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1 Introduction

Let X be an n-dimensional homogeneous space, with an analytic Lie group
action G : X — X. We will assume that X ¢ R" for some N > n. The
Euclidean metric on RY induces a metric on X, but typically G does not act
isometrically in this (or any) metric. The purpose of this paper is to describe
an algorithm which sometimes helps prove that two sets in X are disjoint,
by making only finitely many computations in R". In special cases, this
algorithm is entirely practical; it is meant to be implemented on a computer.

Let us narrow our task a bit. We say that two subsets S, 7" C X are gently
separated if there is a function f : X — R which is contracting on S U T,
such that supg f < infy f. More generally, we say that a piecewise gentle
separation of S and T is a decomposition S = S71U...US, and T' = T1U...UT,,,
such that S; is gently separated from T7, for each pair (,7). Obviously, if S
and T have a piecewise gentle separation, they are disjoint.

This paper does not have anything to say about finding piecewise gentle
separations for S and 7. In low dimensions, such an object probably would
be found by looking at a lot of computer plots. At any rate, we imagine that
the search for a piecewise gentle separation would be done experimentally,
perhaps without any regard for rigor. The work here is on the other side of
the fence. We will suppose that a suspected piecewise gentle separation for
S and T has been found. Our main task is to prove that the given object
is actually a piecewise gentle separation. This amounts to proving (finitely
many times) that certain functions are positive on certain subsets of X.
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To put this paper in context, suppose that I' C G is a countable subgroup
which seems to act properly discontinuously on an open subset A C X, with
some subset F' C A as a fundamental polyhedron. We think of F' has having a
cellular subdivision, in which the individual cells are, say, pieces of algebraic
varieties. A big step in proving that F' is a fundamental domain for I' is
showing that various cells of F', together with I'-translates of these cells, are
disjoint from each other.

If X is a fairly exotic space, the equations for the simplest useful build-
ing blocks for fundamental polyhedra might be very complicated. It might
be impossible to determine algebraically if a given function is positive on a
set. To give a computational proof, we could parametrize our subset, obtain
Lipschitz bounds on the parametrization, and evaluate the function on suf-
ficiently many points. However, this approach might lead to an impractical
computation.

For us, the motivating example is that of PU(2, 1) acting on S3, the ideal
boundary of the complex hyperbolic plane. The basic sets with which we
work are hybrid cones. We developed hybrid cones to solve the Goldman-
Parker conjecture, a question [GP] about triangle groups acting on the com-
plex hyperbolic plane, and have already had to perform extensive numerical
analysis on them. See [S1].

We found that the straightforward methods for dealing with hybrid cones
lead to computations which would take millions of years to complete on
today’s computers. We had to use methods which, while much more compli-
cated, lead to feasible calculations. We think that hybrid cones will find wide
application in complex hyperbolic geometry, and it seems useful to have an
efficient and robust general framework for treating them numerically. The
method here is more natural, and also faster computationally, than the rather
ad hoc method used in [S1].

The algorithm we present here, which we call the method of foliated
patches, takes into account the geometry of X, and obtains a posterior: esti-
mates on the fly, removing the need for a priori bounds on the parametriza-
tions. The cost of this is that our algorithm requires some differential geo-
metric information about specific curve families in X. In the special cases,
such information can be obtained, once and for all, without too much trouble.

Our point of view is that one can construct useful sets in X by starting
with some “geometrically simple” examples and considering all G-translates
of them. The geometry of the G-translates might be much less tractible
than that of the original examples. However, we will construct convenient



“measuring devices”, which we call foliated patch clusters, for the original
examples. The foliated patch clusters, which are adapted to the action of G,
are transported by the G-action to foliated patch clusters for the translates.
These new foliated patch clusters, which are still “geometrically simple”,
serve as useful measuring devices for the more complicated translates. We
will make these terms precise in the body of paper.

We will describe our algorithms under the assumption that we have a
perfectly accurate computing maching at our disposal. In practice, one would
have to use interval arithmetic, or some other guarantee of sufficiently high
precision, when actually implementing our algorithm.

In §2 we will describe the method of foliated patches in general. While
reading §2, the reader should be aware that we are not presenting an algo-
rithm which is guaranteed to work. All of the elements described in §2 must
combine, in the exactly the right way, to lead to a proof. It may appear
that such a collection of coincidences will never occur in practice. This is not
so. At the end of §2 we will give a heuristic argument that our method is
actually bound to succeed, given a sensible design. In §3 we adapt the gen-
eral framework to the motivating example discussed above. The background
material can be found, in more detail, in [E|, [G], [S1], or [S2].

I would like to thank Todd Drumm, Bill Goldman, and Justin Wyss-
Gallifent for encouraging me to write this paper. I would like to to thank my
wife, Brienne Brown, for computer help, and Jeong-Hwan Jang for helpful
conversations about curvature.



2 The General Framework

We continue the notation from the introduction. Let f : X — R be a
function which is contracting on S C X. We suppose that S C ®(Qy), where
(Qo is the unit k-cube, and ® : Qg — X is a continuous map. We will explain
how to prove that f|s > 0, using only finitely many computations.

An alternate situation is that f is contracting in a region which we suspect
contains S, and part of our proof amounts to showing that S is contained in
this region. The methods we explain here sometimes apply to a case such as
this though, for the sake of brevity, we will not go into details.

2.1 The Subdivision Algorithm

A k-rectangle is a product of the form I; x ... x I, where each of the I;
are intervals. Let IJ1 and If be the left and right halves of I;. If @) is a
k-rectangle, let ¢(Q) be the center of Q and v(Q) be the vertex set of Q.
Also, for j =1,...,k and 7 = 1,2 we define

jS = Il X ... X Ij—l X IJZ X Ij+1 X .. X Ik.

Let Q denote the set of k-rectangles which are contained in Qo = [0, 1]*.
Suppose that A : @ —{0,1, ..., k} is some function. We think of 0 as the true
state and the values 1, ..., k as false states. A partition of Qg is a subdivision
Qo = @1 U...UQp, where the interiors of the smaller rectangles are pairwise
disjoint. We say that such a partition is true if A(Q;) =0 for j =1,...,m.

Here is an algorithm which searches for a true partition:

1. Let U be a list of elements of Q, having g as its only member. Let V
be the empty list.

2. Let @ be the last member of U. If A(Q) = 0 transfer @ from U to V.
If U is now empty, halt. If U is not now empty then repeat this step.

3. If A(Q) = j > 0 then delete @ from U and append to U the two
rectangles ;1 and Q2. Go to Step 2.

If the algorithm halts, the list of rectangles in V is a true partition. We call
this algorithm the subdivision algorithm. It is a depth-first search over the
tree of dyadic subcubes of Q.



2.2 Foliated Patches

Our method is centered around a G-invariant, finite dimensional family F of
closed analytic arcs in X. For instance, one could take F to consist of the
arcs of the form U,c; ht(x), where I C R is a closed interval, and {h;| t € R}
is a 1-parameter subgroup of G. As a simpler example, one could take F to
be the union of all G-translates of some finite list of anaytic arcs. This is
what we will do in §4. The purpose of choosing a family such as F is twofold:

1. The finite dimensionality condition means, in principle, that one could
estimate the geometry of arcs in F by sampling a uniformly bounded
number of points on each arc.

2. The arcs in F have analytic continuations into larger curves. In carry-
ing out Item 1, one could possibly sample points not just on the arcs,
but on the continuations.

We suppose that each arc v € F has a pre-chosen analytic continuation
4. We define F(a, b) to be the set of triples of the form (v, A, B). Here A is
a collection of a ordered points chosen from v — dv and B is a collection of b
ordered points chosen from 4 — . In addition to these a 4 b points, we wish
to distinguish the endpoints of . Thus, elements of F(a,b) consist of curves
4 with v = a 4+ b + 2 distinguished points. Associated to each X € F(a,b)
is the v X v symmetric matrix M (X) encoding the Euclidean distances be-
tween these points. The differential geometric input of our method amounts
to bounding the curvature and diameter of arcs in F based on the matrix
described above. This is further described in §2.4

Say that an n-dimensional F-patch is an embedding ¥ : Q — X, all
of whose maximal coordinate curves are elements of F. We will use the
words foliated patch and F-patch as synonyms. Here () is an n-dimensional
rectangle. Note the following property: If ¢ € G and 9 is an F-patch, then
S0 is g o .

If ¢ is an F-patch, we define c¢(¢) = ¢¥(c(Q)) and v(¢)) = ¥(v(Q)). Note
that ¢() is a single point and v(v) is a set of 2" points. We say that 1) is
guaranteed if

@l := sup p(c(y), ) = max p(c(¢)), v).
zey(Q) veu(y)

We have the implication

fle(@)—1QI>0 = [lyq) > 0. (1)



If Q is a k-rectangle for k < n, we define Q1= Q x [0,1]"*. Let S and
® be as above. Let X denote the set of finite lists of F-patches. Given an
element A € X, we will let A; be the first element of A. We think of A; as
being the main F-patch in A, and the other elements on the list as playing
supporting roles. This point of view is discussed more fully in §2.6.

We say that a patch map dominating ® is a map ¥ : Q@ — X such that,
for all Q € Q,

Q) Cv(@1); ¥ = (@)

Here Q1 is the domain of 1.

We say that a finite computer program G is a guarantee test for WU if there
is an integer M such that G accepts as input any element of A € X and
returns, after at most M basic computations, an integer G(A) € {0,1, ..., k}
such that G(A) = 0 only if X is guaranteed. A return of values greater than
0 indicates how the computer thinks A; should be subdivided so as to most
increase the chances that the subdivided pieces will be guaranteed. We will
not discuss how G selects its nonzero values. The basic idea is to arrange the
subdivision so that the images of rectangles, under the patch map, remain
fairly cube-like. In practice, the best method would probably be found by
trial and error.

To prove that f is positive on S, we define a function A as follows: For
each € Q, we have A(Q) = 0 iff G o ¥(Q) = 0 and the left hand of
Equation 1 is true. Once we know that (¥(Q)); is guaranteed, the left hand
side of Equation 1 can be checked in finitely many computations. We run
the subdivision algorithm, with respect to A. If this algorithm halts, the
information constitutes a proof that f is positive on S.

The computer program G has three ingredients

1. Curvature and diameter guarantees for F
2. The Straight Lemma.
3. Foliated patch clusters.

We will explain these ingredients in the next three sections. Following this,
we will explain the operation of G.



2.3 Diameter Guarantees

For any arc -, define | o
x— 0y
=9 oy ol
Here 0,7 and 0,y are the endpoints of v. A diameter guarantee is a map
A : F(a,b) — [1,00] such that A(F'(A)) < A(A). Here F : F(a,b) — F is
the forgetful map.
Here is a simple example. Let A € F(1,0) and v = F(A), so that
A = (7,p), where p € ¥ —y. We define A(A) = +/2/2 if p is further from
either endpoint of v than these endpoints are from each other. In this case,
~ is contained in a semicircle. Otherwise, we simply make no conclusion, and

set A(A) = oo.

2.4 Curvature Guarantees

Let M, denote the set of ¥ X v nonnegative symmetric matrices. We have
a map M : F(a,b) — M,, obtained by evaluating the distances between
distinguished points. Here v = a 4+ b + 2. Recall that the space curvature
of a curve v C R" is the quantity ||7’(s)||, where s — (s) is a unit speed
parameterization. We define x(7) to be the the maximum space curvature
of v. We say that a curvature guarantee is a map K : M,, — [0, o] with the
following property: for any A € F(a,b) we have x(F(A)) < K o M(A).

We will actually use a slightly fancier object than K. Say that a block
netghborhood of a matrix M € M, is any set of matrices having the form

Ny = {M, eM,: |Mz,] - MZ]| < Gz'j}-

Let BM, denote the set of block neighborhoods of elements of M,. We say
that a block version of K is a map K : BM,, — [0, co| such that

sup K(M') < K (Na).

M’ENM

K can obtained from K if one knows how K varies over block neighborhoods.
Continuing with our simple example, M(A) is a 3 x 3 matrix. One can
interpret M(A) as a Euclidean triangle, having side lengths Ey, Es, F5. By
convention, we take F; to be the distance between the endpoints of 7. Let
F be the family of circular arcs in X = R"Y. We define K (M) = 2/s, where
s = max(E1, Ey, E3). One can easily construct a block version in this case.
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2.5 The Straight Lemma

Let C' C X be a compact connected set. Given a continuous family I' =
{m| t € C} of arcs in F, we define x(I') = sup,cc (7). Note that ¢ — k()
need not be a continuous function.

Given a ball B, and an arc v we say that v is straight enough for B if
0y C B and .
p(B)k(7)
Here p(B) is the radius of B. This is a scale-invariant notion.

Suppose that ¢ : Q — X is a k-dimensional F-patch. We say that two
(k — 1)-dimensional F-patches ¢, and ¢o sandwich ¢ if there are two parallel
(k — 1)-faces @Q1,Q2 € 0Q such that ¢; = ¢|p,. In this case, we say that
arcs connecting the sandwich are the maximal coordinate arcs of ¢ whose
endpoints are contained in ¢1(Q1) U ¢2(Q2).

Inductively, we say that a k-dimensional F-patch ¢ is straight enough for
B if

k(V)p(B) <1;  2M(y) <

1. ¢ has a sandwich (¢, ¢2), such that ¢; is straight enough for B, for
j=1,2.

2. If " is the family of connecting arcs for the sandwich then x(I")p(B) < 1.

3. Some arc v € I' is straight enough for B.

Lemma 2.1 (Straight) If ¢ is an F-patch which is straight enough for B
then ¢ C B.

Proof: We translate and scale so that B is the unit ball. Thus p(B) = 1.
Our proof goes by induction. First, we claim that v C B if v is an arc which
is straight enough for B. Let R = 1/k(y). Let t — 7(t) be a parametrization
of 7. Here t € [0,1]. Consider the function f(¢) = ||y(¢)|. If f has a local
maximum, at some t € (0,1), then the curvature of v at f(t) is at least
1/f(t). Hence, f(t) > R. Since f(0), f(1) < 1, we have A(y) > (R —1)/2.
This a contradiction. Hence, f does not have a maximum at any point in
(0,1). In short, f(t) <1 for all t € [0,1]. Thus, v C B, as claimed.

For the induction step, we have a continuous family I' = {v| t € C}.
such that x(I') < 1 and dvs C B for all s € C. Also 7, C B for some t € C.
We wish to prove that v, C B for all s € C.
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We first make the following observation: Suppose s € C, and p € 7, and
U is the unit vector tangent to v at y(p). Let s, € K be a sequence such
that s, — s. Let p, € v, be a sequence of points such that p, — p. Let U,
be the unit vector tangent to s, at s, (pn). Then U, — £U. This standard
result follows from the uniform curvature bound we have on all arcs of I'.

To complete our proof, it suffices to prove that H = {t € C| v, C B} is
open, since H is clearly closed and nonempty and C' is connected. Suppose
that v, C B. The curvature bound implies that v cannot be tangent to B at
any point. There are three cases, either 0y N 9B is 0, 1, or 2 points. In the
first case, ; is contained in the interior of B, and the result is obvious. The
second case is like the third, so we will only consider the third case

In the third case, 7, is transverse to 0B at both endpoints. From the
convergence of tangent vectors noted above, the part of v, near 0v, makes
a definite angle with 0B, once s is sufficiently close to . Thus, there is a
neighborhood Ny of 07vs, such that v, N N; C B, for s close to t. The cur-
vature bound implies that the diameter of N, can be taken independent of
s, as long as s is sufficiently close to t. There is a positive lower bound on
the distance from v, — N; to 0B. By continuity, the same is true for v, — Ny,
once s is sufficiently close to t. Thus, v, — Ny, C B. In short, v, C B, and
the set H is open. #

2.6 Foliated Patch Clusters

Here is an entertaining analogy which gives a good mental picture of the
construction in this section. Imagine that you are the captain of a space
ship, and you want to defend yourself against enemies. Some of your space
ship is heavily shielded. However, there are some parts of your ship which are
vulnerable to attack. So, you command several smaller spaceships to guard
the vulnerable spots on your ship. Once again, these smaller ships are mainly
shielded, but have some spots of vulnerability. Each smaller ship employs
yet smaller ships to help it in the same way. This situation continues to a
finite extent, the smallest ships in the fleet being too small to attack.

Our construction is based on F(a, b). The utility of the construction de-
pends entirely on the space X, on the family 7, and on length and curvature
guarantees associated to F(a,b). A general description of what features make
for a useful computational tool is beyond us, though the heuristic argument
in §2.8 offers some insights.



We define inductively the space X' (m;a,b) of m-dimensional standard F-
patch clusters. Elements of X (0; a, b) are single points. For £ > 1 an element
of X(m;a,b) is a quintuple having the form A = (¢, a1, as, @, ), where

1. 1 is a m-dimensional F-patch.
2. ay = (Y1, ...) and ag = (19, ...) are elements of X(m — 1;q,b).
3. (¢1,14) sandwiches 1.

4. « is a collection a, .., o, Where each «; is an element of X (m;;a,b),
and m; < m.

5. (3 is a collection fi,.., B, where each ; is an element of X (n;;a,b),
and n; < m.

6. If v is a connecting arc of 1, then v — 0y has nontrivial intersection
with each «;.

7. If v is a connecting arc of 1, then 4 — v has nontrivial intersection with
each f;.

By construction, X(1;a,b) and F(a,b) coincide.

We will call v the main patch of A. The other patches we call auzilliary
patches. To say a bit more about the structure of A, the foliated patches
in A are naturally organized into various binary trees. For instance, 9 is
sandwiched by the foliated patches 1; and v,. Each ; is in turn sandwiched
by ;1 and ;2. And so on. We call the union of all these patches the main
sandwich tree in the patch cluster. The main patches in the a-clusters and
the main patches in the g-clusters are at the pinnacles of auzilliary sandwich
trees. And so on. All the patches in a sandwich tree are all contained in
the single patch at the pinnacle of the tree. One can think of A as a tree of
sandwich trees.

Our massive cluster collapses into a manageable number in low dimen-
sional examples. Our purpose here is to explain one general theoretical ap-
proach for constructing the computer program G.

2.7 The Guarantee Algorithm

We will describe a finite computer program G, whose input is an element
A € X and whose output is 0 only if A; is guaranteed. We will automatically
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define G(A) to be nonzero if A does not belong to X'(m;a,b), for some
m < n. In practice, G will only be evaluated on elements of X'(m;a,b), so
the provision just made is a red herring. The operation of G' depends on the
existence of a diameter guarantee A and a block version K of the curvature
guarantee K.

Let A = (¢,...), as above. In particular, A; = 1. Here ¢ : Q — X is the
main patch of the patch cluster. Let By be the smallest ball centered at ¢(v)
and containing all of v(1)). Our computer program G can verify that 1(Q)
is straight enough for any given ball B. If we run G for the ball B = B,
then G can verify that v is guaranteed.

G operates in an inductive fashion. Suppose that G has already verified
that every auxilliary patch in A is guaranteed and that every auxilliary patch
in the main sandwich tree is straight enough for B. Let I' be the family of
connecting arcs for the sandwich (11, 15). Using the Straight Lemma, G can
complete its task by checking that x(I')p(B) < 1 and by exhibiting an arc of
[ which is straight enough for B. In the second case, G' can just pick some
arc v and use the diameter guarantee.

The first case is the interesting one. Let B(c;) be the smallest ball
centered at c(a;) and containing all of v(a;). We know, from the guarantees
on all the auxilliary patches, that the image of o; is contained in B(c;). The
same statement can be made for the 3; patches. Finally, the same statement
can be made for the balls B(z;).

Here comes the punchline. The continuation 4 of each arc v € I' intersects
both B(w;) and B(f3;) for all indices ¢ and j. Also, one point of 07 is contained
in B(v,) and the other point of 0 is contained in B(1)2). If all these balls are
small, then we have tight control on a list of a + b+ 2 points on 4. Applying
our block version of the curvature guarantee, G verifies simultaneously that
k(y)p(B) < 1 for all v € I'. The point is that all these arcs intersect the
same little balls, and so their associated matrices all lie in the same block
neighborhood of a given matrix.

An obvious generalization of our algorithm is that we have a decomposi-
tion of F into several families of arcs F1,...,F,,, and we have curvature and
diameter guarantees for each subfamily.

2.8 Heuristic Argument

Here is an argument that G will eventually work, when combined with the
subdivision algorithm, and a sensible design of a foliated patch map. Our
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argument is that each time G fails, and then reconsiders a patch bluster built
around a smaller cube, the chance is better that it will succeed on the next
attempt. Thus, long chains of failures are not possible.

We will design our patch map so that it is an approzrimation of the map
® : Qo — X. That is, the main patch in the patch cluster ¥(Q) is small if
Q@ is a small cube. Likewise for the auxilliary patches. On the other hand,
we arrange that the centers of the auxilliary patches in the cluster ¥(Q')
are roughly in the same places as the centers of the auxilliary patches in the
cluster U(Q), once @ is small. Here @' is a subdivision of Q.

As the subdivision algorithm proceeds without success, G looks at in-
creasingly small block neighborhoods of essentially the same finite set of
matrices. The curvature and diameter guarantees obtained by G during this
long chain of failures does not change much, and perhaps even improves. On
the other hand, the balls considered by G get vanishingly small during this
losing streak, making the “straight enough” hypotheses increasingly easy to
actually verify. Eventually, G succeeds and a little cube is taken off the list
of cubes which need to be checked.
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3 An Example

3.1 The Homogeneous Space

C?! is a copy of the vector space C*® equipped with the Hermitian form

(u,v) = u1Ty + ugTs — U3T3 (2)
The map
V1 V2
O, vz, ) = (2, 22) 3
(v1, v2,v3) Vs’ U (3)

Takes the spaces

N_={veC*| (v,v) <0}; Ny={veC*

(v,v) = 0} (4)

respectively to the open unit ball and unit sphere S% in C?. As usual, CH?,
the complex hyperbolic plane, is identified with the open unit ball. In this
way, S3, the space we are actually interested in, appears as the ideal boundary
of CH?.

The group G = PU(2,1) is the group of complex projective transforma-
tions which preserve S3. These maps are precisely projectivizations of (,)
preserving complex linear tranfrormtions. This group acts transitively on G.
The distribution £ of complex lines tangent to S? is invariant under G.

S3 is a lie group itself. The group law is given by:

(21,w1) - (22, ws) = (21W1 — 22Wa, 21 W2 + 221 ). (5)

The right multiplication map Rx(Y) = Y - X is an element of PU(2,1)
which acts isometrically on S2, in the round metric, and moves all points by
the same amount. The point here is that Ry commutes with the complex
structure, which is left multiplication by i.

We call H= C x R Heisenberg space. Given p € S3, a Heisenberg stere-
ographic projection from p is a transformation B : S* — {p} — H of the
form B = 7w o 8, where m(z,w) = (2,3(w)) and f is a complex projec-
tive transformation of C'P? which identifies C H? with the Siegal domain
{(z,w)| R(w) > |z|*}. We write B(p) = oo in this case.

The map

w 1—z2
BO(Z’w):(l—i-z’%l—i-Z) (6)

is an example of Heisenberg stereographic projection from (—1,0).
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3.2 Foliated Patches

A C-circle (also known as a chain) is the intersection of a complex line
with S3, provided that this intersection is more than a point. C-circles are
all round circles, and G transitively permutes the C-circles. A C-arc is a
nontrivial arc of a C-circle. Given two points p # ¢ € S®, there is a unique
C'-circle containing p and g. The image of a C-circle in H is either an ellipse,
which projects to a round circle in C, or the one point completion of a vertical
line {z} x R.

Any G-translate of the circle R?* N S? is called an R-circle. Not all R-
circles are round circles. An R-arc is a nontrivial arc of an R-circle. There
is more than one R-arc joining two points in S3. The image of an R-circle
in H is either a curve which projects to a lemniscate in C, or the one point
completion of a nonvertical line. In this case, the line is horizontal if and only
if it intersects {0} x R. We will call these horizontal lines level R-circles.

Let F and F g respectively be the sets of C-arcs and R-arcs. Let F
be the union of ¢y and F . Our foliated patches in S3 are based on F.

3.3 Curvature Guarantees

We use the notation of §2.4. Since C-arcs are arcs of round circles, we use the
curvature guarantee K¢y = K, constructed in §2.4, as a curvature guarantee
for . For F R, we use Kp(M) = ((6/s)> — 8)/2. The lemma to follow
justifies this choice.

Lemma 3.1 Let v be an R-circle of Euclidean diameter 6. The maximum
space curvature of v is /(6/6)? — 8.

Proof: Modulo isometry of C?, there is a one parameter family {f,| v > 0}
of R-circles:

_ (ucos(t) — v sin(t) _ T
fot) = (u +wcos(t) u+ ivcos(t))’ wiovt =1

fo = S® N R? is a great circle. f, shrinks to a point as v — oo. Clearly,
f» C S3. One can show that the angular invariant |G p. 210] vanishes on
triples of points on f,, which suffices to prove that f, is an R-circle.

We claim that the Euclidean diameter of f, is §, = 2/+/1 + v2. First of all,
an easy calculation gives || f,(7/2) — f,(37/2)|| = d,. To prove our equality,
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we will show that every point of f, is within §,/2 of P, = (—iv/u,0). By
symmetry, it suffices to consider f,(#) for 6 € [0,7]. For this range, we set

cos(t) = r/v/1+ r? and sin(t) = 1/v/1 + 2 and compute:

2 147? + 07
g(r) = | fulr) = RII" = (1+v2)(1 + 72+ v + 2r2?)’
It is easy to check that dg/dr = 0 iff r = 0 and that 0 is a local maximum.
Plugging in » = 0, and using the triangle inequality, we get our result.

Once we prove that the maximum space curvature of f, is v/1 + 9v2, our
lemma follows from basic algebra. Once again, it suffices to consider f,(#) for
6 € [0,7]. Again, we use the substitution above. Let K,(r) be the curvature
of f, at r. We have

! /\ "
o) = LI AL
| £3(r)]
Here |A A B| is the area of the parallelogram spanned by A and B. Let (,)
be the definite Hermitian inner product on C?. Using the equations
[AABI* = |A"|BI* — (%(4, B))*

we compute that

K 1+ 72 + 1002 + 2r?02 + 9v!

U 142402+ 252

and that dK?/dr = 0 iff r = 0, and that 0 is a local maximum. Plugging in
r = 0 gives us our curvature bound. é#

bl

Remark: We define the radius of a set to be half its diameter. Being a
round circle, a C-circle has the property that its geodesic curvature is tan(f)
provided that its radius is cos(f). The calculation above says that an R-circle
has maximum geodesic curvature 3 tan(f), provided that its radius is cos(#).

3.4 Diameter Guarantees

For the case of F ¢ we will use the same diameter guarantee as constructed
in §2.3. The case of F g is based on an idea from [S1].
Define
Ule) = {(z,w) € S| |2+ 1| < ¢€}. (7)
Let 7y : H— C be projection. Let [ be the arc-length function. Let By be
the map from Equation 6.
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Lemma 3.2 Suppose v € S® is a curve which is everywhere tangent to €. If
v C Ule) then l(y) < e l(mg o By(7)).

Proof: It suffices to prove the following infinitesimal version of this result:
If V is a unit tangent vector to S3, based at a point p € U(e), and tangent
to &, then ||d(m o By)(V)| > 1/e. Define

V= (11122 [_zm]

Since (v, (z,w)) = 0, the vector v is tangent to £. Also ||v|| < e. Let
b=me o Bo. We compute

— 1
db = ( v )
(14+2)2"1+=2
From this, we get db(v) = 1. This lemma now follows from the fact that b is
a holomorphic map, and V' is a complex multiple of v. &

Given an element (v,p) € F(1,0), the R-circle —R;"(¥) contains the

point (—1,0). Hence, Bo(—R,"(%)) is the one point completion of a straight
line. We define
S(1,p) = mc o Bo(—R, (7). (8)

By construction S(7,p) is a line segment in C.

Definitions: Let €;(y,p) be half the length of the line segment S(v,p).
Let €3(7,p) be the smallest e such that —R,*(0y) € U(e). Let e5(y) be the
Euclidean distance between the endpoints of +.

Since 7 is integral to £, Lemma 3.2 says that [(—R, ")) < €1(v,p). Hence,

7 C U(G), 6261(75p)+62(’7’p)'
Applying Lemma 3.2, and using the fact that R lis an isometry, we get

() < 2(e1(7,p) + €2(7,p))er (7, p)- 9)

The formula

Aly.p) = & (7, P) (€1 (7, p) + €2(7,p))
€3(7)
serves as a diameter guarantee for 7 .

(10)
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3.5 Foliated Patch Clusters
Let ¥ = R* x [0,27) x R. Consider the map ¢ : ¥ — H, given by

Z(r,0,t) = (rexp(if),1).

The r-curves of ¢ are R-arcs. The f-curves and the ¢-curves of ¢ are both
C-circles. Thus, the restriction of X to rectangle in ¥ is a F-patch.

We will only will consider rectangles having the form @) = I; x I, x I3,
where I, has length at most w. Let 0(Q) be the midpoint of I,. Let 6'(Q) be
the angle such that 0(Q) — 0'(Q) = 7, mod 27. Let @' be the 2-dimensional
rectangle I; x §'(Q) x I5. By construction, Z(Q) and Z(Q') are disjoint, and
every f-curve of Z((Q)) is contained in a circle which intersects Z(Q').

Z2Q

top view

- ZQ)
Figure 3.4.

We define a standard patch cluster to be triple of the form (A, A’,p),
where

B(A)=2(Q); B(A)=2(Q); B(p)=c.

Here B is a Heisenberg stereographic projection. We transfer the notion
of f-curves, t-curves, and r-curves, in the obvious way, to the patches A
and A’. By construction, each #-curve of A is contained on a circle which
intersects A’. Each r-curve of A is contained on a R-circles which contains p.
Each ¢-curve of A is contained on an C-circles which contains p. The same
statements are true for A’.

The patch A has 12 distinguished edges. These edges have the form
B ' o Z(Q,). Here Q) is the 1-skeleton of Q. Also, A has 8 distinguished
vertices. Likewise A’ has 4 distinguished edges and 4 distinghished vertices.
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3.6

The Guarantee Algorithm

Let (A, A’,p) be a standard patch cluster, as above. In the description of
the algorithm to follow, we will assume that the computer halts if it fails to
verify any given step. If the computer gets to the end of the list of things to
check, without failure, it means that the foliated patch A is guaranteed. In
what follows, for any v € F, the continuation ¥ is a closed curve.

Let B be the smallest ball centered at ¢(A) and containing all vertices of
A. Likewise define B’. Recall that K and A are our curvature and diameter
guarantees. Let p and p’ be the radii of B and B’. Let ¢ and C' be the
centers of B and B'.

1.

Each r-edge y of A’ defines a canonical element (7, p) of F g(1,0). Use
Kp and A g on this element to verify that +y is straight enough for A’.

Each t-curve o of A’ determines the element (&, p) of F(1,0). From
the previous step, each endpoint of « is within p’ of ¢’. Therefore, « has
diameter at least ||’ — p|| — p'. Use K to check that p(B)r(a) < 1.
That is, check that

/

.
e = pll — ¢
This shows that p'k(a) < 1 for any such choice of a.

< 1.

Let « be one of the t-edges of A’. By Step 1, the emdpoints of « are
within 2p(B’) of each other. As in Step 2, each endpoint is at least
llc(A") — p|| — p(B') from p. Use Ay to check that « is straight enough
for B'. One only has to do this for a single choice of «.

Let A; and As be the two tr-faces of A. Repeat Steps 1-3 for both A;
and As, using the ball B in place of B'.

. At this point we know that A" C B’, and A, Ay C B. Let « be any

f-curve of A. Let ¢, = anN A’. We know that ¢, is within p(B’) of
c(A"). We also know that both endpoints of « are within p(B) of ¢(A).
Hence, g, is at least ||c(A") —c(A)|| — p(B) — p(B') from either endpoint
of a. Repeat the check in Step 2, with B replacing B’, using the bound
just derived. This checks that x(a)p(B) < 1 for all choices of a.

Choose a single f-curve o of A, and repeat Step 3, with B replacing
B', and with the bound from Step 5 replacing the bound from Step 2.
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3.7 Parabolic Hybrid Cones

Our foliated patch cluster is designed to deal with a certain kind of surface,
which we call a hybrid cone. There are several kinds of hybrid cones. We
will treat the simplest one, the parabolic hybrid cone.

We call Hy = {0} x R the center of Heisenberg space. We say that a flag
is a pair (E,p), where E is a chain and p € E is a point.

Lemma 3.3 Suppose X € S*°—E. There is a unique R-circley = v(E, p; X)
such that X € v and p € v and v N (E — p) # 0.

Proof: We normalize by a Heisenberg stereographic projection so that
E = Hy, the center of H, and p = oco. In this case, there is a unique
level Heisenberg R-circle containing X. This is y(Hy, 00; X). #

Q(HO,p;X)

Figure 3.1.

Let Q(F,p; X) be the portion of v which connects p to X but which
avoids E — p. Given a set S C S® — E, we define

QE,p;S) = J QE, p; X).
XeS

We call €2 the parabolic hybrid cone. When the context is clear, we will
call Q a hybrid cone, as we did in [S1]. Our construction is natural. The
PU(2,1)-image of a hybrid cone is again a hybrid cone.

We say that Q(E, p;S) is in standard position if, as in Lemma 3.3, it is
normalized so that F is the center of H and p = oo.

One special case we have found particularly useful is when S is a C-arc,
contained on a C-circle which links E. In this case, we call Q(FE,p;S) a
hybrid sector.
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3.8 Constructing Patch Maps

Let Ty : H — H be the map Ty(z,t) = (\z,t). Note that T} is not conjugate
to an element of PU(2,1), via Heisenberg stereographic projection.
Suppose 7 : [0,1] — H is a continuous curve. We say that a dominat-

ing map is a map @, which assigns to each triple (I, A1, A2), a rectangle
Q(I, A1, A2) C X such that

Ty, (v(1)) UTx, (v(1)) C Z(Q(I, A1, Az)).

We do not insist that Q(1, A) is always the optimal—that is, smallest—possible
rectangle which has this property. In case 7 is a Heisenberg C-arc—or more
generally an arc of an ellipse—the optimal dominating map is quite easy to
work out, and may be implemented as a computer program. We observe that
Q(I, A1, \2) also contains the level R-arcs joining T, (v(I)) to to Ty, (y()).

Suppose 2 = Q(Hy, oc;7y) is in standard position. We say that a standard
parametrization of Q is a map & : [0,1] x [1,00) = Q — oo such that ®(x,1)
is a parametrization of v, and

B(t,\) = Th(®(t, 1)).

Such a map is uniquely determined, and also easy to construct, given a
parametrization of ~.

We will explain how to construct a patch map for the restriction of ® to a
subrectangle Ry = [0,1] x [0, N]. If N is sufficiently large, then the only part
of €2 left uncovered is a small neighborhood of co which can be estimated
separately. Given a subrectangle R C Ry, we extract the triple (I, A1, A2)
such that R = I; X [A1, Ay]. We define

\II(R) = (Z(Q),Z(QI),OO), Q:Q(I’)‘la/\Q)'

By construction, Z(Q) contains ®(R). In other words, ®(R) C (¥(R));.
Hence, ¥ is a patch map dominating ®.

If Q(E, p; S) is not in standard position, we move 2 into standard position,
where it is easy to construct parametrizations and patch maps. Then, we
pull these objects back to €.
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