defined in §7.3.
The region R is colored as in Figure 7.3.

Recall that R is the top half of R1. Let R′ be the bottom half. Let
p0, p1, p2, ... be a Ψ orbit in R. Let q0, q1, q2 be a Φ orbit in R1 such that
p0 = q0. Let σi = 0 if pi lies in a blue region of R on the left hand side of
Figure 7.3, and σi = 1 otherwise.

We define the accumulated parity

sn =
( n−1∑

i=0

σi

)
mod 2. (38)

That is, we count the number of times that the orbit lands in a red region
on the left hand side of Figure 7.3. The sequence {sn} is a binary sequence
that keeps track of whether pn = qn or not.

The accumulated parity is the additional information that lets us “lift”
an Ψ orbit on R to a Φ orbit on R1.

Lemma 8.1 sn = 0 if and only if pn = qn.
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Proof: This follows from two facts. First, σi = 0 iff Φ(qi) and qi lie in the
same half of R1, Second, Φ : R1 → R1 commutes with the map interchanging
R and R′. ♠

To each region r ∈ R, we associate 4 vectors according to the following
rule.

gk(r, 0) = gk(r); gk(r, 1) = gk(r
′); r′ = r − (0, 1) ∈ R′. (39)

Given the orbit p0, p1, p2 ∈ R we have the corresponding regions r0, r1, r2, ...
and the corresponding accumulated parities s0, s1, s2, .... By construction,
gk(rn, sn) is the nth edge of πkΓ(p0).

For reference, we list the vector assignments. It is convenient to let k
stand for the (region,parity) pair (k, 0) and let k + 22 stand for the (re-
gion,parity) pair (k, 1). The indices 0, 11, 22, 33 correspond to the biggest
octagons and never arise, so we leave them off 3 We consider the g2 vectors
first. Letting T (x, y) = (−y,−x), we have the symmetries

g2(k + 11) = T (g2(k)); g2(k + 22) = −g2(k); k = 0, ..., 10. (40)

So, the following assignment determines all 44 vectors.

1. g2(1) = (6, 2).

2. g2(2) = (2,−2).

3. g2(3) = (2,−2).

4. g2(4) = (−4, 4).

5. g2(5) = (−6, 2).

6. g2(6) = (0,−4).

7. g2(7) = (2, 6).

8. g2(8) = (4, 4).

9. g2(9) = (2, 2).

10. g2(10) = (−2, 6).

3For the record, g2(0) = (0, 8) and g3(0) = (0, 0).
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In the case of g3 we have the symmetries

g3(k+22) = g3(k); g3(k+11) = −g3(k)+σk(0, 4); k = 0, ..., 10. (41)

Here σk ∈ {0, 1} is the parity of the kth region. We have

σk = 1 =⇒ k ∈ {2, 4, 6, 7, 8, 9}. (42)

In light of these symmetries, the following list of 10 vector assignments de-
termines the whole thing.

1. g3(1) = (0,−1,−2,−1).

2. g3(2) = (2, 1, 0,−1).

3. g3(3) = (2, 1, 0,−1).

4. g3(4) = (−2,−2, 2, 0).

5. g3(5) = (−2,−1, 0,−1).

6. g3(6) = (0, 0, 0,−2).

7. g3(7) = (−2,−1, 4, 1).

8. g3(8) = (−2,−2, 2, 0).

9. g3(9) = (−2,−1, 0,−1).

10. g3(10) = (0,−1, 2, 1).

Our notation is as follows.

(a, b, c, d) = (a+ b
√

2, c+ d
√

2). (43)

In the next section we will explain how these vector assignments combine
with a combinatorial substitution rule to generate the graphs.
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8.3 The Substitution Approach

Suppose that we have some orbit p0, p1, p2, .... We let

p′0 = Θ−1(p0)

and consider the renormalized orbit p′0, p
′
1, p

′
2, .... Let sj = σ0 + ... + σj−1 be

the accumulated parity of the original orbit. Likewise define s′j . Let rj be
the region of R containing pj , and likewise define r′j .

In §7.5 we explained the sense in which the renormalization scheme re-
spects the accumulated parities. This fact implies that

s′3j = sj (44)

Given equation 44, the pair (sj , rj) determines the triple

(r′3j, s
′
3j) (r′3j+1, s

′
3j+1) (r′3j+2, s

′
3j+2).

Recall that we have chosen a particular listing for these 44 possible (region,
parity) pairs. What we are saying is that the numerical code for the original
orbit determines the numerical code for the renormalized orbit, by way of a
substitution scheme in which one number is replaced by 3 numbers. Here is
one quarter of the substitution rule.

0 → 9 25 39
1 → 10 14 5
2 → 10 12 17
3 → 10 12 16
4 → 9 23 27
5 → 8 36 28
6 → 8 35 17
7 → 9 24 6
8 → 9 26 6
9 → 9 26 7
10 → 9 25 40

The rest of the pattern can be deduced from symmetry and from what we
have already written. We point out two involutions on the set {0, ..., 43}. The
first of these has the action n→ n± 22. The second one has the action n→
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n± 11, where the + option is taken if n ∈ {0, ..., 10} or n ∈ {0, ..., 10} + 22.
The substitution rule is invariant under these two involutions. For instance,

4 → 9 23 27
15 → 20 34 38
26 → 31 1 5
37 → 42 12 16

.

Now we can explain a nice combinatorial way to generate the arithmetic
graph projections. Referring to Lemma 7.2, the two orbits Ok

1 and Ok
2 both

have period 3k. Here O0
1 and O0

2 respective are the top and bottom biggest
octagons in Figure 7.4. We will concentrate on the orbits Ok

1 . The other half
of the orbits have a very similar treatment.

We start with 0, and iterate the substitution rule k times. Then we
replace each number by the relevant vector. The resulting list of vectors
is the set of edges of the projection of the arithmetic graph. We call the
resulting path G2(k) or G3(k), depending on whether we use the G2 vectors
or the G3 vectors.

Here are two examples. For G2(2) we make the substitution 0 → 9, 25, 39,
and then plug in the G2 vectors:

• 9 → (2, 2).

• 25 → (−2, 2).

• 39 → (0,−4).

We then get the vertices of G2(1) by accumulating the vectors:

(0, 0), (2, 2), (0, 4), (0, 0).

So, G2(1) is a closed path – a triangle.
To generate G2(2) we go one more step.

0 → 9, 25, 39 → 9, 26, 7, 32, 34, 38, 41, 2, 28.

Then we make all the substitutions and accumulate the vectors. We discover
in this case that G2(2) is not closed. We check that G2(k) is closed if k =
1, 3, 5, 7 and open if k = 2, 4, 6, 8. In §9.3 we will prove that this pattern
persists for all k. Our proof there, in particular, implies Statement 1 of the
Main Theorem.
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9 Taking a Better Limit

9.1 Subsequential Limits

Note that G2(k) and G3(k) have natural parametrizations, coming from the
ordering on the edges. Define

Γ2(k) = (
√

3)−kG2(k); Γ3(k) = (1 +
√

2)−kG3(k). (45)

We notice that Γ2(k) and Γ2(k+β) closely follow each other as parametrized
curves when β = 4. This property does not hold for smaller β. When β = 2,
the two curves Γ2(k) and Γ2(k + β) are close in the Hausdorff metric, but
not close as parametrized curves. We also notice that Γ3(k) and Γ3(k + β)
closely follow each other closely when β = 2 but not when β = 1.

Note that β = 4 is the lowest number that works well for both curve
families. This accounts for the dependence on the mod 4 congruence that
appears in the Main Theorem, which involves the subsequential limits

lim
j→∞

Γi(j + 4k); i = 2, 3; j = 1, 3. (46)

The 4th power of our substitution rule is our basic object of study. With
this rule, each number is replaced by 81 numbers. In geometric terms, each
G2 vector g2(n) is replaced by a polygonal path g′2(n) of length 81. This path
consists of 81 other G2 vectors, scaled down by

√
3. Likewise, each G3 vector

g3(n) is replaced by a polygonal path g′3(n) of length 81.
Let Rg2(n) denote the vector that points from the tail of g′2(n) to the head

of g′2(n). Likewise define Rg3(n). We notice that gi(n) and Rgi(n) are nearly
the same vector for each choice i = 2, 3 and each n = 0, ..., 43. We think of
R as a renormalization operator , which replaces one vector by another one
that is very close to it. It makes sense to define Rkgi(n) as follows:

• We iterate the substitution rule 4k times.

• We replace each number by the appropriate gi vector.

• We rescale by (si)
−k, where s2 =

√
3 and s3 = 1 +

√
2.

The key to analyzing our limits is to looked at the fixed point of the renor-
malization operator.
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9.2 The Fixed Point of Renormalization

For motivational purposes (only) we mention the Perron-Frobenius Theorem.

Theorem 9.1 (Perron-Frobenius) Let T : Rn → Rn be a linear trans-
formation represented by a matrix with all positive entries. Then T has (up
to scale) a unique unit positive eigenvector u. Moreover, if v is any positive
vector v, then we have vn → u, where vn = T n(v)/‖T n(v)‖.

It turns out that gi(n) and Rgi(n) are not in general the same vector.
The Perron-Frobenius Theorem suggests to us that we consider the alternate
assignment

n→ λi(n) := lim
s→∞

Rsgi(n). (47)

Doing things this way is analogous to finding the Perron-Frobenius eigen-
vector of a transformation T by taking the limit of iterates of T applied to
some conveniently chosen initial vector v. In case the limit u is expected to
have nice properties – e.g. algebraic coordinates – one might hope to guess u
by looking at the decimal expansions of a fairly high iterate. Once we have
made a guess, it is trivial to verify that it works. This is what we did.

Our new assignment for G2 has the same symmeties as in Equation 40,
so the 10 vectors we list suffices to describe the whole thing.

1. λ2(1) =∗ (6, 2).

2. λ2(2) = (3,−3).

3. λ2(3) =∗ (2,−2).

4. λ2(4) = (−3, 3).

5. λ2(5) =∗ (−6, 2).

6. λ2(6) = (−3,−1).

7. λ2(7) = (3, 5).

8. λ2(8) = (5, 3).

9. λ2(9) = (3, 1).

10. λ2(10) =∗ (−2, 6).

66



This assignment has the same symmetries as the original one, and these
symmetries let one deduce the remaining vectors in the assignment. The
starred equalities indicate that no change has been made. Curiously, we
have

new = old + ǫ(1,−1); ǫ ∈ {−1, 0, 1}. (48)

In the case of G3, the new assignment has nicer symmetries than the
original namely

λ3(k) = −λ3(k + 11) = λ3(k, 1). (49)

That is, the factor of σk is replaced by 0 in Equation 41. In light of these
symmetries, our 10 vectors below determine the whole thing.

1. λ3(1) =∗ (0,−1,−2,−1).

2. λ3(2) = (2, 1,−2,−1).

3. λ3(3) =∗ (2, 1, 0,−1).

4. λ3(4) = (−2,−2, 0, 0).

5. λ3(5) =∗ (−2,−1, 0,−1).

6. λ3(6) = (0, 0,−2,−2).

7. λ3(7) = (−2,−1, 2, 1).

8. λ3(8) = (−2,−2, 0, 0).

9. λ3(9) = (−2,−1,−2,−1).

10. λ3(10) =∗ (0,−1, 2, 1).

Again, the starred equalities indicate the ones where there is no change. This
time we have

new = old + ǫ(0, 2); ǫ ∈ {−1, 0, 1}. (50)

A direct calculation shows that

Rλi(n) = λi(n); i = 2, 3; n = 1, ..., 43. (51)

As usual, we are omitting n = 0, 11, 22, 33.
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Let Λi(k) denote the version of Γi(k) produced by the new vector assign-
ments. Our new assignments are nicer, but we need to prove that the Λ
paths have the same limits as the Γ paths. Once we know this, we can throw
out the arithmetic graphs, and work with the much nicer Λ paths. The rest
of the chapter is devoted to analyzing and equating the relevant limits.

Figure 9.2 shows Γ3(3) and Γ3(7). Notice that these curves follow each
other pretty well, but that a few of the vertices of Γ3(7) do not lie on Γ3(3).
Figure 9.3 shows the improved Λ3(3) and Λ3(7). These curves are better
related to each other. Note also that Γ3(7) and Λ3(7) are really just about
the same curve.

Figure 9.2: Γ3(3) and Γ3(7).
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Figure 9.3: Λ3(3) and Λ3(7).

9.3 Proof of Statement 1

Statement 1 of the Main Theorem, which only deals with the odd case, follows
from the more complete result we now prove.

Lemma 9.2 The following is true.

• G3(k) is a closed polygon for all k = 1, 2, 3, ...

• G2(k) is a closed polygon if and only if k is odd.
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Proof: Let Lk be the unscaled version of Λk. The main idea in our proof is
showing that Gk and Lk have the same endpoints. Assuming this result, it
suffices to prove our result for the L curves. But the Λ curves are just scaled
version of the L curves. So, it suffices to prove our result for the Λ curves.
Given the endpoint-preserving property of our ideal substitution rule – see
Equation 51 – we see that Λi(k) is closed if and only if Λi(k + 4) is closed.
We check the conclusion of this lemma for the first few cases, and then apply
the induction step to take care of the remaining cases.

Now we come to the interesting part of the proof, showing that each G
curve has the same endpoints as the corresponding L curve. We treat G2

and L2 first. All paths start at the origin, so we just have to see that the
other endpoints match. That is, we need to prove that

N−1∑

i=0

δ(ni) = 0; δ(ni) = g2(ni) − λ2(ni). (52)

Here {ni} is the numerical code for the relevant pair of paths, and N is the
total combinatorial length.

As we remarked above – see Equation 48 – we always have δ(n) = ǫ(1,−1)
for ǫ ∈ {−1, 0, 1}. We check by hand the following 44 equations.

δ(n) = δ(m1) + δ(m2) + δ(m3). (53)

Here (m1, m2, m3) is the substitution for n. Equation 53 implies that the
sum in Equation 52 is invariant under substitution. We check that the sum
is 0 in the first 4 cases, and then we see by induction that it is always 0.

The proof for G3 and L3 works in the same way. This time, we have
δ(n) = ǫ(0, 2) for ǫ ∈ {−1, 0, 1}. ♠

9.4 Proof of Statement 2

Let G and L be the unscaled versions of Γ and Λ respectively, as in the proof
of Lemma 9.2. Say that a distinguished strand of G is one that comes from
repeated substitution applied to a single edge. Likewise define distinguished
strands of L. Such strands consist of 3k segments. Any distinguished strand
σ determines a vector V (σ) that points from the starting point to the ending
point.
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Lemma 9.3 Let g and l be corresponding distinguished strands of G(n) and
L(n). Then V (g) and V (l) differ by at most 2 units.

Proof: Let g′ and l′ be the distinguished strands of the paths G(n− 1) and
L(n−1) which give rise to g and l, respectively, upon substitution. The same
argument as in Lemma 9.2 shows that

V (l′) − V (g′) = V (l) − V (g).

By induction, we are reduced to the case of single edges. Now we apply
Equations 48 and 50. ♠

Corollary 9.4 The distance between any corresponding vertices of Gi(n)
and Li(n) is at most 4 log3(n).

Proof: Both Gi(n) and Li(n) start at (0, 0). Suppose we want to consider
the kth vertices. Let γ be the arc of Gi connecting (0, 0) to the kth vertex.
Likewise define λ.

Using the base 3 expansion of k as a guide, we can decompose γ and λ
into at most 2 log3(n) distinguished arcs. Our lemma now follows from the
previous result and the triangle inequality. ♠

Lemma 9.5 Let i be 2 or 3. The sequences {Λi(1 + 4k)} and {Λi(3 + 4k)},
considered as a sequence of parametrized curves, converge in the L∞ norm
as k → ∞.

Proof: We will consider the first of these sequences. The second one has the
same proof. The edges of Λi(4k + 5) are obtained by replacing each edge of
Λ(4k+ 1) by a length 81 polygonal path that has the same endpoint. Define

Dk = sup
s∈[0,1]

dist
(
Λi(4k + 1; s),Λi(4k + 5; s).

)
. (54)

Each edge of Λ(4k + 5) is
1/9 = (

√
3)−4
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times as long as an edge of the same type in Λ(4k + 1). By similarity, we
have

Dk+1 =
1√
3
Dk, (55)

once k is large enough that Λi(1 + 4k) contains all the edge types. It suffices
to take k = 1, in fact.

Equation 55 implies that the distance between two successive curves in
our sequence decreases exponentially. Hence, our curves form a Cauchy se-
quence in the space Map(S1,R2), equipped with the L∞ topology. Hence,
our sequence converges. ♠

The following result implies Statement 2 of the Main Theorem.

Lemma 9.6 The sequences {Γi(1 + 4k)} and {Γi(3 + 4k)}, considered as a
sequence of parametrized curves, converge in the L∞ norm as k → ∞. The
limits in this case coincide with the limits in Lemma 9.5.

Proof: We prove this first for i = 2. The i = 3 case is essentially the same.
By Corollary 9.4, the distance between corresponding points ofG2(1+4k) and
L2(1 + 4k) is at most 4 log(8k). But then, by scaling, the distance between
corresponding points of Γ2(1+4k) and Λ2(1+4k) is at most 4 log3(8k)(

√
3)−k,

a quantity that tends to 0 exponentially fast. ♠
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10 The End of the Proof

10.1 Scaling Constants

In this chapter, we prove Statements 3, 4, and 5 of the Main Theorem.
Let I2 and I3 be suitably scaled versions of the sets discussed in §4. For

i = 2, 3 and j = 1, 3 let Λij be the limit of the sequence {Λi(j + 4k)}. To
finish the proof of the Main Theorem, we need to show that

Λ21 = Λ23 = I2; Λ31 = Λ33 = I3. (56)

Our first order of business is to explain how to scale I2 and I3.

Figure 10.1: I2 seed and Λ2(1).

We will deal with I2 first. Figure 10.1 shows the initial seed for I2, scaled
so that it is well situated with respect to Λ2(1). By construction, Λ2(1) is
an isosceles triangle with vertices (0, 0) and (3, 1) and (1, 3). Given the way
that the I2 seed sits with respect to this triangle, we deduce that the center
of I2 is (3/2, 3/2) and the left corner is (−3/2, 3/2). This gives us the copy
of I2 mentioned in the Main Theorem.
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Now we deal with I3. Figure 10.2 shows Λ2(1) and the union I3(1) of
triangles obtained by applying the substitution operator to the I3 seed.

Figure 10.1: I3(1) and Λ3(1).

Λ3(1) is an isosceles triangle, with vertices

(0, 0); (−2 −
√

2,−2 −
√

2) (0,−2 − 2
√

2). (57)

The point (0, 0) is the apex of the triangle, the top vertex.
This is enough to determine the placement of I3. Here is the nicest

way we can think of describing the scaling. Let s = 1 +
√

2. This is the
scaling factor that came up in the previous chapter. The I3 seed consists
in 8 isosceles triangles. One of the isosceles triangles has vertices (0, 0),
(1/2,−s/2) and (−s/2,−1/2). This gives us the version of I3 mentioned in
the Main Theorem. Note that all the vertices of I3, as we have scaled it, lie
in Q[

√
2].
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10.2 Proof of Statement 3

Let I2 and I3 be scaled as in the previous section. By Equation 51, we see that
Λij contains the vertices of all the polygons of which it is a limit. Moreover,
by scaling, the vertices of the approximating polygons become dense in Λij

as the number of sides tends to ∞. We passed to the limit of renormalization
precisely to arrange these two properties. We want to understand the sets in
Equation 56 just from the placement various finite collections of vertices.

Given the properties enjoyed by the vertices, we can establish Equation
56 simply by showing, for i = 1, 2 and for all odd j that the vertices of the
polygons approximating Λij are contained in Ii and become dense in Ii as
j → ∞.

We will deal with i = 3 first. Figure 10.3 shows a piece of the I3(3),
together with a piece of Λ3(3). Notice that all the vertices of Λ3(3) in sight
coincide with right-angled vertices of I3(3). Notice also that there seems to
be (most of) a smaller copy of Figure 10.1 sitting near the top of Figure 10.3.

Figure 10.3: I3(1) and Λ3(1).
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Say that a special vertex of I3 is a vertex of a right-angled triangle of
some I3(n). We check by direct (computer) calculation that every vertex of
Λ3(j) is a special vertex of I3 for j = 1, 3, 5, 7, 9. This is an easy calculation
that takes place entirely inside Q[

√
2].

We can’t make an infinite number of explicit calculations to deal with
each successive polygon, so we describe a method, based on self-similarity,
that proves everything we need from a finite number of calculations. For
ease of exposition, we will work entirely with the sequence Λ3(1 + 4k). The
sequence Λ3(3+4k) has a similar treatment. It is convenient to set Λ3 = Λ31.
So, Λ3 is the limit of the sequence we are considering.

The polygon Λ3(1) is just a triangle, and too small to be of any use
to us (beyond what we have already done with it above.) So, we consider
the next polygon in the sequence. Each edge of Λ3(5) is a scaled copy of
some λ3(n). We call n the type of the edge. The type belongs to the set
S = {1, ..., 43} − {11, 22, 33}. Inspecting the numerical sequence associated
to Λ3(5) – see §8.3 – we check that Λ3(5) has every possible type edge. We
check the same thing for Λ3(9).

Suppose that A ⊂ Λ3(5) is an edge of type n and B ⊂ Λ3(9) is an edge
of type n. The pair (A,B) determines a homothety

H = H(A,B) : A→ B. (58)

Given the way Λ3 is the limit of our sequence, we have

H : Λ3(A) → Λ3(B). (59)

Here Λ3(A) is the portion of Λ3 between the endpoints of A, and likewise for
Λ3(B). So, H is a homothety that carries a small portion of Λ3 to an even
smaller portion. We call H a special homothety associated to the pair (A,B).
Every such pair gives rise to a special homothety. We call H good if

H : I3(A) → I3(B). (60)

Here I3(A) is the portion of I3 bounded by the endpoints of A. Likewise we
define I3(B). This definition makes sense because we have shown that the
endpoints of A and B both lie in I3. Just to be clear, we mean that H sets
up a bijection between I3(A) and I3(B) that maps endpoints to endpoints.

Below, we will prove the following result.

Lemma 10.1 (Good Homothety) Every special homothety is good.
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The Good Homothety Lemma involves a finite number of special homotheties.
We will show in the next section how one verifies that a special homothety
is good using a finite calculation. Indeed, one can practically see this by
inspection using our program OctoMap 2.

Before we prove the Good Homothety Lemma, let us explain what it does
for us. Suppose we want to show that the vertices of Λ3(13) lie in I3. Let v
be a vertex of Λ3(13). If v is also a vertex of Λ3(9), we are already finished.
Otherwise, there is some edge B of Λ3(9) such that v is one of the vertices
associated to the replacement of B. That is, v lies on the polygonal path of
Λ3(13) connecting the endpoints of B. Choose and edge A of Λ3(5) that has
the same type as B.

The special homothety H = H(A,B) carries A to B. Moreover, H carries
Λ3(9;A) to Λ3(13;B). Here Λ3(9;A) denotes the portion of Λ3(9) subtended
by A. At the same time as this, H carries I3(A) to I3(B). But H−1(v) is a
vertex of Λ3(9;A). Hence H−1(v) ∈ I3(A). Hence v ∈ I3(B). This proves
that all vertices of Λ3(13) lie in I3.

Continuing in this way, we see that all vertices of Λ3(1+4k) lie in I3 for all
positive k. To take care of density, we let dk denote the maximum distance
from a point of I3 to a vertex of Λ3(1 + 4k). Since our special homotheties
scale distances by a factor of

√
2 − 1, we see that

dk+1 = (
√

2 − 1)dk. (61)

In particular dk → 0 as k → ∞. This proves that the vertices of Λ3(1 + 4k)
becomes dense in I3 as k → ∞.

In short, the Good Homothety Lemma implies Statement 3 of the Main
Theorem.

10.3 Proof of the Good Homothety Lemma

In §4.2 we described the basic substitution rule for the snowflake, in which
each isosceles triangle is replaced by 5 smaller ones. We started with a
seed, consisting 8 isosceles triangles arranged in a cyclic pattern, and then
iteratively replaced each triangle by the smaller ones.

Here we describe a more conservative approach to the construction. Let
L1 and L2 be finite cyclically ordered lists of isosceles triangles. We write
L1 → L2 if one obtains L2 from L1 by replacing one of the triangles of L2 by
the 5 smaller ones from the substition rule and adjusting the cyclic ordering
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in the obvious way. We call a list L of triangles admissible if we have a finite
chain I3(0) = L0 → ... → Ln. The specific lists I3(n), produced in §4.2 are
examples of admissible lists.

We say that a special vertex of I3 is a right-angled vertex of some I3(n).
An equivalent definition is that a special vertex of I3 is a right-angled vertex
of some admissible list. Let {vk} be a finite list of special vertex. We say that
an admissible list L is compatible with {vk} if each point vk is a vertex of some
triangle in L. We say that L is the minimal pattern for {vk} if L is compatible
with {vk} and there is no L′ such that L′ → L and L′ is compatible with {vk}.

Remark: For our proof of the Good Homotopy Lemma, we do not need
to know that the minimal pattern associated to a finite list of vertices is
unique, but we emphasize that the minimial pattern is unique. The unique-
ness comes from the tree-like nature of the subdivision rule. We simply start
with the seed and replace triangles only when necessary. After a finite num-
ber of steps we arrive at the minimial pattern.

Let A be a line segment whose endpoints are special vertices of I3. We
let J ′

3(A) be the minimal pattern associated to the endpoints of A. We don’t
care so much about the whole pattern, but only the portion related to A. We
let J3(A) denote the portion of J ′

3(A) that lies between the two endpoints of
A. Figure 10.4 shows the minimal pattern J3(A) when A is a certain type-1
edge of Λ3(5).

Figure 10.4: J3(A) for A a type 1 edge of Λ3(5).

The figure we have shown is completely representative of the local picture
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for the type 1 edges of Λ3(5). The associated minimal patterns are all the
same. This is not really so surprising, because these vectors all are translates
of each other. We also check that the local picture looks the same for all type
1 edges of Λ3(9). That is, the picture looks the same up to a scale factor of√

2 − 1.
So, suppose that A is a type 1 edge of Λ3(5) and B is a type 1 edge

of Λ3(9). Then H(A,B) carries J3(A) to J3(B) because the patterns are
identical up to scale. But J3(A) and J3(B) respectively determine I3(A) and
I3(B). Hence H carries I3(A) to I3(B), as desired. This proves the Good
Homotopy Lemma for edges of type 1. The key idea is that the minimal
pattern J3(A) only depends on the type of A, up to scale.

Figure 10.5: The minimal patterns associated to types 2, 3, 4.

Figure 10.5 shows the minimal patterns associated to the types 2, 3, and
4. All the edge types except those of the form 6 + 11k and 9 + 11k have
the same property we have already discussed. The local picture is the same,
independent of the edge. By inspection, we see that the Good Homotopy
Lemma holds for for all edge types except the 8 types we have mentioned.

For each of the remaining edge types, there are two local pictures. up to
rotation, these two local pictures are the same for each of the edge types.
Figure 10.6 shows the two pictures associated to the edges of type 6 + 11k.
The edges are vertical.
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Figure 10.6: The minimal patterns associated to the edges of type 6+11k.

Let A and A′ be the two type 6 edges shown in Figure 10.6. The pattern
J3(A) consists of 4 triangles T1∪T2∪T3∪T4 and J3(A

′) consists of 3 triangles
T ′

1 ∪ T ′
2 ∪ T ′

3. We list these triangles top to bottom. There is a translation τ
such that τ(A) = A′. To finish our proof for edges of type 6 + 11k, we just
have to see that τ carries I3(A) to I3(A

′). Note that τ carries T ′
j to Tj for

j = 1, 2. So, things work out as desired for the “top portions” of the sets of
interest to us.

Now we consider the bottom portions. Let S be the line segment on the
left hand side of Figure 10.6 that connects the bottom vertex of A to the
bottom vertex of T2. Note that S is made from the hypotenuse of T3 and a
short side of T4. Let S ′ be the edge of T3 that connects the bottom of A′ to
a vertex of T ′

2. We see by direct calculation that τ(S) = S ′. The point is
that S and S ′ have the same slope and length. We just have to prove that τ
carries I3(S) to I3(S

′). But we have exactly the situation discussed in §4.3,
and the desired result here follows from Lemma 4.1.

it remains to consider The edges of type 9 + 11k. It turns out that
the minimal patterns associated to these edges look exactly like the ones
associated to the edges of type 6 + 11k, except that the picture has been
rotated 45 degrees. The same argument as in the previous case works here.

This completes the proof of the Good Homothety Theorem. Again, the
Good Homothety Theorem (and our previous work) implies Statement 3 of
the Main Theorem
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10.4 Proof of Statement 4

In considering I2 we make all the same definitions that we made for I3,
except that we redefine what we mean by a special point. In the case of I3,
the special points are the right-angled vertices of the triangles. In the case
of I2, we call a point special if it has one of two properties:

• It is the center point of a parallelogram of some admissible list.

• It is the center of the long edge of a trapezoid of some admissible list.

We check directly that every vertex of I2(j) is a special point, for the initial
values j = 1, 3, 5, 7, 9. This check entirely involves calculations with rational
points. We want to extend this result for all odd j. As in the Λ3 case, we
ignore the sequence Λ(4k + 3) and concentrate on the sequence Λ(4k + 1).
The other sequence has essentially the same treatment.

To finish the proof, we just have to prove the analogue of the Good
Homothety Lemma for I2. Given the combinatorially identical subdivision
rules that produce I2 and I3, it makes sense to say that a minimal pattern
associated to I2 is isomorphic to a minimal pattern associated to I3: The
canonical bijection between the I3-shapes and the I3-shapes carries the one
pattern to the other. For j = 1, 3, 5, 7, 9 we make the following observation:
The minimial pattern associated to some edge of Λ2(j) is isomorphic to the
minimal pattern associated to the corresponding edge of Λ3(j). There is a
perfect correspondence between the two kinds of patterns.

Given the combinatorial isomorphism between the I3-patterns and the
I2-patterns, the proof of the Good Homothety Lemma goes through, word
for word for all the edges except those of type 6 + 11k and 9 + 11k. In these
cases, there are two combinatorial types of minimial pattern, and we must
make a separarate analysis. Figure 10.7 shows the relevant portions of the
minimal patterns associated to edges of type 6 + 11k.
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Figure 10.7: The minimal patterns associated to the edges of type 6+11k.

On the left hand side we have a chain of 3 quadrilaterals and on the right
hand side we have a chain of 4 quadrilaterals. The first two pieces agree on
both sides. When we chop two pieces off, and superimpose what remains of
the left and right sides, we get exactly the left hand side of Figure 4.7, the
figure we used to illustrate the hidden symmetry of the carpet. The rest of
the proof is just like what we did for the Λ3 case, except that we use Lemma
4.6in place of Lemma 4.1.

The edges of type 9 + 11k have the same treatment. This completes the
proof of the Good Homotopy Lemma in the I2 case, and thereby completes
the proof of Statement 4 of the Main Theorem.

10.5 Proof of Statement 5

Statement 5 takes a bit of unwrapping. We start with an arbitrary sequence
{xn} of good points in the half-strip Σ1

0, and we let An be the arithmetic
graph corresponding to xn. We want to understand the map

φn : S3,nπ3(An) → S2,nπ2(An) (62)

Here S2,n and S3,n are the dilations discussed in the Main Theorem.
In light of the analysis done in the previous chapter, we can assume that

Sk,nπk(An) = Γk(n). (63)

82



Here n is odd, and Γk(n) is as in §9.1. For ease of exposition, we now make
the blanket assumption that n ≡ 1 mod 4. The case when n ≡ 3 mod 4 has
the same treatment.

The two paths Γ2(n) and Γ3(n) have the same number of sides, and so
there is a canonical map

φn : Γ3(n) → Γ2(n). (64)

There is a canonical map from Γk(n) to Λk(n), and this gives us a map

ψn : Λ3(n) → Λ2(n). (65)

Our strategy is to first analyze the sequence {ψn} of maps and then use
Lemma 9.5 to get the desired information about {φn}.

There is a sense in which ψn and φ are compatible, we we now explain.
The map φ is the limit of a sequence of canonical bijections between the
admissible I3-patterns of triangles and the admissible I2-patterns of quadri-
laterals. We call this bijection the shape bijection. We denote it by Φ. Note
that Φ is canonical only up to composition with isometries of I2 and I3.
This accounts for the isometry F that appears in Statement 5 of the Main
Theorem.

Given an edge e3 of Λ3(n), there are two triangles T1 and T2 in the minimal
pattern Λ3(e3) whose right-angled vertices are the endpoints of e3. Let

e2 = ψn(e3)

be the edge of Λ2 corresponding to e3. We say that the pair (e3, e2) is
compatible if the endpoints of e2 are special points of the two shapes Φ(T1)
and Φ(T2). In case Φ(T1) is a parallelogram, the relevant endpoint of e2
should be the center point of this parallelogram. In case Φ(T1) is a trapezoid,
the relevant endpoint of e2 should be the midpoint of the long side of this
trapezoid.

We check that all relevant edge-pairs are compatible for n = 1, 3, 5, 7, 9.
But our proofs of the Good Homotopy Lemma, in the two cases, involved
combinatorially identical sets in each case. That is, whatever we did in the
I3 case carries over to the I2 case via the shape bijection. From this we see,
by induction and symmetry, that all relevant edge-pairs are compatible for
all odd positive integers n.

Given this notation of compatibility, we have

lim
n→∞

ψn = F ◦ φ, (66)
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for some isometry F . The convergence takes place in the sense that the graph
of ψn converges, to the graph of φ in the Hausdorff topology. In particular,
the left hand side of Equation 66 does have a limit. But Lemma 9.6 now says
that

lim
n→∞

φn = lim
n→∞

ψn. (67)

Putting the two equations together gives us Statement 5 of the Main Theo-
rem.

This completes our proof of the Main Theorem.
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