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Abstract

This paper proves the 1977 Melnyk-Knopf-Smith phase transition
conjecture for 5-point energy minimization. This result contains, as a
special case, the solution of Thomson’s 5 electron problem from 1904.

1 Introduction

1.1 History and Context

Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2 of N
distinct points and a function F : (0, 2]→ R, define

F (P ) =
∑

1≤i<j≤N

F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P . A
configuration P is a minimizer for F if F (P ) ≤ F (P ′) for all other N -point
configurations P ′. The question of finding energy minimizers has a long
literature; the classic case goes back to Thomsom [Th] in 1904.

The classic choice for this question is F = Rs, the Riesz potential , given
by Rs(d) = d−s. The Riesz potential is defined when s > 0. When s < 0 the
corresponding function Rs(d) = −d−s is called the Fejes-Toth potential . The
case s = 1 is specially called the Coulomb potential or the electrostatic poten-
tial . This case of the energy minimization problem is known as Thomson’s
problem. See [Th].
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There is a large literature on the energy minimization problem. See [Fö]
and [C] for some early local results. See [MKS] for a definitive numerical
study on the minimizers of the Riesz potential for n relatively small. The
website [CCD] has a compilation of experimental results which stretches all
the way up to about n = 1000. The paper [SK] gives a nice survey of results,
with an emphasis on the case when n is large. See also [RSZ]. The paper
[BBCGKS] gives a survey of results, both theoretical and experimental,
about highly symmetric configurations in higher dimensions.

When n = 2, 3 the problem is fairly trivial. See [KY], [A], [Y] for the
result that the three Platonic solids with triangular faces minimize all powe-
law potentials. This result is subsumed by [CK, Theorem 1.2], a powerful
result about the so-called sharp configurations.

The case n = 5 has been notoriously intractable. First let me introduce
the two main players. The Triangular Bi-Pyramid (TBP) is the 5 point
configuration having one point at the north pole, one point at the south
pole, and 3 points arranged in an equilateral triangle on the equator. A Four
Pyramid (FP) is a 5-point configuration having one point at the north pole
and 4 points arranged in a square equidistant from the north pole. Here is a
run-down on what is known so far:

• The paper [HZ] has a rigorous computer-assisted proof that the TBP is
the unique minimizer for the potential F (r) = −r. (Polya’s problem).

• My paper [S1] has a rigorous computer-assisted proof that the TBP
is the unique minimizer for R1 (Thomson’s problem) and R2. Again
Rs(d) = d−s.

• The paper [DLT] gives a traditional proof that the TBP is the unique
minimizer for the logarithmic potential.

• In [BHS, Theorem 7] it is shown that, as s → ∞, any sequence of
5-point minimizers w.r.t. Rs must converge (up to rotations) to the
FP having one point at the north pole and the other 4 points on the
equator. In particular, the TBP is not a minimizer w.r.t Rs when s is
sufficiently large.

• Define Gk(r) = (4− r2)k. In [T], A. Tumanov proves that the TBP is
the unique minimizer for G2. The minimizers for G1 are those config-
urations (including the TBP) whose center of mass is the origin.
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1.2 The Main Result

Our main result verifies the phase-transition for 5 point energy minimization
first observed in [MKS], in 1977, by T. W. Melnyk, O, Knop, and W. R.
Smith. Define

15+ = 15 +
25

512
. (2)

Theorem 1.1 (Phase Transition) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

Remark: I can also prove that the TBP minimizes all Fejes-Toth potentials
for s ∈ (−2, 0). I am leaving out the proof of this result so as to have a
shorter exposition. See the end of §4.3 for further discussion.

1.3 Verification

To make the proof easier to verify, I have divided it up into 7 self-contained
units. Each of 7 readers only needs to read between 8 and 16 pages of the
document and then communicate to a central “team-leader” (say Reader 0)
that the portion they have read is correct. Here is the breakdown.

Part 0, Assembly: This part of the proof deduces the Phase Transition
Theorem from smaller components. Reader 0 need only read §2 and §3.

Part 1, Interpolation: We introduce potentials which we call hybrid triples :

a0Gb0(r) + a1Gb1(r) + a2Gb2(r), ak ∈ R, Gb(r) = (4− r2)b. (3)

See §2.2 for the precise list and §4.3 for motivation. This part of the proof
establishes Lemma 4.1 in §4.1, which says that if the TBP minimizes various
collections of hybrid triples, then it also minimizes the Riesz potentials within
certain ranges. Reader 1 need only read §2 and §4. This part of the proof in-
volves a moderate amount of Java code which a competent programmer could
reproduce in under a week. The results here are obvious from computer plots.
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Part 2, Local Analysis: In this part of the proof, we show that there
is an explicitly defined neighborhood Ω0 of the TBP in which the TBP min-
imizes certain hybrid triples. See §2.4. Reader 2 need only read §2 and §5.
This part of the proof involves a moderate amount of Mathematica code,
which a competent programmer could reproduce in less than a day. Parts 1
and 2 combine to prove the Phase Transition Theorem for all (configuration,
exponent) pairs in Ω0 × (0, 15+].

Part 3, Symmetrization: Let K4 denote the set of 5-point configura-
tions which have 4-fold dihedral symmetry. The dihedral symmetry group
fixes one of the points. This part of the proof deals with a small open subset
Υ of configurations near K4, and power law exponents s ∈ [12, 16]. See §2.5.
Here we produce a retraction Υ→K4 and show that it is energy-decreasing
on Υ−K4. Reader 3 need only read §2 and §6. This part of the proof has a
moderate amount of Mathematica code that a competent programmer could
reproduce in a few days.

Part 4, Symmetric Configurations: This part of the proof treats config-
urations in Υ∩K4. Our work here combines with Part 3 to prove the Phase
Transition Theorem for all (configuration, exponent) pairs in Υ × [13, 15+].
This is the region where the phase transition actuallly occurs. Reader 4 need
only read §2 and §7. This part of the proof involves a moderate amount of
Mathematica and Java code that a competent programmer could reproduce
in under a week.

Part 5, Energy Estimate: This part of the proof establishes an estimate
which allows us to prove, just using finitely many calculations, that an en-
tire open subset of the configuration space consists of configurations having
larger F -energy than the TBP. Here F is one of the hybrid triple potentials
of interest to us. This part of the proof is completely theoretical. There are
no computer calculations involved. Reader 5 need only read §2, §8, and §9.

Part 6, The Big Calculation: Parts 1,2,3,4 of the proof wipe out all the
pairs (configuration, exponent) in the sets Ω0 × (0, 15+] and Υ × [13, 15+].
The remaining pairs do not pose a serious threat to the TBP. This part of
the proof uses the energy estimate from Part 5 to deal with all the remaining
configurations. Reader 6 need only read §2, §8 and §10. This part of the
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proof is the hardest to verify because it relies on a massive computer calcu-
lation. On the other hand, the computer calculation is just doing the same
thing over and over again. I think that a good programmer could reproduce
the entire program in two weeks.

Verification Summary: Here is what each of the 7 readers needs to read:

• Reader 0 (assembly): §2, §3. (10 pages total.)

• Reader 1 (interpolation): §2, §4. (12 pages total.)

• Reader 2 (local analysis): §2, §5. (8 pages total.)

• Reader 3 (symmetrization): §2, §6. (13 pages total.)

• Reader 4 (symmetric configs.) §2 , §7. (13 pages total.)

• Reader 5 (energy estimate): §2, §8, §9 (16 pages total.)

• Reader 6 (big calculation): §2, §8, §10. (10 pages total.)

Actually, not all readers have to read all of §2. At the beginning of §2 there
is a finer breakdown of the topics.

Computer Code: The computer code is all written in Java and Mathe-
matica. The Java code runs on Java 8 Update 201. I ran everything on a
2017 iMac Pro with a 3.2 GHz Intel Zeon W processor, running the Mojava
operating system. The Mathematica code seems to run on all modern ver-
sions of Mathematica. One can download the computer code from

http://www.math.brown.edu/∼res/Papers/TBP.tar

The code is divided up to match the 7-part division discussed above. So,
e.g., Reader 4 only needs to run Part 4 of the code.

1.4 Acknowledgements

I would like to thank Doug Hardin, Ed Saff, Javi Gomez-Serrano, and Stephen
D. Miller for their helpful comments and encouragement.
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2 Preliminaries

Reading Guide:

• Reader 0 (assembly) should read everything except §2.6.

• Reader 1 (interpolation) should read §2.2.

• Reader 2 (local analysis) should read §2.1, §2.2, §2.4

• Reader 3 (symmetrization) should read §2.1, §2.5, §2.6.

• Reader 4 (symmetric configs.) should read §2.1, §2.5, §2.6.

• Reader 5 (energy estimate) should read §2.1, §2.2, §2.3.

• Reader 6 (big calculation) should read everything except §2.6

2.1 Avatars

Let S2 ⊂ R3 be the unit 2-sphere. Stereographic projection is the map
Σ : S2 → R2 ∪∞ given by the following formula.

Σ(x, y, z) =
( x

1− z
,

y

1− z

)
. (4)

Here is the inverse map:

Σ−1(x, y) =
( 2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (5)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Stereographic projection gives us a correspondence between 5-point con-
figurations on S2 having (0, 0, 1) as the last point and planar configurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (6)

We call the planar configuration the avatar of the corresponding configu-
ration in S2. We call 2 avatars isomorphic if the corresponding 5-point
configurations on S2 are isometric.
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We write F (p1, p2, p3, p4) when we mean the F -potential of the corre-
sponding 5-point configuration. If ξ = (p0, p1, p2, p3) then we will write
F (ξ) = F (p0, p1, p2, p3).

We call a pair of points p̂, q̂ ∈ S2 far if ‖p̂− q̂‖ ≥ 4/
√

5. Note that (p̂, q̂)
is a far pair if and only if (q̂, p̂) is a far pair. Our rather strange definition
has a more natural interpretation in terms of the avatars. If we rotate S2 so
that p̂ = (0, 0, 1) then q = Σ(q̂) lies in the disk of radius 1/2 centered at the
origin if and only if (p̂, q̂) is a far pair.

We say that a point in a 5-point configuration is odd or even according
to the parity of the number of far pairs it makes with the other points in
the configuration. Correspondingly, define the parity of the avatar to be the
parity of the number of points which are contained in the closed disk of radius
1/2 about the origin.

Lemma 2.1 Every avatar is isomorphic to an even avatar.

Proof: We form a graph by joining two points in a 5-point configuration by
an edge if and only if they make a far pair. As for any graph, the sum of the
degrees is even. Hence there is some vertex having even degree. When we
rotate so that this vertex is (0, 0, 1), the corresponding avatar is even. ♠

Figure 2.1 shows the two possible avatars (up to rotations) of the trian-
gular bi-pyramid, first separately and then superimposed. We call the one
on the left the even avatar , and the one in the middle the odd avatar . Let
ξ0 denote the even avatar. The points of ξ0 are (±1, 0) and (0,±

√
3/3).

0

1

2

3

02

3

1

02

even odd both

Figure 2.1: Even and odd avatars of the TBP.

When we superimpose the two avatars we see some extra geometric struc-
ture that is not relevant for our proof but worth mentioning. The two circles
respectively have radii 1/2 and 1 and the 6 segments shown are tangent to
the inner one.
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2.2 The Hybrid Triples

Now we introduce the potentials which we use in order to understand the
Riesz potentials. Define

Gk(r) = (4− r2)k. (7)

Also define
G[

5 = G5 − 25G1,

G]]
10 = G10 + 28G5 + 102G2,

G]
10 = G10 + 13G5 + 68G2 (8)

I found these hybrid triples experimentally. They look rather arbitrary,
but in fact they are close to the unique choices which function the right way
in our proof.

2.3 The Big Domain

Given an avatar ξ = (p0, p1, p2, p3), we write pk = (pk1, pk2). We define a
domain Ω ⊂ R7 to be the set of avatars ξ satisfying the following conditions.

1. ξ is even.

2. ‖p0‖ ≥ max(‖p1‖, ‖p2‖, ‖p3‖).

3. p12 ≤ p22 ≤ p32 and p22 ≥ 0.

4. p01 ∈ (0, 2] and p02 = 0.

5. pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3.

The Containment Theorem, stated in §3.2 and proved in §3.3, says that
only configurations having avatars isomorphic to ones in Ω could be mini-
mizers for the potentials we consider. So, Ω is our universe.

2.4 A Neighborhood of the TBP

Let ξ0 denote the even avatar for the TBP. When we string out the points
of ξ0, we get (1, 0,−u,−1, 0, 0, u) where u =

√
3/3. The space indicates

that we do not record p02 = 0. We let Ω0 denote the cube of side-length 2−17

centered at ξ0.
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2.5 The Special Domain

We let Υ ⊂ (R2)4 denote those avatars p0, p1, p2, p3 such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

As we discussed above, Υ contains the avatars that compete with the TBP
near the exponent .ש

p0

p1

p2

p3

Figure 2.2: The sets defining Υ compared with two TBP avatars.
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2.6 Polynomials and Exponential Sums

2.6.1 Positive Dominance

The works [S2] and [S3] give more details about positive dominance. Here I
explain the basics. Let P ∈ R[x1, ..., xn] be a multivariable polynomial:

P =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (9)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

PJ =
∑
I�J

cI , P∞ =
∑
I

cI . (10)

We say that P is weak positive dominant (WPD) if PJ ≥ 0 for all J and
P∞ > 0. We call P positive dominant if PJ > 0 for all J .

Lemma 2.2 (Weak Positive Dominance) If P is weak positive dominant
then P > 0 on (0, 1]n. If P is positive dominant then P > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x+ .... Let Ai = a0 + ...+ ai. The
proof goes by induction on the degree of P . The case deg(P ) = 0 is obvious.
Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (11)

Since P is WBP so are the functions Pj = f0 + ...+ fj. By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠
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2.6.2 Polynomial Subdivision

2. Subdivision: Let P ∈ R[x1, ..., xn]. For any xj and k ∈ {0, 1} we define

Sxj ,k(P )(x1, ..., xn) = P (x1, ..., xj−1, x
∗
j , xj+1, ..., xn), x∗j =

k

2
+
xj
2
. (12)

If Sxj ,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n.

2.6.3 Numerator Selection

If f = f1/f2 is a bounded rational function on [0, 1]n, written in so that f1, f2

have no common factors, we always choose f2 so that f2(1, ..., 1) > 0. If we
then show, one way or another, that f1 > 0 on (0, 1]n we can conclude that
f2 > 0 on (0, 1]n as well. The point is that f2 cannot change sign because
then f blows up. But then we can conclude that f > 0 on (0, 1]n. We write
num+(f) = f1.

2.6.4 Exponential Sums

Lemma 2.3 (Convexity) Suppose that α, β, γ ≥ 0 have the property that
α + β ≥ 2γ. Then αs + βs ≥ 2γs for all s > 1, with equality iff α = β = γ.

Proof: This is an exercise with Lagrange multipliers. ♠

Lemma 2.4 (Descartes) Let 0 < r1 ≤ ... ≤ rn < 1 be a sequence of
positive numbers. Let c1, ..., cn be a sequence of nonzero numbers and let
σ1, ..., σn be the corresponding sequence of signs of these numbers. Define

E(s) =
n∑
i=1

ci r
s
i . (13)

Let K denote the number of sign changes in the sign sequence. Then E
changes sign at most K times on R.

Proof: Suppose we have a counterexample. By continuity, perturbation,
and taking mth roots, it suffices to consider a counterexample of the form
P (t) =

∑
cit

ei where t = rs and r ∈ (0, 1) and e1 > ... > en ∈ N . As s
ranges in r, the variable t ranges in (0,∞). But P (t) changes sign at most K
times on (0,∞) by Descartes’ Rule of Signs. This gives us a contradiction. ♠
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3 Proof Assembly

Reading Guide: This chapter is for Reader 0.

3.1 Interpolation

We use the notation from §2. Here is our main result about interpolation.

Theorem 3.1 (Interpolation) Let T0 be the TBP. Then

1. Suppose s ∈ (0, 13] and T is any 5-point configuration. If we have
F (T0) < F (T ) for all F = G4, G5, G6, G

]]
10 then Rs(T0) < Rs(T ).

2. Suppose s ∈ [13, 15+] and T is any 5-point configuration. If we have
F (T0) < F (T ) for all F = G[

5, G
]
10 then Rs(T0) < Rs(T ).

3.2 The Containment Theorem

We prove the following theorem in the next section.

Theorem 3.2 (Containment) Let F = G4, G
[
5, G6, G

]
10. If ξ is not iso-

morphic to any avatar in Ω then F (ξ0) < F (ξ).

Corollary 3.3 If ξ is not isomorphic to any avatar in Ω and F = G5 or
F = G]]

10, then F (ξ0) < F (ξ).

Proof: Since ξ0 (or indeed any configuration whose center of mass is the
origin) is a global mininizer for G1, we have G1(ξ0) ≤ G1(ξ). But then

G5(ξ0) = G[
5(ξ0) + 25G1(ξ0) < G[

5(ξ) + 25G1(ξ) = G5(ξ).

The second inequality comes from the Containment Lemma.
We now know that G5(ξ0) < G5(ξ). But then

G]]
10(ξ0) = G]

10(ξ0) + 15G5(ξ0) + 34G2(ξ0) <

G]
10(ξ) + 15G5(ξ) + 34G2(ξ) = G]]

10(ξ).

The inequality follows from the Containment Theorem, the previous corol-
lary, and Tumanov’s result [T] that ξ0 is a global minimizer for G2. ♠
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Corollary 3.4 Let T0 be the TBP and let T be a configuration that has no
avatar isomorphic to one in Ω. Then Rs(T0) < Rs(T ).

Proof: This is an immediate corollary of the Interpolation Theorem, Con-
tainment Theorem, and Corollary 3.3. ♠

Corollary 3.4 tells us that we do not have to worry about configurations
which do not have avatars isomorphic to ones in Ω. This means that, from
the point of view of our proof, Ω is our universe. For the rest of the chapter,
we will speak of the Phase Transition making a statement about Ω×(0, 15+].
Each pair (ξ, s) is an avatar ξ at an exponent s. We will evaluate all our
potentials directly on the avatars, with the understanding that in every case
we are first applying inverse stereographic projection.

3.3 Proof of the Containment Theorem

Let ξ0 the even avatar of the TBP. Let [F ] = F (ξ0) for any F -potential.
Since the TBP has 6 bonds of length

√
2, and 3 of length

√
3, and 1 of length√

4, we have
[Gk] = 6× 2k + 3. (14)

Using this result, and the formulas for our energy functions, we compute

[G4] = 99, [G6] = 387, [G[
5] = −180, [G]

10] = 10518. (15)

Let ξ = p0, p1, p2, p3 some other avatar.

Lemma 3.5 Let F = G6, G
[
5, G

]
10. If ‖p0‖ > 3/2 then [F ] < F (ξ).

Proof: Let τ0 be the term in F corresponding to the pair (p0, p4). That is

τ0 = F (‖Σ−1(p0)− (0, 0, 1)‖). (16)

When ‖pj‖ = 3/2 we check using Equation 5 that τk = F (d). Here we have
d = 4/

√
13. Also, each of our choices of F is monotone decreasing on (0, d].

So, if ‖p0‖ > 3/2 then τ0 > F (d).
Rather than work with G[

5 we work with G∗5 = G[
5 + 30 so that all our

functions are non-negative on (0, 2]. We have [G∗5] = 120. Referring to the se-
quence G6, G

∗
5, G

]
10, we have τ0 > 450, 123, 26909 if ‖p‖ > 3/2. These bounds

respectively exceed. [G6], [G∗5], [G]
10]. ♠
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Lemma 3.6 If F = G4 then [F ] < F (ξ) provided that either ‖p0‖ > 2 or
‖p0‖, ‖pj‖ > 3/2 for some j = 1, 2, 3.

Proof: We keep the same notation from the previous result, and define τj
just as we defined τ0. When ‖p0‖ > 2 we have τ0 > 104 > [G4]. When
‖p0‖, ‖pi‖ > 3/2 we have τ0 + τj > 58 + 58 > [G4]. ♠

Assume first that F 6= G4. Assume ξ is a minimizer for F . As we have
already discussed in the definition of even and odd avatars, we normalize so
that ξ is even. Reordering p0, p1, p2, p3 and rotating, about the origin, we
make ‖p0‖ ≥ ‖pi‖ for i = 1, 2, 3 and we move p0 into the positive x-axis.
Reflecting in the x-axis if necessary and reordering the points p1, p2, p3 if
necessary, we arrange that p12 ≤ p22 ≤ p32 and p22 ≥ 0. Lemma 3.5 tells us
that ‖p0‖ ≤ 3/2, and this gives us ‖pi‖ ≤ 3/2 for i = 1, 2, 3. In particular
pj ∈ [−3/2, 3/2]2 for j = 0, 1, 2, 3. We have also arranged that p02 = 0.

The case of F = G4 follows from Lemma 3.6 just as the other cases follow
from Lemma 3.5. This completes the proof of the Containment Theorem.

3.4 Local Analysis

Recall that Σ−1 is inverse stereographic projection. Here is the main local
result we prove.

Theorem 3.7 (Local Convexity) For F = G4, G6, G
[
5, G

]
10, the Hessian

of F ◦ Σ−1 is positive definite at every point of Ω0.

Corollary 3.8 Let F be any of G4, G
[
5, G5, G6, G

]
10, G

]]
10. Then ξ0, the TBP

avatar, is the unique F -energy minimizer inside Ω.

Proof: Let F be any of the functions from the Local Convexity Theo-
rem. Let ξ ∈ Ω0 be other than ξ0. The Local Convexity Theorem combines
with the vanishing gradient to show that the restriction of F ◦ Σ−1 to the
line segment γ joining ξ0 to ξ is convex and has 0 derivative at ξ0. Hence
F (ξ) > F (ξ0). It remains to deal with F = G5 and F = G]]

10. The same
argument as in Corollary 3.3 deals with G5 and G]]

10. ♠

Combining Corollary 3.8 with the Interpolation Theorem, we get:

Corollary 3.9 The Phase Transition Theorem is true for for Ω0 × (0, 15+].
In this region, there is no phase transition: The TBP is always best.
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3.5 Symmetrization

In this section we deal directly with the Riesz potentials. We deal with the
configurations in the region Υ from §2.5. Let K4 denote the set of avatars
which are invariant under reflections in the coordinate axes. Recall that Υ
is our special domain from §2.5. We describe a symmetrization operation
which maps Υ into K4. Let (p0, p1, p2, p3) be an avatar with p0 6= p2. Define

−p∗2 = p∗0 = (x, 0), −p∗1 = p∗3 = (0, y), x =
‖p0 − p2‖

2
, y =

‖π02(p1 − p3)‖
2

.

(17)

Here π02 is the projection onto the subspace perpendicular to p0 − p2. The
avatar (p∗1, p

∗
2, p
∗
3, p
∗
4) lies in K4. Note that our operation fixes avatars in K4.

Theorem 3.10 (Symmetrization) Let (p0, p1, p2, p3) ∈ Υ − K4. Then
Rs(p

∗
0, p
∗
1, p
∗
2, p
∗
3) < Rs(p0, p1, p2, p3) when s ≥ 12.

3.6 Symmetric Configurations

Let Ψ4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [43, 64]2. (18)

We have Υ ∩K4 ⊂ Ψ4. We identify Ψ4 (and its special subsets below) as a
subset of R2. Thus (x, y) names the configuration in Equation 18.

Let Ψ]
4 ⊂ Ψ4 denote the subset with

64(x, y) ∈ [55, 56]2. (19)

Let Ψ8 ⊂ Ψ4 and Ψ]
8 ⊂ Ψ]

4 denote the diagonals, where x = y.
Define

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (20)

This maps Ψ]
4 into Ψ8.

Note that σ is the identity on Ψ8. Here are the three results we prove in
this section. All these results are about low dimensional subspaces.

Theorem 3.11 (Critical I) Rs(σ(p)) < Rs(p) for

(p, s) ∈ (Ψ]
4 −Ψ]

8)× [14, 16].
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Theorem 3.12 (Critical II) Rs(ξ0) < Rs(ξ) for

(ξ, s) ∈ (Ψ4 × [13, 15]) ∪ ((Ψ4 −Ψ]
4)× [15, 15+]).

Theorem 3.13 (Critical III) There exist ש ∈ (15, 15+) such that

1. Rs(ξ0) < Rs(ξ) for all (ξ, s) ∈ Ψ]
8 × [15, .(ש

2. Rs(ξ0) > Rs(ξ) for some (fixed) ξ ∈ Ψ]
8 and all s ∈ ,ש) 15+)

3. Rs is uniquely minimized on Υ]
8 for all s ∈ ,ש) 15+].

Corollary 3.14 The Phase Transition Theorem is true for Υ× [13, 15+].

Proof: We first show that if ξ ∈ Υ and s ∈ [13, (ש then Rs(ξ0) < Rs(ξ).
We argue by contradiction. Suppose Rs(ξ) < Rs(ξ0). By the Symmetrization
Theorem, it suffices to consider the case when ξ ∈ Υ∩K4 ⊂ Υ4. The Critical
Theorem II tells us that s ∈ [15, 15+] and ξ ∈ Υ]

4. By the Critical Theorem
I, we can find some new ξ′ ∈ Υ]

8 such that Rs(ξ
′) < Rs(ξ) < Rs(ξ0). This

contradicts Statement 1 of the Critical Theorem III.
Now suppose that that s > .ש Statement 2 of the Critical Theorem III

tells us that some FP minimizes the Rs potential.
Now we consider the case when s = .ש By continuity both the TBP and

some FP minimize Rs. Suppose ξ1 and ξ2 are both satisfy

Rs(ξ1) = Rs(ξ2) = Rs(ξ0).

Note that both ξ1 and ξ2 are FPs which minimizer Rs. Statement 3 of the
Critical Theorem III now says that at most one of ξ1, ξ2 can belong to Υ]

8.
Suppose ξ2 6∈ Υ]

8.
The Critical Theorem II says that ξ2 ∈ Υ]

4 − Υ]
8. But then the Critical

Theorem I says that there is some ξ′2 ∈ Υ]
8 with Rs(ξ

′
2) < Rs(ξ2). This con-

tradicts the fact that ξ2 is an FP which minimizes Rs. Hence, when s = ,ש
there is a unique FP in Υ that ties with the TBP. ♠

Corollaries 3.9 and 3.14 reduce us to showing that the Phase Transition
Theorem is true on

(Ω− Ω0)× (0, 13] ∪ (Ω− Ω0 −Υ)× [13, 15+]. (21)

We handle this with a divide-and-conquer calculation.
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3.7 Big Calculation

Theorem 3.15 (Calculation) The following is true.

1. The TBP is the unique minimizer for G4, G
[
5, G6 amongst 5-point con-

figurations which have avatars in Ω− Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configurations

which have avatars in Ω− Ω0 −Υ.

3. The TBP is the unique minimizer for G]]
10 among 5-point configurations

which have avatars in Υ.

The Calculation Theorem does not quite line up with our Interpolation
Theorem. Let us now get the two results in line exactly.

Corollary 3.16 The following is true.

1. The TBP is the unique minimizer for G4, G
[
5, G6, G

]]
10 among configu-

rations having avatars in Ω− Ω0.

2. The TBP is the unique minimizer for G]
10 among 5-point configurations

having avatars in Ω− Ω0 −Υ.

Proof: The only point that is not obvious from the Calculation Theorem is
the statement about G]]

10. Since the TBP is a global minimizer for G1 and
(uniquely so) for G[

5 on Ω−Ω0, we see that the TBP is the unique minimizer
for G5 on Ω − Ω0. Since the TBP is the unique minimizer for G]

10 and G5

and (by Tumanov’s result [T]) G2 on Ω−Ω0−Υ we see that the TBP is the
unique minimizer for G]]

10 on Ω − Ω0 − Υ. This combines with Statement 3
of the Calculation Theorem to show that the TBP is the unique minimizer
for G]]

10 on Ω− Ω0. ♠

Combining Corollary 3.16 with the Interpolation Theorem, we see that
the Phase Transition Theorem is true on the domain in Equation 21. This
completes the proof of the Phase Transition Theorem.
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4 The Interpolation Theorem

Reading Guide: This chapter is for Reader 1.

4.1 Main Result

Recall that 15+ = 15 + 25
512

. We let Rs(T ) be the Riesz s-potential of a
configuration T . Referring to Equations 7 and 8, we define

P1 = (G4, G6), P2 = (G5, G
]]
10), P3 = (G[

5, G
]
10), (22)

I1 = (0, 6], I2 = [6, 13], I3 = [13, 15+]. (23)

We say that a pair (Γ3,Γ4) of functions forces the interval I if the following
is true: If T is another 5-point configuration such that Γk(T0) < Γk(T ) for
k = 3, 4 then Rs(T0) < Rs(T ) for all s ∈ I.

In this chapter we prove the following result, which immediately the In-
terpolation Theorem from §3.1

Lemma 4.1 (A) The following is true.

1. The pair (G4, G6) forces (0, 6].

2. The pair (G5, G
]]
10) forces [6, 13].

3. The pair (G[
5, G

]
10) forces [13, 15+].

4.2 Reduction to Smaller Results

We say that a pair of functions (Γ3,Γ4) specially forces s > 0 if there are
constants a0, ..., a4 (depending on s) such that

Λs = a0 + a1G1 + a2G2 + a3Γ3 + a4Γ4, (24)

1. Λs(x) = Rs(x) for x =
√

2,
√

3,
√

4.

2. a1, a2, a3, a4 > 0.

3. Λs(x) ≤ Rs(x) for all x ∈ (0, 2].

We say that (Γ3,Γ4) specially forces the interval I if this pair specially forces
all s ∈ I.
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Lemma 4.2 (A1) If (Γ3,Γ4) specially forces I then Γ forces I.

Proof: Let T0 be the TBP and let T be some other 5-point configuration.
We simplify the notation and write F (T ) = EF (T ). We assume

Γj(T0) < Γj(T )

for j = 3, 4 and we want to show that that Rs(T0) < Rs(T ) for all s ∈ I. It
is well known that Γ1(T0) ≤ Γ1(T ) and, by Tumanov’s result [T], Γ2(T0) ≤
Γ2(T ). Let aj = aj(s) for s ∈ I. The quantities

√
2,
√

3,
√

4 are the distances
which appear between pairs of points in T0. Therefore Λs(T0) = Rs(T0). But
then

Rs(T ) ≥ Λs(T ) = a0 +
4∑
j=1

ajΓj(T ) > a0 +
4∑
j=1

ajΓj(T0) = Λs(T0) = Rs(T0).

This completes the proof. ♠

Lemma 4.3 (A2) For each i = 1, 2, 3 the pair Pi specially forces Ii.

Lemma A is an immediate consequence of Lemma A1 and Lemma A2. It
remains to prove Lemma A2.

4.3 Discussion

Before launching into the proof, let me explain what made me search for these
results and how I found them. Tumanov remarks in [T] (using somewhat
different language) that the pair (G3, G5) forces the parameter interval (0, 2].
He did not offer a proof but eventually I found one on my own. By finding
the explicit equations for the coefficients, I saw that (G3, G5) specially forces
(0, 2]. Finding the coefficients is just a linear algebra problem for each s.

Wanting to prove that the TBP is the minimizer for a larger range of
exponents, I eventually saw that (G4, G6) specially forces (0, 6]. This is the
case i = 1 of Lemma A2.

Our luck somewhat runs out for Gk when k ≥ 7. The TBP is not the
global minimizer for G7, G8, ... If we want to use expressions like G7, etc, we
need to average it with Gk for smaller values of k to give the TBP a chance
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of being the minimizer. I experimented with expressions a1Gb1 + a2Gb2 and
wasn’t having much luck. So, I then broadened the search to the hybrid
triples. This worked quite well.

My computer program allows the reader to specify a hybrid triple, solve
for the coefficients needed for Property 1, and then check visually whether
Properties 2 and 3 hold. After fooling around for a while I hit on the specific
expressions that appear in Lemma A2. Once I got the expressions, it was a
matter of computer algebra to prove that the plots on my computer program
are indeed an accurate reflection of mathematical reality.

The proof of Lemma A2 relies on interval arithmetic calculations in Java.
The reader can download the code and see that it works. I think that it
would take a competent programmer less than a week to reproduce the code.
Also, I give explicit expressions for everything (with computer plots), so a
really energetic reader could find their own ways to verify that the plots are
accurate reflections of mathematical reality.

As an aside, Tumanov also observes that the pair (Γ3,Γ5) forces the inter-
val (−2, 0) if we use the Fejes-Toth potentials. (A proof similar to the ones
given in this chapter would establish this fact.) This is how I prove that the
TBP minimizes the Fejes-Toth potentials for all s ∈ (−2, 0).

4.4 Techniques of Proof

In our proofs below, we will need to deal with expressions of the form

F (s) =
∑

cis
tib

s/2
i , (25)

where bi, ci ∈ Q and ti ∈ Z and bi > 0. For each summand we com-
pute a floating point value, xi. We then consider the floor and ceiling of
232xi and divide by 232. This gives us rational numbers xi0 and xi1 such
that xi0 ≤ xi ≤ xi1. Since we don’t want to trust floating point operations
without proof, we formally check these inequalities with what we call the
expanding out method .

Expanding Out Method: Suppose we want to establish an inequality like
(a
b
)
p
q < c

d
, where every number involved is a positive integer. This inequality

is true iff bpcq − apdq > 0. We check this using exact integer arithmetic. The
same idea works with (>) in place of (<).
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To check the positivity of F on some interval [s0, s1] we produce, for each
term, the 4 rationals xi00, xi10, xi01, xi01. Where xijk is the approximation
computed with respect to sk. We then let yi be the minimum of these ex-
pressions. The sum

∑
yi is a lower bound for Equation 25 for all s ∈ [s0, s1].

On any interval exponent I where we want to show that Equation 25 is posi-
tive, we pick the smallest dyadic interval [0, 2k] that contains I and then run
the following subdivision algorithm.

1. Start with a list L of intervals. Initially L = {[0, 2k]}.

2. If L is empty, then HALT. Otherwise let Q be the last member of L.

3. If either Q ∩ I = ∅ or the method above shows that Equation 25 is
positive on Q we delete Q from L and go to Step 2.

4. Otherwise we delete Q from L and append to L the 2 intervals obtained
by cutting Q in half. Then we go to to Step 2.

If this algorithm halts then it constitutes a proof that F (s) > 0 for all s ∈ I.

Here is another tool we will use below in the proof. This kind of result is
discussed in much more generality in §2.6.1. All we need here is the single
variable case and so we give a short and self-contained account.

Lemma 4.4 (Positive Dominance) A real polynomial a0 +a1t+ ...ant
n is

positive on [0, 1] provided that the sums a0, a0 +a1, a0 +a1 +a2, ..., a0 + ...+an
are all positive.

Proof: Call the polynomial P . We do induction on the degree of P . For
x ∈ [0, 1] we have

P (x) ≥ xQ(x), Q(x) = (a0 + a1) + a2x+ a3x
2...

The polynomialQ(x) satisfies the same hypotheses as P (x) concerning the co-
efficients, so Q(x) > 0. Hence P (x) > 0 for x ∈ (0, 1]. Finally P (0) = a0 > 0.
♠
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4.5 Reduction of Lemma A2

Referring to Equation 24 we solve the equations

Λs(
√
m) = Rs(

√
m), m = 2, 3, 4, Λ′s(

√
m) = R′s(

√
m), m = 2, 3. (26)

Here f ′ denotes the derivative of f , a function defined on (0, 2]. We don’t need
to constrain f ′(2). For each s this gives us a linear system with 5 variables
and 5 equations. In all cases, our solutions have the following structure

(a0, a1, a2, a3, a4) = M(2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2) (27)

We will list M below for each of the 3 cases.

Lemma 4.5 (A21) For each i = 1, 2, 3 the following is true. When M is
defined relative to the pair Pi then the coefficients a1, a2, a3, a4 are positive
functions on the interval Ii.

We want to see that the function

Hs = 1− Λs

Rs

. (28)

takes its minima at r =
√

2,
√

3 on (0, 2]. Differentiating with respect to
r ∈ (0, 2] we have

H ′s(r) = rs−1(sΛs(r) + rΛ′s(r)). (29)

Using the general equation rG′k(r) = 2kGk(r)− 8kGk−1(r), we see that

ψs = sΛs(r) + rΛ′s(r) (30)

is a polynomial in t = 4− r2.

Lemma 4.6 (A22) For each choice Pj and each s ∈ Ij the following is true.
The function ψs has 4 simple roots in [0, 4]. Two of the roots are 1 and 2
and the other two respectively lie in (0, 1) and (1, 2).

Let us deduce Lemma A2. Our construction and Lemma A21 immediately
take care of Conditions 1 and 2 of special forcing. Condition 3: The roots of
ψs in [0, 4) are in bijection with the roots of H ′s in (0, 2] and their nature (min,
max, simple) is preserved under the bijection. We check for one parameter in
each of the three cases that the roots 1 and 2 correspond to local minima and
the other two roots correspond to local maxima. Since these roots remain
simple for all s in the relevant interval, the nature of the roots cannot change
as s varies. Hence Hs has exactly 2 local minima in (0, 2], at r =

√
2,
√

3.
But then Hs ≥ 0 on (0, 2]. This completes the proof.
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4.6 Data and Plots

Referring to Equation 27, we list out the matrix M in each of the three cases
and also show computer plots. The reader can interact with these plots and
see others like (and unlike) them using our computer software.

Here is Case 1.

M =
1

792


0 0 792 0 0

792 1152 −1944 −54 −288
−1254 −96 1350 87 376

528 −312 −216 −39 −98
−66 48 18 6 10

 (31)

The left side of Figure 4.1 shows a graph of

80a1, 200a2, 2000a3, 10000a4,

considered as functions of the exponent s. Here a1, a2, a3, a4 are colored
darkest to lightest. The completely unimportant positive multipliers are
present so that we get a nice picture. On the left side of Figure 4.1, the thick
vertical segments are s = 0, 1, 2, 3, 4, 5, 6.

It turns out that a3 goes negative between 6 and 6.1, so the interval (0, 6]
is fairly near to the maximal interval of positivity.

Figure 4.1: Plots for Case 1.

We cannot directly apply our positivity algorithm to Case 1 because this
algorithm only works for functions which have uniform positive lower bounds.
We will deal with Case 1 below.
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Here is Case 2.

1

368536


0 0 268536 0 0

88440 503040 −591480 −4254 −65728
−77586 −249648 327234 2361 65896
41808 −19440 −22368 −2430 −9076
−402 264 138 33 68

 (32)

Figure 4.2 does for Case 2 what Figure 4.1 does for Case 1. This time
the left hand side plots

500a1 500a2, 5000a3, 500000a4.

for s ∈ [6, 13]. The think vertical segments are s = 6, 7, 8, 9, 10, 11, 12, 13.
The coefficients a1, a2, a3 go negative for s just a tiny bit larger than 13.

I worked hard to find the function Γ4 = G10 +28G5 +102G2 so that we could
get all the way up to s = 13. The right hand side shows a plot of H10 from
r = 5/4 to r = 2.

Figure 4.2: Plot for Case 2.

For Case 2 we run the positivity algorithm and show that for k = 1, 2, 3, 4
the function ak(s) is positive on [6, 13], as the plot indicates.
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Here is Case 3.

1

368536


0 0 268536 0 0 0

982890 116040 −1098930 −52629 −267128 0
−91254 −240672 331926 3483 68208 0
35778 −15480 −20298 −1935 −8056 0
−402 264 138 33 68 0

 (33)

This matrix is quite similar to the one in the previous case, because we
are essentially still taking combinations of G0, G1, G2, G5, G10. We are just
grouping the functions differently. Figure 3.3 does for Case 3 what Figure
3.2 does for Case 2. This time we plot

500a1 15000a2, 20000a3, 500000a4,

for s ∈ [13, 16]. The thick vertical segments are s = 13, 14, 15.
The coefficients a1, a2, a3 go negative for s just a tiny bit larger than

15.05. In particular, everything up to and including our cutoff of 5 + 25/512
is covered. The right hand side shows a plot of H14 from r = 5/4 to r = 2.

Figure 4.3: Plot for Case 3.

For Case 3 we run the positivity algorithm and show that for k = 1, 2, 3, 4
the function ak(s) is positive on [13, 15+], as the plot indicates.
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4.7 Case 1 of Lemma A21

Before we launch into Case 1, we add two quantities we test, namely ψs(0)
and ψs(4). We have

11ψs(0) =


−88
−128
+216
+6
+32
+11

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2

 ,
11

s
ψs(4) =


−2112
+1664
+459
+219
288
0

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2


In other words, these quantities have the same form as the functions aj(s) for
j = 1, 2, 3, 4. We run the positivity algorithm and show that all 6 quantities
are positive on [1/4, 6].

Now we deal with the interval (0, 1/4]. Note that

sup
m=2,3,4

sup
s∈[0,1]

∣∣∣ ∂6

∂s6
m−s/2

∣∣∣ < 1

8
. (34)

All our (scaled) expressions have the form Y · V (s),

V (s) = (2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2, s4−s/2).

For an integer vector Y . Moreover the sum of the absolute values of the
coefficients in each of the Y vectors is at most 5000. This means that, when
we take the 5th order Taylor series expansion for Y · V (s), the error term is
at most

5000× 1

8
× 1

6!
< 1.

We compute each Taylor series, set all non-leading positive terms to 0, and
crudely round down the other terms:

792a1(s) : 98s− 69s2 + 0s3 − 6s4 + 0s5 − 1s6

792a2(s) : 14s− 3s2 − 2s3 + 0s4 − 1s5 − 1s6.

792a3(s) : 1s+ 0s2 − 1s3 + 0s4 + 0s5 − 1s6.

792a4(s) : .03s+ 0s2 + 0s3 − .01s4 + 0s5 − 1s6.

11ψs(0) : .08s+ 0s2 − .02s3 + 0s4 − .01s5 − 1s6.

(11/s)ψs(4) : 11 + 0s+ 0s2 − 1s3 − 1s4 + 0s5 − 1s6.

These under-approximations are all easily seen to be positive on (0, 1/4]. My
computer code does these calculations rigorously with interval arithmetic,
but it hardly seems necessary.
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4.8 Proof of Lemma A22

Case 1: In Case 1 we compute that

ψs(t) = t6 − 48

12 + s
t5 + ... (35)

We don’t care about the other terms. Since ψs has degree 6 we conclude
that ψs has at most N = 6 roots, counting multiplicity. By construction
Hs(
√
m) = H ′s(

√
m) = 0 for m = 2, 3 and Hs(

√
4) = 0. This means that

Hs has extrema at r2 =
√

2 and r3 =
√

3 and at points r23 ∈ (
√

2,
√

3)
and r34 ∈ (

√
3,
√

4). Correspondingly ψs has roots t1 = 1 and t2 = 2 and
t01 ∈ (0, 1) and t12 ∈ (1, 2). The sum of all the roots of ψs is 48/(12 + s) < 4.
Since t1 + t2 + t01 + t12 > 4 we see that not all roots can be positive. Hence
N < 6. Since ψs is positive at t = 0, 4 we see that N is even. Hence N = 4.
This means that the only roots of ψs in (0, 4) are the 4 roots we already know
about. Since these roots are distinct, they are simple roots.

Cases 2 and 3: First of all, the functions Hs are the same in Cases 2
and 3. This is not just a computational accident. In both cases we are build-
ing Hs from the functions G1, G2, G5, G10. So, we combine Cases 2 and 3 by
proving that the common polynomial ψs just has 4 roots for each s ∈ [6, 16].
I will describe a proof which took me quite a lot of experimentation to find.

The same analysis as in Case 1 shows that ψs has roots at 1, 2, and in
(0, 1) and in (1, 2). We just want to see that there are no other roots.

We can factor ψs as (t − 1)(t − 2)βs where βs is a degree 8 polynomial.
Taking derivatives with respect to t, we notice that

1. γs = 268536× 12s/2 × (β′′s − β′s) is positive for s× t ∈ [6, 16]× [0, 4].

2. −β′s(0) > 0 for all s ∈ [6, 16].

3. β′s(4) > 0 for all s ∈ [6, 16].

Statement 1 shows in particular that β′s never has a double root. This com-
bines with Statements 2 and 3 to show that the number of roots of β′s in [0, 4]
is independent of s ∈ [6, 16]. We check explicitly that β′6 has only one root
in [0, 4]. Hence β′s always has just one root. But this means that βs has at
most 2 roots in [0, 4]. This, in turn, means that ψs has at most 4 roots in
[0, 4]. This completes the proof modulo the 3 statements.
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Now we establish the 3 statements. We first give a formula for γs. Define
matrices M3,M4,M6 respectively as:

−546840 −1800480 99720 −397440 −234600 −33120 173880 −22080
18366 17112 80766 24288 18630 11592 4830 −1104
0 0 0 0 0 0 0 0


 −345600 −1576320 −509760 −760320 −448800 −63360 332640 −42240
−199296 −698784 75216 −149376 −79960 5856 94920 −12992
7104 8432 33960 11968 9180 5712 2380 −544


 892440 3376800 410040 1157760 683400 96480 −506520 64320
−73350 −246888 −228942 −165792 −110370 −41688 27510 −2064
1473 4092 10557 5808 4455 2772 1155 −264


Define 3 polynomials P3, P4, P6 by the formula:

Pk(s, t) = (1, s, s2) ·Mk · (1, ..., t7) =
2∑
i=0

7∑
j=0

(Mk)ijs
itj, k = 3, 4, 6. (36)

We have
γ = P33s/2 + P44s/2 + P66s/2. (37)

To check the positivity of γs we check that each of the 16 functions

γs(v/4 + 1/4) = av,0 + av,1t+ ...av,7t
7 (38)

satisfies the following condition: Av,k = av,0 + ... + av,k is positive for all
k = 0, ..., 7 and all s ∈ [6, 16]. The Positive Dominance Lemma now implies
that the corresponding polynomial is positive on [0, 1].

For each v = 0, ..., 15 and each k = 0, ...., 7 we have a 3×3 integer matrix
µv,k such that

Av,k = (1, s, s2) · µv,t · (3s/2, 4s/2, 6s,2). (39)

This gives 128 matrices to check. We get two more such matrices from the
conditions −β′s(0) > 0 and β′s(4) > 0. All in all, we have to check that 130
expressions of the form in Equation 39 are positive for s ∈ [6, 16]. These
expressions are all special cases of Equation 25, and we use the method
discussed above to show positivity in all 130 cases. The program runs in
several hours.
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5 The Local Convexity Theorem

Reading Guide: This chapter is for Reader 2.

We use the notation from §2. Recall that Σ−1 is inverse stereographic
projection. The small domain Ω0 is defined in §2.4. Here is the result we
prove in this chapter.

Theorem 5.1 (Local Convexity) For F = G4, G6, G
[
5, G

]
10, the Hessian

of EF ◦ Σ−1 is positive definite at every point of Ω0.

5.1 Discussion

Before we launch into the proof, we discuss why the proof has the structure
that it does. We are interested in showing that certain functions, essentially
the eigenvalues of the Hessian matrix of various energy potentials, are positive
in a certain definite neighborhood.

Consider a toy version of this problem where we want to show that a real
valued smooth function f is positive on an interval [0, a]. We only want to
evaluate f and its derivatives at 0. In general, this is a hopeless task, but let
us discuss it anyhow.

We evaluate f(0) and we notice that it is positive. if we knew that |f ′| was
small enough on [0, a] then we could use Taylor’s Theorem with Remainder
to show that f > 0 on [0, a]. We could evaluate |f ′(0)| and observe that is is
quite small. If we knew that |f ′′| was small on [0, a] then we could again use
Taylor’s Theorem to show that |f ′| is small enough on [0, a].

In general, we have a recursive problem with no end in sight. However,
in our specific situation we have some good algebraic luck that saves us. It
turns out that certain a priori algebraic bounds on the nth derivatives grow
slowly in comparison to the large constant n! we divide by when we apply
Taylor’s Theorem with Remainder.

We will use an algebraic trick to get reasonable bounds on high derivatives
of the functions of interest to us, and then we will use Taylor’s Theorem with
remainder to promote these decent bounds on high derivatives to excellent
bounds on the lower derivatives.
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5.2 Reduction to Simpler Statements

We consider F to be any of the 4 functions

G4, G6, G[
5 = G5 − 25G1, 2−5G]

10 = 2−5(G10 + 13G5 + 68G2).

Scaling the last function by 2−5 makes our estimates more uniform.
Recall that Ω0 is the cube of side length 2−17 centered at the point

ξ0 =
(

1, 0,
−1√

3
,−1, 0, 0,

1√
3

)
∈ R7 (40)

In general, the point (x1, ..., x7) represents the avatar

p0 = (x1, 0), p1 = (x2, x3), p2 = (x4, x5), p3 = (x6, x7). (41)

The quantity F (x1, ..., x7) is the F -potential of the 5-point configuration
associated to the avatar under inverse stereographic projection Σ−1.

F (x1, ..., x7) =
∑
i<j

F (‖p̂i − p̂j‖), p̂ = Σ−1(p). (42)

Equation 5 gives the formula for Σ−1.
Let HF be the Hessian of F . The Local Convexity Theorem says HF

is positive definite in Ω0. Let ∂JF be the (iterated) partial derivative of F
with respect to a multi-index J = (j1, ..., j7). Let |J | = j1 + ...+ j7. Let

MN = sup
|J |=N

MJ , MJ = sup
ξ∈Ω0

|∂JF (ξ)|, (43)

Let λ(M) be the smallest eigenvalue of a real symmetric matrix M . The
Local Convexity Theorem is an immediate consequence of the following two
lemmas.

Lemma 5.2 (L1) If M3(F ) < 212λ(HF (ξ0)) then λ(HF (ξ)) > 0 for all
ξ ∈ Ω0.

Lemma 5.3 (L2) M3(F ) < 212λ(HEF (ξ0))) in all cases.
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5.3 Proof of Lemma L1

Let
H0 = HF (ξ0), H = HF (ξ), ∆ = H −H0. (44)

For any real symmetric matrix X define the L2 matrix norm:

‖X‖2 =

√∑
ij

X2
ij = sup

‖v‖=1

‖Xv‖. (45)

Given a unit vector v ∈ R7 we have H0v · v ≥ λ. Hence

Hv · v = (H0v + ∆v) · v ≥ H0v · v − |∆v · v| ≥ λ− ‖∆v‖ ≥ λ− ‖∆‖2 > 0.

So, to prove Lemma L1 we just need to establish the implication

M3 < 212λ(H0) =⇒ ‖∆‖2 < λ(H0).

Let t→ γ(t) be the unit speed parametrized line segment connecting p0 to
p in Ω0. Note that γ has length L ≤

√
7×2−18. We write γ = (γ1, ..., γ7). Let

Ht denote the Hessian of F evaluated at γ(t). Let Dt denote the directional
derivative along γ.

Now ‖Dt(Ht)‖2 is the speed of the path t→ Ht in R49, and ‖∆‖2 is the
Euclidean distance between the endpoints of this path. Therefore

‖∆‖2 ≤
∫ L

0

‖Dt(Ht)‖2 dt. (46)

Let (Ht)ij denote the ijth entry of Ht. From the definition of directional
derivatives, and from the Cauchy-Schwarz inequality, we have

(DtHt)
2
ij =

( 7∑
k=1

dγk
dt

∂Hij

∂k

)2

≤ 7M2
3 . ‖Dt(Ht)‖2 ≤ 73/2M3. (47)

The second inequality follows from summing the first one over all 72 pairs
(i, j) and taking the square root. Equation 46 now gives

‖∆‖2 ≤ L× 73/2M3 = 49× 2−18M3 < 2−12M3 < λ(H0). (48)

This completes the proof.
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5.4 Proof of Lemma L2

Let F be any of our functions. Let H0 = HF (ξ0).

Lemma 5.4 (L21) λ(H0) > 39.

Proof: Let χ be the characteristic polynomial of H0. This turns out to be
a rational polynomial. We check in Mathematica that the signs of the coef-
ficients of χ(t + 39) alternate. Hence χ(t + 39) has no negative roots. The
file we use is L21.m. ♠

Recalling that ξ0 ∈ R7 is the point representing the TBP, we define

µN(F ) = sup
|I|=N

|∂IF (ξ0)|. (49)

Lemma 5.5 (L22) For any of our functions we have the bound

µ3 < 45893,
(7× 2−18)j

j!
µj+3 < 38, j = 1, 2, 3. (50)

Proof: We compute this in Mathematica. The file we use is L22.m. ♠

Lemma 5.6 (L23) For any of our functions we have the bound

(7× 2−18)4

4!
M7 < 2354.

Proof: We give this proof in the next section. ♠

Lemma 5.7 (L24) We have

M3 ≤ µ3 +
3∑
j=1

(7× 2−18)j

j!
µj+3 +

(7× 2−18)4

4!
M7 (51)
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Proof: Choose any multi-index J with |J | = 3. Let γ be the line segment
connecting ξ0 to any ξ ∈ Ω. We parametrize γ by unit speed and furthermore
set γ(0) = ξ0. Let

f(t) = ∂JF ◦ γ(t).

The bound for |MJ | follows from Taylor’s Theorem with remainder once we
notice that

0 ≤ t ≤
√

7× 2−18,
∣∣∣∂nf(0)

∂tn

∣∣∣ ≤ (
√

7)nµn

∣∣∣∂nf
∂tn

∣∣∣ ≤ (
√

7)nMn.

Since this works for all J with |J | = 3 we get the same bound for M3. ♠

The lemmas above and Equation 50 imply

M3 < 45893 + 3× 38 + 2354 ≤ 65536 = 216 ≤ 212λ(H0).

This completes the proof of Lemma L2.

5.5 Proof of Lemma L23

Now we come to the interesting part of the proof, the one place where we
need to go beyond specific evaluations of our functions. When r, s ≥ 0 and
r + s ≤ 2d we have

sup
(x,y)∈R2

xrys

(1 + x2 + y2)d
≤ (1/2)min(r,s). (52)

One can prove Equation 52 by factoring the expression into pieces with
quadratic denominators. Here is a more general version. Say that a function
φ : R4 → R is nice if it has the form∑
i

Cia
αibβicγidδi

(1 + a2 + b2)ui(1 + c2 + d2)vi
, αi, βi, γi, δi ≥ 0, αi+βi ≤ 2ui, γi+δi ≤ 2vi.

It follows from Equation 52 that

sup
R4

|φ| ≤ 〈φ〉, 〈φ〉 =
∑
i

|Ci|(1/2)min(αi,βi)+min(γi,δi). (53)

Equation 53 is useful to us because it allows us to bound certain kinds of
functions without having to evaluate then anywhere. We also note that if
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φ is nice, then so is any iterated partial derivative of φ. Indeed, the nice
functions form a ring that is invariant under partial differentiation. This fact
makes it easy to identify nice functions.

For any φ : Rn → R we define

M7(ψ) = sup
|J |=7

MJ(ψ), MJ(ψ) = sup
ξ∈Rn

|∂J(φ)|. (54)

We obviously have
M7(F ) ≤M7(F ). (55)

Recall that p̂ = Σ−1(p), the inverse stereographic image of p. Define

f(a, b) = 4− ‖(̂a, b)− (0, 0, 1)‖2 =
4(a2 + b2)

1 + a2 + b2
. (56)

g(a, b, c, d) = 4− ‖(̂a, b)− (̂c, d)‖2 =
4(1 + 2ac+ 2bd+ (a2 + b2)(c2 + d2))

(1 + a2 + b2)(1 + c2 + d2)
. (57)

Notice that g is nice. Hence gk is nice and ∂Ig
k is nice for any multi-index.

That means we can apply Equation 53 to ∂Ig
k.

Gk is a 10-term expression involving 4 instances of fk and 6 of gk. How-
ever, each variable appears in at most 4 terms. So, as soon as we take a
partial derivative, at least 6 of the terms vanish. Moreover, ∂If is a limiting
case of ∂Ig for any multi-index I. From these considerations, we see that

M7(Gk) ≤ 4×M7(gk). (58)

The function ∂I(g
k) is nice in the sense of Equation 53. Therefore

4×M7(gk) ≤ 4×max
|I|=7

〈∂Igk〉. (59)

Using this estimate, and the Mathematica file L23.m, we get

max
k∈{1,2,3,4,5,6}

(7× 2−18)4

4!
× 4×M7(gk) ≤ 1

1000
.

2−5 × (7× 2−18)4

4!
× 4×M7(g10) ≤ 2353. (60)

The bounds in Lemma 5.6 follow directly from Equations 58 - 60 and from
the definitions of our functions.
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6 The Symmetrization Theorem

Reading Guide: This is for Reader 3. We prove the Symmetrization The-
orem from §3.5.

6.1 Reduction to Four Lemmas

What makes our proof possible is that we can break the 10-term sum into
smaller sums, each involving just a few terms, which are separately decreased
by the symmetrization operation.

The domain Υ is defined in §3.7. Let X = (p0, p1, p2, p3) be an avatar in
Υ. We let X ′ be the planar configuration which is obtained by rotating X
about the origin so that p′0 and p′2 lie on the same horizontal line, with p′0
lying on the right. This operation does not change the Rs-energy. Let Υ′

denote the domain of avatars X ′ such that (comparing with Υ)

1. ‖p′0‖ ≥ ‖p′k‖ for k = 1, 2, 3.

2. 512p′0 ∈ [432, 498]× I16. (Compare [433, 498]× I0.)

3. 512p′1 ∈ I32 × [−465,−348]. (Compare I16 × [−464,−349].)

4. 512p′2 ∈ [−498,−400]× I16. (Compare [−498,−400]× [0, 24].)

5. 512p′3 ∈ I32 × [348, 465]. (Compare I16 × [349, 464].)

6. p′02 = p′22. (Compare p02 = 0.)

Lemma 6.1 (B1) If X ∈ Υ then X ′ ∈ Υ′.

Proof: This is the most tedious proof in the whole paper! Condition 6 holds
by construction. Rotation about the origin does not change the norms, so
X ′ satisfies Condition 1. Now we check the other conditions.

Let ρθ denote the counterclockwise rotation through the angle θ. Since
p0 lies on the x axis and p2 lies on or above it, we have to rotate by a small
amount counterclockwise to get p′0 and p′2 on the same horizontal line. Hence
θ ≥ 0. This angle is maximized when p0 is an endpoint of its segment of
constraint and p2 is one of the two upper vertices of rectangle of constaint.
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We check for all 4 pairs (p0, p2) that the second coordinate of ρ1/34(p0) is
larger than the second coordinate of ρ1/34(p2). Hence θ < 1/34. This yields

512 cos(θ) ∈ [0, 1], 512 sin(θ) ∈ [0, 16]. (61)

From Equation 61, the map 512p0 → 512p′0 changes the first coordinate
by 512δ01 ∈ [0, 16] and 512δ02 ∈ [−1, 0]. Condition 2 follows. Next, we have
512δ21 ∈ [0, 1]. This gives Condition 4 for Υ′ because |p′21| ≤ |p′01|.

Condition 3 follows from 512δ11 ∈ [0, 16] and 512δ12 ∈ [−1, 1]. The first
bound comes from 512 sin(θ) < 16. For the second bound we note that the
angle that p1 makes with the y-axis is maximized when p1 is at the corners
of its constraints in Υ. That is, 512p1 = (16, 349). Since tan(1/21) > 16/349
we conclude that this angle is at most 1/21. Hence

|512δ12| ≤ max
|x|≤1/21

∣∣∣ cos
(
x+

1

34

)
− cos(x)

∣∣∣ < 1.

This gives Condition 3. The same argument gives Condition 5. ♠

Given an avatar X ′ ∈ Υ′, there is a unique configuration X ′′, invariant
under under reflection in the y-axis, such that p′j and p′′j lie on the same
horizontal line for j = 0, 1, 2, 3 and ‖p′′0 − p′′2‖ = ‖p′0 − p′2‖. We call this
horizontal symmetrization. In a straightforward way we see that horizontal
symmetrization maps Υ′ into Υ′′, the set of avatars p′′0, p

′′
1, p
′′
2, p
′′
3 such that

1. −512p′′2, 512p′′0 ∈ [416, 498]× I16

2. −512p′′1, 512p′′3 ∈ I0 × [348, 465].

3. p′′02 = p′′22.

Given a configuration X ′′ ∈ Υ′′ there is a unique configuration X ′′′ ∈ K4
such that p′′j and p′′′j lie on the same vertical line for j = 0, 1, 2, 3. We call
this operation vertical symmetrization. Here X ′′′ = X∗ from Lemma B.

Given an avatar X = (p0, p1, p2, p3) define

rij =
1

‖Σ−1(pi)− Σ−1(pj)‖
. (62)

Given a list L of pairs of points we define Rs(X,L) to be the sum of the
Rs-potentials just over the pairs in L. E.g. Rs(X, {(0, 2), (0, 4)}) = rs02 + rs04.
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We call L good for s, and with respect to one of the operations, if the
operation does not increase the value of Rs(X,L). We call L great if the
operation strictly lowers Rs(X,L) unless the operation fixes P . We mean
to take the appropriate domains in all cases. The Symmetrization Theorem
follows immediately from Lemma B1 and from the 3 lemmas below.

Lemma 6.2 (B2) On Υ, {(0, 2), (0, 4), (2, 4)} and {(1, 3), (1, 4), (3, 4)} are
both great for all s ≥ 2 and with respect to symmetrization.

Lemma 6.3 (B3) On Υ′, the lists {(0, 1), (1, 2)} and {(0, 3), (3, 2)} are both
good for all s ≥ 2 and with respect to horizontal symmetrization.

Lemma 6.4 (B4) on Υ′′, the lists {(0, 1), (0, 3)} and {(2, 1), (2, 3)} are both
good for all s ≥ 12 and with respect to vertical symmetrization.

6.2 Proof of Lemma B2

Let s3 =
√

3/3. Inverse stereographic projection maps the triangle with
vertices (±s3, 0) and∞ to an equilateral triangle on S2. Avatars in Υ satisfy

‖p0‖, ‖p1‖, ‖p2‖, ‖p3‖,
‖p0 − p2‖

2
,
‖p1 − p2‖

2
∈ (s3, 1).

Let (u, v) stand for either (0, 2) or (1, 3).

1. Let a > 0 be such that ‖pu−pv‖/2 = s3 +a. Let −qu = qv = (s3 +a, 0).
The points qu, qv are symmetric w.r.t the y-axis. Also set au = av = a.

2. Choose bu, bv with 0 < bu ≤ au and 0 < bv ≤ av. Let ru = (−s3− bu, 0)
and rv = (s3 + bv, 0). Note that ‖ru − rv‖ ≤ ‖qu − qv‖.

up to rotation about the origin, our symmetrization operation does the map
(pu, pv)→ (ru, rv) for suitable au, av, bu, bv. For our symmetrization operation
we have the additional properties b0 = b2 = a and b1 = b3, but we want to
consider the more general case as part of our proof strategy.

Recall that p̂ is the image of p under inverse stereographic projection.
Lemma B2 is implied by:

‖r̂u − r̂v‖−s + ‖r̂u − (0, 0, 1)‖−s + ‖r̂v − (0, 0, 1)‖−s ≤

‖p̂u − p̂v‖−s + ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s (63)

for all s ≥ 2, with equality iff (ru, rv) = (pu, pv) up to rotation about the
origin. We will establish this in two steps.
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Lemma 6.5 (B21) Let s ≥ 2 and

As = ‖p̂u − p̂v‖−s − ‖q̂u − q̂v‖−s,

Bs = ‖p̂u − (0, 0, 1)‖−s + ‖p̂v − (0, 0, 1)‖−s − ‖q̂u − (0, 0, 1)‖−s − ‖q̂v − (0, 0, 1)‖−s.

Then As, Bs ≥ 0, with equality iff pu = qu and pv = qv up to a rotation.

Proof: Note that if A2 > 0 then As > 0 for all s > 0. If B2 > 0 then the
Convexity Lemma implies that Bs > 0 for all s > 2. So, it suffices to prove
that A2, B2 > 0. We rotate so that

pu = (−x+ h, y), pv = (x+ h, y), qu = (−x, 0), qv = (x, 0). (64)

We compute

A2 =
h4 + y2(2 + 2x2 + y2) + 2h2(1− x2 + y2)

16x2
, B2 =

y2 + h2

2
. (65)

Since x ∈ (0, 1) we have A2, B2 > 0 unless h = y = 0. ♠

Define

Fs(au, av) = ‖q̂u − q̂v‖−s + ‖q̂u − (0, 0, 1)‖−s + ‖q̂v − (0, 0, 1)‖−s, (66)

Likewise define Fs(bu, bv). This is the same expression with respect to r̂u and
r̂v. Finally, define

E(s) = Fs(au, av)− Fs(bu, bv). (67)

Lemma 6.6 (B22) E(s) ≥ 0 with equality iff bu = au and bv = av.

Proof: It suffices to prove this result in the intermediate case when au = bu
or av = bv because then we can apply the intermediate result twice to get the
general case. Without loss of generality we consider the case when av = bv
and bu < au. With the file LemmaB22.m we compute that ∂F2/∂au and
−∂F−2/∂au are both rational functions of au, av with all positive coefficients.
Hence E(2) > 0 and E(−2) < 0.

Referring to §2.6.4, consider the sign sequence for E(s). When au = bu,
the expression E(s) is an exponential sum with 4 terms. When au = av = 0

the points ζ̂u, ζ̂v and (0, 0, 1) make an equilateral triangle on a great circle.
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Hence, when au, av, bu, bv > 0 the point ζ̂u is closer to (0, 0, 1) than it is to

ζ̂v both in its old location and in its new location. The inward motion of
the point ζu increases the shorter (corresponding spherical) distance and de-
creases the longer (corresponding spherical) distance. More to the point, our
move decreases the longer inverse-distance and increases the shorter inverse-
distance. Thus the sign sequence for E(s) is +,−.−,+.

By Descartes’ Lemma, E(s) changes sign at most twice and also E(s) > 0
when |s| is sufficiently large. Since E(−2) < 0 as see that E changes sign
on (−∞,−2). If E has a root in (2,∞) then in fact E has at least 2 roots
(counted with multiplicity) because it starts and ends positive on this inter-
val. But then E has at least 3 roots, counting multiplicity. This is contra-
diction. Hence E(s) > 0 for s ≥ 2. ♠

6.3 Proof of Lemma B3

The domain Υ′ is symmetric with respect to reflection in the X-axis. Thanks
to this symmetry, it suffices to prove Lemma B3 for the list {(0, 1), (1, 2)}.
We set qj = p′j and q′j = p′′j .

We introduce the notation q1 = (q10, q11), etc. The horizontal symmetriza-
tion operation is given by

(q0, q1, q2)→ (q′0, q
′
1, q
′
2),

where

q′0 =
(q01 − q21

2
, q02

)
, q′1 = (0, q21), q′2 =

(q21 − q01

2
, q22

)
, (68)

Note that ‖q′0 − q′1‖ = ‖q′2 − q′1‖. This means that the kind of inequality we
are trying to establish has the form 2As ≤ Bs + Cs for choices of A,B,C
which depend on the points involved. Therefore, by the Convexity Lemma,
it suffices to prove that {(0, 1), (1, 2)} is good for the parameter s = 2.

Let D denote the set of triples of points (q0, q1, q2) ∈ (R2)3 such that there
is some q3 such that q0, q1, q2, q3 ∈ Υ′. Most of our proof involves finding a
concrete parametrization of a subset of R6 that contains D. Note that D
is really a 5 dimensional set, because q22 = q02. We will use parameters
a, b, c, d, e to parametrize a subset of R6 that contains D.

We define

[a, b, t] =
a(1− t)

512
+

bt

512
. (69)
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Here F512(a, b, ·) maps the interval [0, 1] onto the interval [a, b]/512. Given
(a, b, c, d, e) ∈ [0, 1]5 and σ1, σ2 ∈ {−,+} we define

p0 = ([+416,+498, a] + [0, 49, e], [0, 16σ1, b]);
p1 = ([0, 32σ2, d], [348, 465, c]);
p2 = ([−416,−498, a] + [0, 49, e], [0, 16σ1, b]);

(70)

We call this map φσ1,σ2 . In these coordinates, horizontal symmetrization is
the map

(a, b, c, d, e)→ (a, b, c, 0, 0). (71)

We have two steps we need to take. First we really need to show that we
have parametrized a superset of D. Second, we need to calculate the energy
change as a function of a, b, c, d, e and check at it decreases.

Lemma 6.7 (B31) We have

D ⊂ φ+,+([0, 1]5) ∪ φ+,−([0, 1]5) ∪ φ−,+([0, 1]5) ∪ φ−.−([0, 1]5).

Proof: Recall that qi = (qi1, qi2). Let Dij denote the set of possible coordi-
nates qij that can arise for points in D. Thus, for instance

D01 = [−16, 16]/512.

Let D∗ij denote the set of possible coordinates qij that can arise from the
union of our parametrizations. By construction Di2 ⊂ D∗i2 for i = 0, 1, 2 and
D11 ⊂ D∗11.

Remembering that we have q01 ≥ |q21|, we see that the set of pairs
512(q01, q21) satisfying all the conditions for inclusion in D lies in the tri-
angle ∆ with vertices

(498,−498), (498,−400), (432,−400).

At the same time, the set of pairs (512)(p∗01, p
∗
21) that we can reach with our

parametrization is the rectangle ∆∗ with vertices

(498,−498), (416,−416), (498,−498)+(49, 49), (416,−416)+(49, 49).

One checks easily that hence ∆ ⊂ ∆∗. Indeed, ∆ is inscribed in ∆∗. ♠
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Using our coordinates above, we define

F±,±(a, b, c, d, e) = ‖q̂0 − q̂1‖−2 + ‖q̂2 − q̂1‖−2,

Φ±,±(a, b, c, d, e) = num+(F±,±(a, b, c, d, e)− F±,±(a, b, c, 0, 0)). (72)

Here q0, q1, q2 are the points which correspond to (a, b, c, d, e) under our map
φ±,± and q̂0, q̂1, q̂2 are their images under inverse stereographic projection.
To finish our proof, we just have to show that Φ±,±(a, b, c, d, e) ≥ 0 on [0, 1]5.
The following lemma, and continuity, gives us this result.

Lemma 6.8 (B32) For any sign choice, Φ±,± ≥ 0 on [0, 1]5.

Proof: We let Φa = ∂Φ/∂a, and likewise for the other variables. Iterating
this notation, we let Φaa, etc., denote the second partials.

Let Φ be any of the 4 polynomials. The file LemmaB32.m opencomputes
that

1. Φ and Φd and Φe are zero when d = e = 0.

2. Φdd and Φee are weak positive dominant, hence nonnegative on [0, 1]5.

3. Φd + 2Φe is weak positive dominant, hence nonnegative on [0, 1]5.

Let Qd ⊂ [0, 1]5 be the sub-cube where d = 0. We fix (a, b, c) and consider
the single variable function φ(d) = Φ(a, b, c, d, 0). From Items 1 and 2 above,
φ(0) = φ′(0) = 0 and φ′′(d) ≥ 0. Hence φ(d) ≥ 0 for d ≥ 0. Hence Φ ≥ 0 on
Qd. A similar argument shows that likewise Φ ≥ 0 on Qe.

Any point in (0, 1)5 can be joined to a point in Qd∪Qe by a line segment
L which is parallel to the vector (0, 0, 0, 1, 2). From Item 3 above, Φ increases
along such a line segment as we move out of Qd∪Qe. Hence Φ ≥ 0 on [0, 1]5.
♠

6.4 Proof of Lemma B4

The set Υ′′ is symmetric with respect to reflections in both coordinate axes.
Thanks to these symmeties, it suffices to prove that {(0, 1), (0, 3)} is good
for all s ≥ 12, and it suffices to consider the case when p′′02 ≥ 0. That is, the
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point p0 lies on or above the X-axis. For ease of notation set qk = p′′k and
q′k = p′′′k . We are considering the case when q02 ≥ 0.

Let D be the set of configurations (q0, q1, q3) such that q02 ≥ 0 and
(q0, q1, q2, q3) ∈ Υ′′ when q2 is the reflection of q0 in the Y -axis. Let D± ⊂ D
denote those configurations with ±(q12 + q32) ≥ 0. Obviously D = D+ ∪D−.

The sets D± are 4-dimensional subsets of (R2)3. We parametrize a su-
perset of D± much as we did in the proof of Lemma B3. As in Equation 69
we define

[a, b, t] =
(1− t)a

512
+

bt

512
.

Given (a, b, c, d) ∈ [0, 1]4 and σ ∈ {+,−} we define

p0 = ([416, 498, b], [0, 16, d]);
p1 = (0,−[348, 465, a] + [0, 59σ, c]);
p3 = (0,+[348, 465, a] + [0, 59σ, c]);

(73)

We call this map φσ. In these coordinates, the symmetrization operation is
(a, b, c, d)→ (a, b, 0, 0).

Lemma 6.9 (B41) D± ⊂ φ±([0, 1]4).

Proof: This is just like the proof of Lemma B31. The only non-obvious
point is why every pair (p12, p32) is reached by the map φ±. The essential
point is that for configurations in D± we have 512|p12 + p32| ≤ 2× 59. ♠

Following the same idea as in the proof of Lemma B3, we define

Fs,±(a, b, c, d) = ‖Σ−1(q0)− Σ−1(q1)‖−s + ‖Σ−1(q0)− Σ−1(q3)‖−s, (74)

Φs,±(a, b, c, d) = num+(Fs,±(a, b, c, d)− Fs,±(a, b, 0, 0)). (75)

The points on the right side of Equation 74 are coordinatized by the map
φ±. We can finish the proof by showing that φ2,+ ≥ 0 and φ12,− ≥ 0 on
[0, 1]4. The Convexity Lemma then takes care of all exponents greater than
2 on D+ and all exponents greater than 12 on D−. Notice the asymmetry in
the calculation. The (+) side is much less delicate.

Lemma 6.10 (B42) Φ2,+ ≥ 0 on [0, 1]4.
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Proof: Let Φ = Φ2,+. Let Φ|c=0 denote the polynomial we get by setting
c = 0. Etc. Let Φc = ∂Φ/∂c, etc. The Mathematica file LemmaB42.m com-
putes that Φ|c=0 and Φ|d=0 and Φc + Φd are weak positive dominant. Hence
Φ ≥ 0 when c = 0 or d = 0 and the directional derivative of Φ in the direction
(0, 0, 1, 1) is non-negative. This suffices to show that Φ ≥ 0 on [0, 1]4. ♠

Lemma 6.11 (B43) Φ12,− ≥ 0 on [0, 1]4.

Proof: The file LemmaB43.m has the calculations. Let Φ = Φ12,−. This
monster has 102218 terms.

Step 1: Let M denote the maximum coefficient of Φ. We let Φ∗ be the
polynomial we get by taking each coefficient of c of Φ and replacing it with
floor(1010c/M). Note that if Φ∗ is nonnegative on [0, 1]4 then so is Φ.

Step 2: Now Φ∗ has 37760 monomials in which the coefficient is −1. We
check that each such monomial is divisible by one of c2 or d2 or cd. Let
Ψ = Φ∗∗ − 37760(c2 + d2 + cd), where Φ∗∗ is obtained from Φ∗ by setting
all the (−1) monomials to 0. We have Ψ ≤ Φ∗ on [0, 1]4. Hence, if Ψ is
non-negative on [0, 1]4 then so is Φ∗. The polynomial Ψ has 5743 terms.

Step 3: We check that Ψaaa is WPD and hence non-negative on [0, 1]4.
This massive calculation reduces us to showing that the restrictions Ψ|a=0

and Ψa|a=0 and Ψaa|a=0 are all non-negative on [0, 1]3. Consider

f |c=0, f |d=0 4fc + fd, (76)

We show that all three functions are WPD when either f = Ψa|a=0 or
f = Ψaa|a=0. This shows that Ψa|a=0 and Ψaa|a=0 are non-negative on [0, 1]3.
Also, we show that the first two functions are WPD when f = Ψ|a=0.

Step 4: Let g = 4fc + fd ≥ 0 on [0, 1]3 when f = Ψ|a=0. We check that gd
is WPD and hence non-negative on [0, 1]3. This reduces us to showing that
h = g|d=0 is non-negative on [0, 1]2. here h is a 2-variable polynomial in b, c.
Referring to the operation in §2.6, we check that the two subdivisions Sb,0(h)
and Sb,1(h) are WPD. This proves h ≥ 0 on [0, 1]2. ♠
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7 Symmetric Configurations

Reading Guide: This chapter is for Reader 4. We prove the Critical The-
orems from §3.6. We use the notation from §3.6.

7.1 Critical Theorem I

As in Equation 20, we write (z, z) = σ(x, y). Let φ : [0, 1]2 → Ψ]
4 be map

which scales the coordinates by a factor of 1/64. We use coordinates a, b on
[0, 1]2 so that (x, y) = φ(a, b).

For any rational function F : Ψ]
4 → R we define

NF (a, b) =
num+((F − F ◦ σ) ◦ φ)

(a− b)2
. (77)

See §2.6.3. For all the choices of F we make, NF will be a polynomial.
Recall that Σ−1(p4) = (0, 0, 1), and define

rij =
1

‖Σ−1(pi)− Σ−1(pj)‖
. (78)

Note that rsij is a rational function when s is an even integer.
Let Rs(x, y) be the Rs-energy of the avatar represented by (x, y). We

write Rs(x, y) = Gs(x, y) +Hs(x, y), where

Gs = rs02 + rs13, Hs = 2rs04 + 2rs14 + 4rs01. (79)

Lemma 7.1 (C1) Gs −Gs ◦ σ > 0 on Ψ]
4 × (2,∞).

Proof: The file LemmaC1.m computes that NG2 is a WPD polynomial. This
combines with the Convexity Lemma of §2.6.4 to show Gs − Gs ◦ σ > 0 on
Ψ]

4 × (2,∞). ♠

To finish the proof, we need to show

Lemma 7.2 (C2) Hs −Hs ◦ σ ≥ 0 on Ψ]
4 × [14, 16].

We first prove two smaller lemmas and then deduce Lemma C2.
We will suppose, for the sake of contradiction, that there is some (x, y) ∈

Ψ]
4 and some s ∈ [14, 16] such that

h(s) = Hs(x, y)−Hs(z, z) < 0. (80)
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We study the single-variable function h. The idea is to use Descartes’ Lemma
from §2.6.4 to get a contradiction. We first need some preliminary results.

Lemma 7.3 (C21) h has at least 3 roots in [2, 16].

Proof: The file LemmaC21.m computes that −NH2 and NH14 and NH16 are
all WPD polynomials. Hence h(2) < 0 and h(14) > 0 and h(16) > 0. ♠

Let (p0, p1, p2, p3) and (p′0, p
′
1, p
′
2, p
′
3) respectively be the configurations

corresponding to (x, y) and (z, z) = σ(x, y). Without claiming to have the
terms in order, we have

h(s) = +2rs04 − 4(r′04)s + 2rs14 + 4rs01 − 4(r′01)s. (81)

The next result gives us control on the ordering of these terms.

Lemma 7.4 (C22) r0, r1, r
′
0 < 1/

√
2 < r01, r

′
01 and r01 < r′01.

Proof: We have x, y, z ∈ (0, 1). We compute

(1/2)−r2
0 =

1− x2

4
> 0, (1/2)−r2

1 =
1− y2

4
> 0, (1/2)−(r′0)2 =

1− z2

4
> 0,

(r01)
2 − (1/2) =

(1− x2)(1− y2)

4(x2 + y2)
> 0, (r′01)

2 − (1/2) =
(1− z2)2

8z2
> 0.

This proves the first statement.
For the second statement, the file LemmaC22.m computes that −Nr201

is
a WPD polynomial. Hence r′01 ≥ r01. If we really had r′01 = r01. Then
Equation 81 would only have 3 terms. There would then be at most 2 sign
changes and Lemma 7.3 would contradict Descartes’ Lemma. We conclude
that r′01 > r01. ♠

Since the largest term in Equation 81 is−4(r′01)s we see that h vanishes for
some s > 16. Combining this with Lemma 7.3 and the fact that h(16) > 0,
we see that h changes sign 4 times on [2,∞). This is only possible if the sign
sequence is − +− +−. But this is impossible because there are two pluses
and three minuses. We have a contradiction. The only way out is that h
does not vanish on [14, 16]. This proves Lemma C2 and thereby finishes the
proof of the Critical Theorem I.
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7.2 Critical Theorem II modulo Lemma C3

Derivative Bounds: As above, we identify Ψ4 with a square in R2. The
point (1,

√
3/3), which is outside Ψ4, names the TBP. We define

Θ(x, y, s) = Rs(x, y)−Rs(1,
√

3/3). (82)

Here we are comparing the Rs-energy of an avatar in Ψ4 to the Rs energy
of the TBP. Let Θx be the partial derivative of Θ with respect to x, etc. In
§7.3 we establish the following bound.

Lemma 7.5 (C3) |Θxx|, |Θyy| ≤ 4 and |Θss| ≤ 1/64 on Ψ4 × [13, 16].

Blocks: We say that a block is a rectangular solid of the form

X = Q× J ⊂ [0, 1]2 × [0, 16], (83)

where Q is a square and J is an interval. We define |X|1 to be the length of
J and |X|2 to be the side length of Q. Let v(X) denote vertex set of X.

Lemma 7.6 For any block X ⊂ Ψ4× ⊂ [13, 16] we have

min
X

Θ ≥ min
v(X)

Θ−
( |X|21

512
+ |X|22

)
.

Proof: Write I = [s0, s1] and Q = [x0, x1]× [y0, y1]. Choose (x, y, s) ∈ X =
I×Q. Taylor’s Theorem with remainder (applied at the point of [a, b] where
f is minimized) implies that for any function f : [a, b]→ R and any x ∈ [a, b]
we have

f(x) ≥ min(f(a), f(b))− 1

8
max
[a,b]
|f ′′| × |a− b|2.

Applying this result 3 times and using Lemma C3 we have

Θ(x, y, s) ≥ min
i

Θ(x, y, si)−
|I|2

512
≥ min

i,j
Θ(xj, y, si)−

|I|2

512
− |X|

2
2

2
≥

min
i,j,k

Θ(xj, yj, si)−
I

512
− |X|

2
2

2
− |X|

2
2

2
= min

v(X)
Θ− |X|1

512
− |X|22.

This completes the proof. ♠
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Verifying Inequalities: Suppose we want to establish an inequality like

(
a

b
)
p
q <

c

d
,

where every number involved is a positive integer. This inequality is true iff

bpcq − apdq > 0.

We check this using exact integer arithmetic. The same idea works with (>)
in place of (<). We call this the expanding out method .

More generally, we will want to verify inequalities like

10∑
i=1

b−si −
10∑
i=1

a
−s/2
i > C. (84)

where all ai belong to the set {2, 3, 4}, and bi, c, s are all rational. more
specifically s ∈ [13, 15+] will be a dyadic rational and c will be positive. The
expression on the left will be Es(p)− Es(p0) for various choices of p, and the
constant C is related to the error term we define below.

Here is how we handle expressions like this. For each index i ∈ {1, ..., 10}
we produce rational numbers Ai and Bi such that

A
s/2
i > ai Bs

i < bi. (85)

We use the expanding out method to check these inequalities. We then check
that

10∑
i=1

Bi −
10∑
i=1

Ai > C. (86)

This last calculation is again done with integer arithmetic. Equations 85
and 86 together imply Equation 84. Logically speaking, the way that we
produce the rational Ai and Bi does not matter, but let us explain how we
find them in practice. For Ai we compute 232a

−s/2
i and round the result up

to the nearest integer Ni. We then set Ai = Ni/2
32. We produce Bi in a

similar way. When we have verified Equation 84 in this manner we say that
we have used the rational approximation method to verify Equation 84. We
will only need to make verifications like this on the order of 20000 times.

The Grading Step: We say that a rational number p/q is dyadic if q
is a power of 2. We say that a block (defined in the previous chapter) is
dyadic if all coordinates of all the block vertices are dyadic rationals.

We perform the following pass/fail evaluation of X.
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1. If I ⊂ [0, 13] or I ⊂ [15+, 16] or Q ∩ Ψ4 = ∅, we pass X because X is
irrelevant to the calculation.

2. If s0 ≥ 15 and Q ⊂ Ψ̂4 we pass X.

3. s0 < 13 and s1 > 13 we fail X because we don’t want to make any
computations which involve exponents less than 13.

4. If X has not been passed or failed, we try to use the rational approxi-
mation method to verify that Θ(v) > |X|21/512 − |X|22 for each vertex
v of X. If we succeed at this, then we pass X. Otherwise we fail X.

To prove the Critical Theorem II it suffices to find a partition of

[0, 16]× [0, 1]2

into blocks which all pass the evaluation.

Subdivision: Let X = I × Q. Here is the rule we use to subdivide X:
If 16|X|2 > |X|1 we subdivide X along Q dyadically, into 4 pieces. Other-
wise we subdivide X along I, into two pieces. This method takes advantage
of the lopsided form of Lemma C22 and produces a small partition.

Running the Algorithm: We perform the following algorithm.

1. We start with a list L of blocks. Initially L has the single member
{0, 16} × {0, 1}2.

2. We let B be the last block on L. We grade B. If B passes, we delete
B from L. If L = ∅ then HALT. If B fails, we delete B from L and
append to L the subdivision of B. Then we go back to Step 1.

For the calculation, I used the computer discussed at the end of the
introduction. When I run the algorithm, it halts with success after 21655
steps and in about 1 minute. The partition it produces has 14502 blocks.

This establishes the Critical Theorem II modulo the proof of Lemma C3.
In the next section we prove Lemma C3 and also some derivative bounds
needed for the Critical Theorem III.
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7.3 Critical Theorem III

Let Θ be the function from the previous section.

Lemma 7.7 (C31) On Ψ4 × [13, 16] we have Θxx,Θyy,Θxy > 0.

Proof: We prove this for Θxx and Θxy. The case of Θyy follows from this
and symmetry. Setting u = s/2 we compute

Es(x, y) = A(x, s) + A(y, s) + 2B(x, s) + 2B(y, s) + 4C(x, y, s), (87)

A(x) = a(x)u, B(x) = b(x)u, C(x) = c(x)u,

a(x) =
(1 + x2)2

16x2
b(x) =

1 + x2

4
c(x, y) =

(1 + x2)(1 + y2)

4(x2 + y2)

Hence
Θxx = Axx + 2Bxx + 4Cxx, Θxy = Cxy. (88)

For each choice of F = A,B,C we have

Fxx = u(u− 1)fu−2f2
x + ufu−1fxx, Cxy = u(u− 1)cu−2cxcy + ucu−1cxy. (89)

Our notation is such that f = a when F = A, etc.
We compute

axx =
3 + x4

8x4
> 0, bxx =

1

2
, cxx =

(1− y4)(3x2 − y2)

2(x2 + y2)3
≥ 0.

cx =
x(y4 − 1)

2(x2 + y2)2
< 0, cy =

y(x4 − 1)

2(x2 + y2)2
< 0, cxy =

2xy(1 + x2y2)

(x2 + y2)3
> 0.

Equation 89 combines with all this to prove that Θxx > 0 and Θxy > 0 on
Ψ4 × [13, 16]. ♠

Proof of Statement 3 of the Critical Theorem III: We actually prove a
broader result. Let s ∈ [13, 16]. We know by Lemma C31 that all the second
partials of Θ are positive at each point of Ψ]

8 for this value of s. But then the
restriction of Θ to Ψ]

8, at this parameter s, is a convex function. This shows
that for each s ∈ [13, 16] the restriction of Θ to Ψ]

8 has a unique minimizer.
In particular, this is true on the smaller interval ,ש) 15+]. ♠
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Proof of Lemma C3: We keep the notation from the proof of Lemma
C31. We first consider Θxx. We already know Θxx > 0 on our domain. An
easy exercise in calculus shows that f ∈ (0, 3/5) on Ψ4 for each f = a, b, c.
From this bound, we see that the expression in Equation 89 is decreasing as
a function of u for u ≥ 6. (Recall that u = s/2.) Hence it suffices to prove
that 4−Θxx ≥ 0 on {12} × [43/64, 1]2.

We define φ(t) = (43/64)(1 − t) + t. The file LemmaC3.m computes that
for s = 12 the polynomial Φ = num+(4 − Θxx ◦ φ) is WPD and hence non-
negative on [0, 1]2. Hence 4 − Θxx ≥ 0 when s = 12 and (x, y) ∈ Ψ4. The
same bound for Θyy follows from symmetry.

Now we consider Θss. Let ψ(s) = b−s. Let β = (1.3,
√

2,
√

3) and also let
γ = (440, 753, 4184). We first establish the following bound:

0 < min
b≥βj

ψss(s, b) ≤ 1/γj, j = 1, 2, 3, ∀s ≥ 13. (90)

As a function of s, and for b > 1 fixed, ψss(s, b) = b−s log(b)2 is decreasing.
Hence, it suffices to prove Equation 90 when s = 13. Choose b ≥ 1.3.
The equation ψssb(13, b) = 0 has its unique solution in [1,∞) at the value
b = exp(2/13) < 1.3. Moreover, the function ψss(13, b) tends to 0 as b →
∞. Hence the restriction of the function b → ψss(13, b) to [b,∞) takes its
maximum value at b. Evaluating at b = 1.3,

√
2,
√

3 we get Equation 90.
For x, y ∈ [43/64, 1] we easily check the inequalities

A(−1, x) ≥ 3, B(−1, x) ≥ 2, C(−1, x, y) ≥ (1.3)2.

The quantities on the left are the square distances of the various pairs of
points in the corresponding configuration on S2. From this analysis we con-
clude that the 10 distances associated to a 5-point configuration parametrized
by a point in Ψ4 exceed 1.3, and at least 6 of them exceed

√
2, and at least

2 of them exceed
√

3. The same obviously holds for the TBP.
Now, 10 of the 20 terms comprising Θss(x, y, s) are positive and 10 are

negative. Also, for the terms of the same sign, all 10 of them are less than
1/440, and at least 6 of them are less than 1/753, and at least 2 of them
are less than 1/4184. Hence, by Equation 90, we have the final bound
|Θss| ≤ (4/440) + (4/753) + (2/4184) < 1/64. ♠

With the proof of Lemma C3, we have finished the proof of the Critical
Theorem II.
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All that remains is to prove Statements 1 and 2 of the Critical Theorem
III. We first prove the derivative bounds we need for this and then we give
the final argument. Let

I =
[55

64
,
56

64

]
. (91)

Lemma 7.8 (C4) Θtts(t, t, 15) < 0, ∀t ∈ I.

The file LemmaC4.m does the calculations for this proof. Because the s-
energy of the TBP does not depend on the t-variable, we have

Θstt(t, t, 15) = 2Astt|s=15 + 4Bstt|s=15 + 4Cstt|s=15 := α(t) + β(t) + γ(t). (92)

We write f ∼ f ∗ if

f

f ∗
= 2utv(1 + t2)w(2 + t2 + t−2)x

for exponents u, v, w, x ∈ R. In this case, f and f ∗ have the same sign.

Step 1: Taking (u, v, w, x) = (−14, 0, 11/2, 0) we have β ∼ −β∗,

β∗(t) = (−2 + 30 log(2)) + t2(−58 + 420 log(2))− 15(1 + 14t2) log(1 + t2).

Noting that log(2) = 0.69... we eyeball β∗ and see that it is positive for t ∈ I.
The term +420 log(2)t2 dominates. Hence β < 0 on I.

Step 2: Taking (u, v, w, x) = (−41/2,−16, 12, 1/2) we have γ ∼ −γ∗,

γ∗(t) = (−31 + 360 log(2)) + t2(56− 585 log(2)) + t4(−29 + 315 log(2))+

15(−8 + 13t2 − 7t4) log(2 + t2 + t−2).

We have γ∗(55/64) > 24 and we estimate easily that γ∗t > −210 on I. Only
the underlined term has negative derivative in I. Noting that I has length
2−6, we see that γ∗ cannot decrease more than 24 as we move from x0 to any
other point of I. Hence γ∗ > 0 on I. Hence γ < 0 on I.

Step 3: Taking (u, v, w, x) = (−29,−14, 10, 3/2) we have α ∼ −α∗,

α∗(t) = γ∗(t) + δ∗(t), δ∗(t) = 15 log 2× (8− 13t2 + 7t4).

We see easily that δ∗ > 0 on I. So, from our result for γ∗, we have α∗ > 0
on I. Hence α < 0 on I. ♠
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Lemma 7.9 For any ξ ∈ Ψ̂8 let Θ(s, ξ) = Es(ξ)− Es(ξ0). Then Θs < 0 for
s ∈ [15, 15+].

Proof: Let t0 = 55/64 be the left endpoint of the interval I. We compute
that

Θst(t0, t0, 15) < 0, Θs(t0, t0, 15) < −2−7. (93)

The previous lemma now tells us that

d

dt
Θst(t, t, 15) = Θtts < 0, ∀t ∈ I. (94)

The last two equations therefore combine to show that

Θs(t, t, 15 < −2−7). ∀t ∈ I. (95)

We also have the bound |Θss| ≤ 2−6 on [13, 16]×Ψ4. Hence

|Θss| × |15+ − 15| ≤ 2−6 × 25

512
< 2−7. (96)

Hence Θs(s, t, t) varies by less than 2−7 as s ranges in [15, 15+]. Hence
Θs(s, t, t) < 0 for all s ∈ [15, 15+] and all t ∈ I. ♠

Proof of Statements 1 and 2 of the Critical Theorem III: By the Crit-
ical Theorem II, we have Θ(15, ∗) > 0 on Ψ]

8. We compute Θ(15+, x, x) < 0
for x = 445/512 ∈ [55, 56]/64. Combining this with Lemma 7.9, we see that
there exists a smallest parameter ש ∈ (15, 15+) such that Θ(ש, p∗) = 0 for
some p∗ ∈ Ψ]

8. For s > ,ש Lemma 7.9 now says that Θ(s, p∗) < 0. This
establishes Statements 1 and 2 of the Critical Theorem III. ♠
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8 The Energy Theorem

Reading Guide: This chapter is for Readers 5 and 6. For Reader 5, we
prove the Energy Theorem in §9. For Reader 6, we use the Energy Theorem
in our big computation in §10.

8.1 Background Definitions

We first give some background definitions and then we give our main result.

Energy Hybrids: We say that an energy hybrid is a potential of the form

F =
m∑
k=1

ckGk, Gk(r) = (4− r2)k, c1 ∈ Q, c2, ..., ck ∈ Q+. (97)

We normalize our avatars so that p0 lies on the positive X-axis. In this way,
and by stringing out the coordinates, we identify an avatar with a point in
R7 = R× (R2)3. Thus we think of the potential EF as a function on R7. It
will turn out that we only need to consider points in the cube �3/2 where

�r := [0, r]× [−r, r]r × [−r, r]r × [−r, r]2. (98)

Dyadic Subdivision: The dyadic subdivision of a D-dimensional cube is
the list of 2D cubes obtained by cutting the cube in half in all directions. We
sometimes blur this terminology and say that any one of these 2D smaller
cubes is a dyadic subdivision of the big cube.

Blocks: We define a block to be a product of the form

B = Q0 ×Q1 ×Q2 ×Q3 ⊂ �3/2, (99)

where Q0 is a segment and Q1, Q2, Q3 are squares, each obtained by iterated
dyadic subdivision respectively of [0, 2] and [−2, 2]2.

We call B acceptable if Q0 has length at most 1 and Q1, Q2, Q3 have
sidelength at most 2. When B is acceptable, each Qk is contained in a
quadrant of R2.
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8.2 The Main Result

We let Q denote the set of components of acceptable blocks. The elements
of Q are either dyadic seqments in [0, 3/2] or dyadic squares in [−3/2, 3/2]2.
Thanks to the subdivision process, each of these squares lies on one of the
quadrants of the plane - it does not cross the coordinate axes. We also let
{∞} be a member of Q.

We first define 4 basic measurements we take of members in Q.

0. The Flat Approximation: Given Q ∈ Q we define

Q• = Convex Hull(Σ−1(v(Q)). (100)

Q• is either the point (0, 0, 1), a chord of S2 or else a convex planar quadri-
lateral with vertices in S2 that is inscribed in a circle. We let d• be the
diameter of Q•. The quantity d2

• is a rational function of the vertices of Q.

1. The Hull Approximation Constant: We think of Q• as the linear
approximation to

Q̂ = Σ−1(Q). (101)

The constant we define here turns out to measure the distance between Q̂
and Q•. When Q = {∞} we define δ(Q) = 0. Otherwise, let

χ(D, d) =
d2

4D
+

(d2)2

4D3
. (102)

This wierd function turns out to be an upper bound to a more geometrically
meaningful non-rational function that computes the distance between an
chord of length d of a circle of radius D and the arc of the circle it subtends.

When Q is a dyadic segment we define

δ(Q) = χ(2, ‖q̂1 − q̂2‖). (103)

Here q1, q2 are the endpoints of Q. When Q is a dyadic square we define

δ(Q) = max(s0, s2) + max(s1, s3), sj = χ(1, ‖qj − qj+1‖). (104)

Here q1, q2, q3, q4 are the vertices of Q and the indices are taken cyclically.
These are rational computations because χ(2, d) is a polynomial in d2.
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2. The Dot Product Estimator: By way of motivation, we point out
that if V1, V2 ∈ S2 then

Gk(‖V1 − V2‖) = (2 + 2V1 · V2)k.

Now suppose that Q1 and Q2 are two dyadic squares. We set δj = δ(Qj).
Given any p ∈ R2 ∪∞ let p̂ = Σ−1(p). Define

Q1 ·Q2 = max
i,j

(q̂1i · q̂2j) + (τ)× (δ1 + δ2 + δ1δ2). (105)

Here {q1i} and {q2j} respectively are the vertices of Q1 and Q2. The constant
τ is 0 if one of Q1 or Q2 is {∞} and otherwise τ = 1. Finally, we define

T (Q1, Q2) = 2 + 2(Q1 ·Q2). (106)

3. The Local Error Term: For Q1, Q2 ∈ Q and k ≥ 1 we define

εk(Q1, Q2) =
1

2
k(k − 1)T k−2d2

1 + 2kT k−1δ1, (107)

d1 = d•(Q1), δ1 = δ(Q1), T = T (Q1, Q2).

The first term on the right in Equation 107 comes from the analysis of the
flat approximation and the second term comes from the analysis of the dif-
ference between the flat approximation and the actual subset of the sphere.
The quantity is not symmetric in the arguments, and εk({∞}, Q2) = 0.

4. The Global Error Estimate: Given B = Q0 ×Q1 ×Q2 ×Q3 let

ERRk(B) =
N∑
i=0

ERRk(B, i), ERRk(B, i) =
∑
j 6=i

ε(Qi, Qj). (108)

More generally, when F =
∑
ckGk is as in Equation 97, we define

ERRF (B) =
N∑
k=0

ERRF (B, i), ERRF (B, i) =
∑
|ck| ERRk(B, i)

(109)
For the most part we only care about the (+) case of the lemma. We

only need the (−) case when we deal with the potential G5 − 25G1.

Theorem 8.1 (Energy) Let B be a acceptable block. Let F = Gk for any
k ≥ 1 or F = −G1. Then minp∈B EF (v) ≥ minp∈v(B) Ek(v)− ERRk(B).
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9 Proof of the Energy Theorem

Reading Guide: This chapter is for Reader 5.

9.1 Guide to the Proof

Our proof of the Energy Theorem splits into two halves, an algebraic part
and a geometric part. The algebraic part, which we do in this chapter, simply
promotes a “local” result to a “global result”. The geometric explains the
meaning of the local error term εk(Q1, Q2) for Q1, Q2 ∈ Q. Here Q is the
space of components of good blocks, and also the point ∞.

The algebraic part involves what we call an averaging system. For the
purpose of giving a uniform treatment, we treat every member of Q as a
quadrilateral by the trick of repeating vertices. Thus, if we have a dyadic
segment with vertices q1, q2 we will list them as q1, q1, q2, q2. For the point
{∞} we will list the single vertex q1 = ∞ as q1, q1, q1, q1. We say that an
averaging system for a member of Q is a collection of maps λ1, λ2, λ3, λ4 :
Q→ [0, 1] such that

4∑
i=1

λi(z) = 1, ∀ z ∈ Q.

The functions need not vary continuously. In case Q is a segment, we would
have λ1 = λ2 and λ3 = λ4. In case Q = {∞} we would have λj = 1/4 for
j = 1, 2, 3, 4.

We say that an averaging system for Q is a choice of averaging system
for each member Q of Q. The averaging systems for different members
need not have anything to do with each other. In this chapter we will posit
some additional properties of an averaging system and then prove the Energy
Theorem under the assumption such such an averaging system exists. In the
next chapter we will prove the existence of the desired averaging system.

Our naming system for the lemmas is designed to indicate the logic tree.
Thus, the Energy Theorem follows from Lemma E1 and Lemma E2. Lemma
E1 follows from Lemma E11 and Lemma E12. And so on.

9.2 Reduction to a Local Result

We fix the function F = Gk for some k ≥ 1 or else F = −G1. We write
E = EF . We let ε = εk, as in Equation 107. Our algebraic argument would
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work for any choice of F , but we need to use the choices above to actually
get the averaging system we need. Let q1,1, q1,2, q1,3, q1,4 be the vertices of Q1.

Lemma 9.1 (E1) There exists an averaging system on Q with the following
property: Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i − ẑ2‖)− F (‖ẑ1 − ẑ2‖) ≤ ε(Q1, Q2). (110)

We prove this result at the end of the chapter.
We are interested in 5-point configurations but we will work more gen-

erally so as to elucidate the general structure of the argument. We suppose
that we have the good dyadic block B = Q0 × ... × QN . The vertices of B
are indexed by a multi-index

I = (i0, ..., in) ∈ {1, 2, 3, 4}N+1.

Given such a multi-index, which amounts to a choice of vertex of in each com-
ponent member of the block. We define (as always, via inverse stereographic
projection) the energy of the corresponding vertex configuration:

E(I) = E(q0,i0 , ..., qN,iN ) (111)

Here is one more piece of notation. Given z = (z0, ..., zn) ∈ B and a
multi-index I we define

λI(z) =
N∏
i=0

λij(zj). (112)

Here λij is defined relative to the averaging system on Qj.
Now we are ready to state our main global result. The global result uses

the existence of an efficient averaging system. That is, it relies on the Energy
Theorem1.

Lemma 9.2 (E2) Let z = (z0, ..., zN) ∈ B. Then

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (113)

The lefthand sum is taken over all multi-indices. In the righthand sum, we
set ε(Qi, Qi) = 0 for all i.
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Now let us deduce the Energy Theorem from Lemma E2. Notice that∑
I

λI(z) =
N∏
j=0

( 4∑
a=1

λa(zj)
)

= 1. (114)

Choose some (z1, ..., zN) ∈ B which minimizes E . We have

0 ≤ min
p∈v(B)

E(v)−min
v∈B
E(v) = min

p∈v(B)
E(v)− E(z) ≤∗

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (115)

The starred inequality comes from the fact that a minimum is less or equal to
a convex average. The last expression is ERR(B) when N = 4 and Q4 =∞.

9.3 From Local to Global

Now we deduce the global Lemma E2 from the local Lemma E1.

Lemma 9.3 (E21) Lemma E2 holds when N = 1.

Proof: In this case, we have a block B = Q0 ×Q1. Setting εij = ε(Qi, Qj),
Lemma E1 gives us

F (‖z0 − z1‖) ≥
4∑

α=1

λα(z0)F (‖q0α − z1‖)− ε01. (116)

Applying Lemma E1 to the pair of points (z1, q0α) ∈ Q1 ×Q0 we have

F (‖z1 − q0α‖) ≥
4∑

β=1

λβ(z1)F (‖q1β − q0α‖)− ε10. (117)

Plugging the second equation into the first and using
∑
λα(z0) = 1, we have

F (‖z0 − z1‖) ≥
∑
α,β

λα(z0)[λβ(z1)F (‖q1β − q0α‖)− ε10]− ε01 =

∑
α,β

λα(z0)λβ(z1)F (‖q1β − q0α‖)− (ε10 + ε01). (118)

Equation 118 is equivalent to Equation 113 when N = 1. ♠

Now we do the general case.
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Lemma 9.4 (E22) Lemma E2 holds when N ≥ 2.

Proof: We rewrite Equation 118 as follows:

F (‖z0 − z1‖) ≥
∑
A

λA0(z0)λA1(z1) F (‖q0A0 − q1A1‖)− (ε01 + ε10). (119)

The sum is taken over multi-indices A of length 2.
We also observe that∑

I′

λI′(z
′) = 1, z′ = (z2, ..., zN). (120)

The sum is taken over all multi-indices I ′ = (i2, ..., iN). Therefore, if we hold
A = (A0, A1) fixed, we have

λA0(z0)λA1(z1) =
∑
I′′

λI′′(z). (121)

The sum is taken over all multi-indices of length N + 1 which have I0 = A0

and I1 = A1. Combining these equations, we have

F (‖z0 − z1‖) ≥
∑
I

λI(z)F (‖q0I0 − q1I1‖)− (ε01 + ε10). (122)

The same argument works for other pairs of indices, giving

F (‖zi − zj‖) ≥
∑
I

λI(z)F (‖qiIi − qjIj‖)− (εij + εji). (123)

Let us restate this as Xij − Yij ≥ Zij, where

Xij =
∑
I

λI(z)F (‖qiIi − qjIj‖), Yij = F (‖zi − zj‖), Zij = εij + εji.

When we sum Yij over all i < j we get the second term in Equation 113.
When we sum Zij over all i < j we get the third term in Equation 113. When
we sum Xij over all i < j we get∑

i<j

(∑
I

ΛI(z)F (‖qiIi − qjIj‖)
)

=
∑
I

∑
i<j

ΛI(z) F (‖qiIi − qjIj‖) =

∑
I

ΛI(z)

(∑
i<j

F (‖qiIi − qjIj‖)
)

=
∑
I

λI(z)E(I).

This is the first term in Equation 113. This proves Lemma E2. ♠
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9.4 The Efficient Averaging System

The rest of the chapter is devoted to proving Lemma E1. Lemma E1 posits
the existence of what we call an efficient averaging system. Here we define it.
Recall that Q• is the convex hull of the vertices q̂1, q̂2, q̂3, q̂4 of Q̂ = Σ−1(Q).
What we want from the system is that for any z• ∈ Q•

z• =
4∑
i=1

λi(z
•)q̂i. (124)

If z• lies in the convex hull of q̂1, q̂2, q̂3, then we let λ1(z•), λ2(z•), λ3(z•) be
barycentric coordinates on this triangle and we set λ4(z•) = 0. If z• lies in
the convex hull of q̂1, q̂2, q̂4, then we let λ1(z•), λ2(z•), λ4(z•) be barycentric
coordinates on this triangle and we set λ3(z•) = 0. This definition agrees on
the overlap, which is the line segment joining q̂3 to q̂4.

To get our averaging system on Q ∈ Q we define

λj(z) = λj(z
•), (125)

where z• is some choice of point in Q• which is closest to ẑ. If there are several
closest points we pick the one (say) which has the smallest first coordinate.
We prove Lemma E1 with respect to the averaging system above.

9.5 Reduction to Simpler Statements

Let F be either Gk for some k ≥ 1 or else F = −G1. For convenience we
expand out the statement of Lemma E1.

Lemma 9.5 (E1) The efficient averaging system on Q has the following
property. Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i− ẑ2‖)−F (‖ẑ1− ẑ2‖) ≤
1

2
k(k−1)T k−2d2

1 +2kT k−1δ1. (126)

Here δ1 and d1 respectively are the Hull Approximation constant and diam-
eter of Q1, and

T = 2+2(Q1 ·Q1), Q1 ·Q2 = max
i,j

(q̂1,i · q̂2,j)+(τ)× (δ1 +δ2 +δ1δ2). (127)
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τ = 0 or τ = 1 depending on whether one of Q1, Q2 is {∞}. We are maxi-
mizing over the dot product of the vertices and then either adding an error
term or not. Define

X• = F (z•1 − ẑ2) = (2 + 2z•1 · ẑ2)k or − 2− 2z•1 · ẑ2. (128)

Lemma E1 is an immediate consequence of the following two results.

Lemma 9.6 (E11)
∑4

i=1 λi(z1)F (‖q̂1,i − ẑ2‖)−X• ≤ 1
2
k(k − 1)T k−2

• d2
1.

Lemma 9.7 (E12) X• − F (‖ẑ1 − ẑ2‖) ≤ 2kT k−1δ.

9.6 Proof of Lemma E11

Suppose first F = −G1. We hold ẑ2 fixed and define

L(q̂) = F (‖q̂ − ẑ2‖) = −2− 2q̂ · ẑ2.

Lemma E2, in this special case, says that

4∑
i=1

λi(z1)L(q̂1,i)− L(z•1) = 0.

But this follows from Equation 125 and the (bi) linearity of the dot product.
Now we deal with the case where F = Gk for k ≥ 1. We prove the

following two lemmas at the end of the chapter.

Lemma 9.8 (E111) For j = 1, 2 let γj be a point on a line segment con-

necting a point of Q̂j to a closest point on Q•j . Then γ1 · γ2 ≤ Q1 ·Q2.

Lemma 9.9 (E112) Let M ≥ 2 and k = 1, 2, 3.... Suppose

• 0 ≤ x1 ≤ ... ≤ xM

•
∑M

i=1 λi = 1 and λi ≥ 0 for all i.

Then

0 ≤
M∑
i=1

λix
k
i −

( M∑
I=1

λixi

)k
≤ 1

8
k(k − 1)xk−2

M (xM − x1)2. (129)
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Recall that q1,1, q1,2, q1,3, q1,4 are the vertices of Q1. Let λi = λi(z1). We
set

xi = 4− ‖q̂1,i − ẑ2‖2 = 2 + 2q̂1,i · ẑ2, i = 1, 2, 3, 4. (130)

Note that xi ≥ 0 for all i. We order so that x1 ≤ x2 ≤ x3 ≤ x4. We have

4∑
i=1

λi(z)F (‖q1,i − z2‖) =
4∑
i=1

λix
k
i , (131)

X• = (2 + 2z•1 · ẑ2)k =
( 4∑
i=1

λi × (2 + q̂i · ẑ2)
)k

=
( 4∑
i=1

λixi

)k
. (132)

By Equation 131, Equation 132, and the case M = 4 of Lemma E112, we
have

4∑
i=1

λi(z)F (‖q1,i−z2‖)−X• =
4∑

i=1

λix
k
i −
( 4∑

i=1

λixi

)k

≤ 1

8
k(k−1)xk−24 (x4−x1)2. (133)

By Lemma E111
x4 = 2 + 2(q̂4 · ẑ2) ≤ T. (134)

Since d1 is the diameter of Q•1, and ẑ2 is a unit vector,

x4 − x1 = 2ẑ2 · (q̂4 − q̂1) ≤ 2‖q̂4 − q̂1‖ ≤ 2d1 (135)

Plugging Equations 134 and 135 into Equation 133, we get Lemma E12.

9.7 Proof of Lemma E12

Let δ(Q) be the hull approximation constant for Q ∈ Q, as defined (depend-
ing on Q) in Equation 103 or Equation 104.

Lemma 9.10 (E121) Let Q be any good dyadic square or segment. Then

every point of Q̂ is within δ(Q) of the quadrilateral Q•.

Lemma E121 implies that ‖ẑ1−z•1‖ < δ(Q). Let γ1 denote the unit speed
line segment connecting z•1 to ẑ1. The length L of γ1 is at most δ1, by Lemma
E11. So, γ1(0) = z•1 and γ1(L) = ẑ1. Define

f(t) =
(

2 + 2ẑ2 · γ1(t)
)k

or − 2− 2ẑ2 · γ1(t), (136)
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depending on the case. The argument we give works equally well more gen-
erally when we use F = ±Gk.

We have f(0) = X• and f(L) = F (‖ẑ1 − ẑ2‖). Hence

X• − F (‖ẑ1 − ẑ2‖) = f(0)− f(L), L ≤ δ1. (137)

Combining the Chain Rule, the Cauchy-Schwarz inequality, and Lemma
E111, we have

|f ′(t)| =
∣∣∣(2ẑ2 · γ′1(t))× k

(
2 + 2ẑ2 · γ1(t)

)k−1∣∣∣ ≤
2k
∣∣∣(2 + 2ẑ2 · γ1(t))

∣∣∣k−1

≤ 2k(2 + 2(Q1 ·Q2))k−1 = 2kT k−1.

In short
|f ′(t)| ≤ 2kT k−1. (138)

Lemma E13 follows Equation 138, Equation 137, and integration.

9.8 Proof of Lemma E111

See Equation 127 for the definition of Q1 ·Q2. We first treat the case τ = 1,
meaning that neither Q1 nor Q1 is {∞}. Since the dot product is bilinear,

q•1 · q•2 ≤ max
i,j

(q̂1i · q̂2j). (139)

By Lemma E11, and by hypothesis, we can find points z•1 and z•2 such that

γj = z•1 + h1, γ2 = z•2 + h2, ‖hj‖ ≤ δj.

But then by the triangle inequality and the Cauchy-Schwarz inequality

|(γ1 · γ2)− (z•1 · z•2)| ≤ |z•1 · h2|+ |z•2 · h1|+ |h1 · h2| ≤ δ1 + δ2 + δ1δ2.

This combines with Equation 139 to complete the proof when τ = 1.
Suppose τ = 0. Without loss of generality assume that Q2 = {∞}. The

maximum of q̂1 · (0, 0, 1), for q1 ∈ Q1, is achieved when q1 is vertex of Q1. At
the same time, the maximum of q•1 ·(0, 0, 1), for q•1 ∈ Q•1 is achieved when q•1 is
a vertex of Q•1. But then our lemma is true for the endpoints of the segment
containing γ. Since the dot product with (0, 0, 1) varies linearly along this
line segment, the same result is true for all points on the line segment.
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9.9 Proof of Lemma E112

Lemma 9.11 (E1121) Suppose a, x ∈ [0, 1] and k ≥ 2. Then f(x) ≤ g(x),
where

f(x) = (axk + 1− a)− (ax+ 1− a)k; g(x) =
1

8
k(k − 1)(1− x)2. (140)

Proof: Since f(1) = g(1) = f ′(1) = g′(1) = 0 the Cauchy Mean Value
Theorem (applied twice) tells us that for any x ∈ (0, 1) there are values
y < z ∈ [x, 1] such that

f(x)

g(x)
=
f ′(y)

g′(y)
=
f ′′(z)

g′′(z)
= 4azk−2

[
1− a

(
a+

1− a
z

)k−2]
≤ 4a(1− a) ≤ 1.

(141)
This completes the proof. ♠

Remark: The above proof, suggested by an anonymous referee of [S4], is
better than my original proof.

Now we prove the main inequality The lower bound is a trivial conse-
quence of convexity, and both bounds are trivial when k = 1. So, we take
k = 2, 3, 4, ... and prove the upper bound. Suppose first that M ≥ 3. We
have one degree of freedom when we keep

∑
λixi constant and try to vary

{λj} so as to maximize the left hand side of the inequality. The right hand
side does not change when we do this, and the left hand side varies linearly.
Hence, the left hand size is maximized when λi = 0 for some i. But then any
counterexample to the lemma for M ≥ 3 gives rise to a counter example for
M − 1. Hence, it suffices to prove the inequality when M = 2.

In the case M = 2, we set a = λ1. Both sides of the inequality in Lemma
E112 are homogeneous of degree k, so it suffices to consider the case when
x2 = 1. We set x = x1. Our inequality then becomes exactly the one treated
in Lemma E1121. This completes the proof.

9.10 Proof of Lemma E121

We remind the reader of the wierd function χ(D) and we introduce a more
geometrically meaningfun function

χ(D, d) =
d2

4D
+

d4

4D3
, χ∗(D, d) =

1

2
(D −

√
D2 − d2). (142)

64



Lemma 9.12 (E1211) χ∗(D, d) ≤ χ(D, d) for all d ∈ [0, D].

Proof: By homogeneity, it suffices to prove the result when D = 1. To
simpify the algebra we define A = 2χ(1, d) − 1 and A∗ = 2χ∗(1, d) − 1. We
compute 4A2− 4(A∗)2 = d4(d− 1)(d+ 1)(d2 + 3). Hence, the sign of A−A∗
does not change on (0, 1). We check that A > A∗ when d = 1/2. Hence
A > A∗ on (0, 1). This implies the inequality. ♠

Segment Case: Let Q be dyadic segment. Here Q̂ is the arc of a great
circle and Q• is the chord of the arc joining the endpoints of this arc. Let
d be the length of Q•. The point of Q̂ farthest from Q• is the midpoint of
this Q̂. Let x be the distance between the midpoint of Q̂ and the midpoint
of Q•. From elementary geometry, x(D − x) = (d/2)2. Solving for x we find
that x = χ∗(2, d). Lemma E1211 finishes the proof.

Square Case: Let Q be a dyadic square and let z ∈ Q be a point. Let
L be the vertical line through x and let z01, z23 be the endpoints of the seg-
ment L ∩ Q. We label the vertices of Q (in cyclic order) so that z01 lies on
the edge joining q0 to q1 and z23 lies on the edge joining q2 to q3.

If M is a horizontal line intersecting Q then the circle Σ−1(M ∪∞) has
diameter at least 1. The point is that this circle contains (0, 0, 1) and also
Σ−1(0, y) for some |y| ≤ 3/2. In fact the diameter is at least 4/

√
13. The

same goes for vertical lines intersecting Q.
Define dj = ‖p̂j − p̂j+1‖ with the indices taken cyclically. The length of

the segment σ joining the endpoints of Σ−1(L∩Q) varies monotonically with
the position of L. Hence, σ has length at most max(d1, d3). At the same
time, Σ−1(L ∩ Q) is contained in a circle of diameter at least 1. The same
argument as in the segment case now shows that there is a point z∗ ∈ σ
which is within t13 = max(χ(1, d1), χ(1, d3)) of ẑ.

The endpoints of σ respectively are on the spherical arcs obtained by map-
ping the top and bottom edge of Q onto S2 via Σ−1. Hence, one endpoint of
σ is within χ(1, d0) of a point on the corresponding edge of ∂Q• and the other
endpoint of σ is within χ(1, d2) of a point on the opposite edge of ∂Q•. But
that means that either endpoint of σ is within t02 = max(χ(1, d0), χ(1, d2))
of a point in Q•. But then every point of the segment σ is within t02 of some
point of the line segment joining these two points of Q•. In particular, there
is a point z• ∈ Q• which is within t of z∗. The triangle inequality completes
the proof of Lemma E121.
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10 The Calculation Theorem

Reading Guide: This chapter is for Reader 6. We prove the Calculation
Theorem from §3.7

10.1 A Preliminary Lemma

We first prove a result that cuts down on our calculation time. With the
exception of the potential G[

5 the remaining potentials are strictly monotone
in the sense that the functions decrease as the distance increases.

Lemma 10.1 Let F be a strictly monotone decreasing potential and suppose
that ξ = (p0, p1, p2, p3) is an avatar. If min(p1k, p2k, p3k) > 0 for one of
k = 1, 2 then ξ does not minimize the F -potential.

Proof: The corresponding 5-point configuration in S2 is contained in a hemi-
sphere H, and at least 3 of the points are in the interior of H. If we reflect
one of the interior points across ∂H then we increase at least 2 of the dis-
tances in the configuration and keep the rest the same. ♠

10.2 The Four Calculation Ingredients

We say that a rational block computation is a finite calculation, only involv-
ing the arithmetic operations and min and max. The output of a rational
block computation will be one of two things: yes, or an integer. A return of
an integer is a statement that the computation does not definitively answer
to the question asked of it. If the integer is −1 then there is no more infor-
mation to be learned. If the integer lies in {0, 1, 2, 3} we use this integer as
a guide in our algorithm. Let Ω0 and Υ be as in the Calculation Theorem.

Ingredient 1: We describe a rational block computation C1 such that an
output of yes for a block B implies that B ⊂ Ω0.

Define intervals I0, I1, I√3/3 such that

I0 = [−2−17, 2−17], I1 = [1−2−17, 1+2−17] 230I√3/3 = [619916940, 619933323] (143)
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I√3/3 is a rational interval that is just barely contained inside the interval of

length 2−17 centered at
√

3/3. Define

Ω00 = (I1 × {0})× (I0 ×−I√3/3)× (−I1 × I0)× (I0 × I√3/3). (144)

We have Ω00 ⊂ Ω0, though just barely. There are 128 vertices of B. We
simply check whether each of these vertices is contained in Ω00. If so then
we return yes. In practice our program scales up all the coordinates by 230

so that this test just involves integer comparisons.

Ingredient 2: We describe a rational block computation C3 such that an
output of yes for an acceptable block B implies that either B is disjoint from
the interior of Ω or else all configurations in B are elliminated by Lemma 10.1.

Let B = Q0 × Q1 × Q2 × Q3 be an acceptable block. These blocks are
such that the squares Q1, Q2, Q3 do not cross the coordinate axes. For such
squares, the minimum and maximum norm of a point in the square is realized
at a vertex. Thus, we check that a square lies inside (respectively outside) a
disk of radius r centered at the origin by checking that the square norms of
each vertex is at most (respectively at least) r2.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices of
Qj have norm at least maxQ0. We return yes if this happens, because then
all avatars in the interior of B will have some pj with ‖pj‖ > ‖p0‖.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices
of Qj have norm at least 3/2. If so, we return yes. If this happens then
‖p0‖, ‖pj‖ > 3/2 for all avatars in the interior of B.

We count the number a of indices j such that the vertices of Qj all have
norm at most 1/2. We then count the number b of indices j such that all
vertices of Qj have norm at least 1/2. We return yes if a is odd and a+b = 4.
In this case, every avatar in the interior of B is odd.

We write I ≤ J to indicate that all values in an interval I are less or
equal to all values in an interval J . We also allow I and J to be single points
in this notation. For each j = 0, 1, 2, 3 we let Qjk be the projection of Qj

onto the kth factor. Thus Qj1 and Qj2 are both line segments in R.
We return yes for each of the following reasons:

• If Qjk ≤ −3/2 or Qjk ≥ 3/2 for any j = 1, 2, 3 and k = 1, 2.

• Q12 ≥ Q22 or Q12 ≥ Q32 or Q22 ≥ Q32 or Q22 ≤ 0.
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• Qj1 ≥ 0 for j = 1, 2, 3, unless we are working with G[
5.

• Qj2 ≥ 0 for j = 1, 2, 3, unless we are working with G[
5.

Lemma 10.1 justifies the use of the last two criteria.

Ingredient 3: We describe a rational block computation C]
3 such that an

output of yes for a block B implies that B ⊂ Υ. Likewise, there exists a
rational block computation C]]

3 such that an output of yes for a block B
implies that B is disjoint from Υ.

For C]
3 we return yes if all the vertices of B lie in Υ. For C]]

3 we return
yes if one of the factors of B is disjoint from the corresponding factor of Υ.
This amounts to checking whether a pair of rational squares in the plane are
disjoint. We do this using the projections defined for Ingredient 2.

Ingredient 4: For any function F given by Equation 97, we describe a
rational block computation C4,F such that an output of yes for an accept-
able block B implies that the minimum of EF on B is at least EF (ξ0) + 2−50.
Otherwise C4,F (B) is an integer in {0, 1, 2, 3}. Our calculation refers to the
Energy Theorem from §8.

Let B be an acceptable block. Let F be an energy hybrid. Let [F ] denote
the F -potential of the TBP. If

min
p∈v(B)

EF (v)− ERRk(B) ≥ [F ] + 2−50 (145)

we return yes. Otherwise we return the index i such that ERRF (B, i) is the
largest. In case of a tie, which probably never happens, we pick the lowest
such index. ♠

10.3 The Computational Algorithm

Here is the main calculation.

1. We start with the list L = {�}.

2. If L = ∅ then HALT. Otherwise let B = Q0 × Q1 × Q2 × Q3 be the
last block of L.
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3. If B is not acceptable we delete B from L and append to L the subdi-
vision of B along the offending index. We then return to Step 2. Any
blocks considered beyond this step are acceptable.

4. If C1(B) = yes or C2(B) = yes we remove B from L and go to Step
2. Here we are eliminating blocks disjoint from the interior of Ω or else
contained in Ω0.

5. If F = G]
10 and C]

3(B) = yes we remove B from L and go to Step 2. If
F = G]]

10 and C]]
3 (B) = yes we remove B from L and go to Step 2.

6. If C4,F (B) = yes then we remove B from L and go to Step 2. Here we
have verified that the F -energy of any avatar in B exceeds [F ] + 2−50.

7. If C4,F (B) = k ∈ {0, 1, 2, 3} then we delete B from L and append to L
the blocks of the subdivision Sk(B) and return to step 2.

Remark: There is one fine point of our calculation. We eliminate blocks
which are disjoint from the interior of Ω (or the interior of the set ruled out
by Lemma 10.1). This is not a problem because any point in the boundary is
also contained in a block that is not disjoint from the interior of our domain.

10.4 Discussion of the Implementation

Representing Blocks: We represent the coordinates of blocks by longs,
which have 31 digits of accuracy. What we list are 230 times the coordinates.
Our algorithm never does so many subdivisions that it defeats this method
of representation. In all but the main step (Lemma A134) in the algorithm
below we compute with exact integers. When the calculation (such as squar-
ing a long) could cause an overflow error, we first recast the longs as a
BigIntegers in Java and then do the calculations.

Interval Arithmetic: For the main step of the algorithm we use inter-
val arithmetic. We use the same implementation as we did in [S1], where we
explain it in detail. Here is how it works in brief. If we have a calculation
involving numbers r1, ..., rn, and we produce intervals I1, ..., In with dyadic
rational numbers represented exactly by the computer such that ri ∈ Ii for
i = 1, ..., n. We then perform the usual arithmetic operations on the inter-
vals, rounding outward at each step. The final output of the calculation, an
interval, contains the result of the actual calculation.
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In our situation here, the numbers r1, ..., rn are, with one exception,
dyadic rationals. (The exception is that the coordinates of the point rep-
resenting the TBP are quadratic irrationals.) In principle we could do the
entire computation, save for this one small exception, with expicit integer
arithmetic. However, the complexity of the rationals involved, meaning the
sizes of their numerators and denominators, qets quite large this way and the
calculation is too slow.

One way to think about the difference between our explicitly defined ex-
act integer arithmetic and interval arithmetic is that the integer arithmetic
interrupts the calculation at each step and rounds outward so as to keep the
complexity of the rational numbers from growing too large.

Guess and Check: Here is how we speed up the calculation. When we
do Steps 6-7, we first do the calculation C4,F using floating point operations.
If the floating version returns an integer, we use this integer to subdivide the
box and return to step 2. If C4,F says yes then we retest the box using the
interval arithmetic. In this way, we only pass a box for which the interval
version says yes. This way of doing things keeps the calculation rigorous but
speeds it up by using the interval arithmetic as sparingly as possible.

Parallelization: We also make our calculation more flexible using some
parallelization. We classify each block B = Q0 × Q1 × Q2 × Q3 with a
number in {0, ..., 7} according to the formula

type(B) = σ(c01 − 1) + 2σ(c11) + 4σ(c31) ∈ {0, ..., 7}.

Here cj1 is the first coordinate of the center of Bj and σ(x) is 0 if x < 0 and
1 if x > 0. Step 3 of our algorithm guarantees that σ(·) is always applied to
nonzero numbers.

We wrote our program so that we can select any subset S ⊂ {0, ..., 7} we
like and then (after Step 3) automatically pass any block whose type is not
in S. To be able to do the big calculations in pieces, we run the program for
various subsets of {0, ..., j}, sometimes in parallel.

10.5 Record of the Calculation

If the algorithm reaches the HALT state for a given choice of F , this consti-
tutes a proof that the corresponding statement of the Computation Theorem
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is true. In fact this happens in all cases. Here I give an account of one time I
ran the computations to completion during January 2023 using the computer
discussed at the end of the introduction. In listing the calculations I will give
the approximate time and the exact number of blocks passed. Since we use
floating point calculations to guide the algorithm, the sizes of the partitions
can vary slightly with each run.

For G4 : 2 hrs 14 min, 10848537 blocks.
For G6: 5 hr 11 min, 25159337 blocks.
For G[

5 types 1&2: 2 hr 31 min, 6668864 blocks.
For G[

5 types 3&4: 1 hr 55 min, 4787489 blocks.
For G[

5 types 5&6: 5 hr 33 min, 14160332 blocks.
For G[

5 types 7&8: 3 hr 49 min, 9219550 blocks.
For G]

10 type 1: 4 hr 23 min, 6885912 blocks.
For G]

10 type 2: 9 hr 47 min, 15982122 blocks.
For G]

10 type 3: 3 hr 47 min, 5872029 blocks.
For G]

10 type 4: 7 hr 59 min, 13475260 blocks.
For G]

10 type 5: 8 hr 30 min, 13313492 blocks.
For G]

10 type 6: 15 hr 16 min, 24110457 blocks.
For G]

10 type 7: 5 hr 19 min, 7862780 blocks.
For G]

10 type 8: 8 hr 33 min, 13478467 blocks.
For G]]

10 (on the domain Υ): 28 minutes, 805242 blocks.
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