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1 Introduction

Given a convex n-gon, P, one can connect every other vertex with a line
segment, creating a star-like figure called the pentagram. Part of the pen-
tagram defines a new convex n-gon, P’, as shown (for n = 7) in the first
part of Figure 1. Iterating, one defines P”, P", etc. The second part of
Figure 1 suggests that the map P — P" naturally defines a map between
labelled n-gons. We call the map P — P" the pentagram map. We studied
the pentagram map in [S].

Figure 1

The natural setting for the pentagram map is the projective plane, RP?.
(See §2 for background information on the projective plane.) Say that two
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labelled strictly convex m-gons are equivalent if there is a projective trans-
formation of RP? which takes one to the other. Let ¥, denote the space of
equivalence classes of strictly convex n-gons. As we saw in [S], the space %,
is diffeomorphic to R**8.

The pentagram map commutes with real projective transformations, and
so induces a mapping 7, : 3, — X, for all n > 5. We saw in [S] that the
maps Ts and T act trivially on X5 and Y respectively. For n > 7, the map
T, does not have finite order. In this paper we verify [S, Conjecture 4.1]:

Theorem 1.1 T, is recurrent on %, for alln > 5.

By recurrent, we mean that almost every point is an accumulation point
of its own forward orbit. Our result has the following geometric interpre-
tation. Begin with a random choice of convex polygon P, and look at the
sequence P, T, (P),T2(P),... From varying perspectives, one sees a near copy
of P appear infinitely often.

Here is an outline of our proof of Theorem 1.1. In [S] we constructed a
smooth function f: ¥, — [1,00) with the following properties:

1. f7'[1,r] is compact for any real number r > 1.
2. foT,=f.

To help keep this paper self-contained, and also to set up some notation
needed for later steps, we will construct f in a new way and sketch proofs of
the two properties above. This is done in §3.

The two properties above show that f~'[1,7] is a compact T,-invariant
set. The main step in the proof of Theorem 1.1 is

Lemma 1.2 (Volume Lemma) There exists a smooth volume form i, on
¥ which is preserved by T,,.

We will prove the Volume Lemma in §4.

By Sard’s theorem, almost every choice of r yields a smooth manifold-
with-boundary X = f~![1,r]. The map T = T, acts as a volume preserving
map on X. To deal with this situation we invoke a special case of the Poincare
Recurrence Lemma. The proof is short, we include it here. See [A] for more
details.



Lemma 1.3 (Poincare Recurrence) Suppose that X C R™ is a smooth
compact manifold-with-boundary. Suppose T : X — X preserves a smooth
volume form, defined in a neighborhood of X. Then almost every point x € X
is an accumulation point of the sequence {T*(x)| k € N}.

Proof: For any € > 0 let N, be the Borel set of points z € X such that the
sequence {T*(z)| k € N} avoids the e-neighborhood of z. If N, has positive
measure then we can find a d-ball B C X, such that 8 = BN N, has positive
measure. Here we take § < €. Since X has finite volume, the sets in {T%(3)}
are not all pairwise disjoint. Hence, T%(3) N T?(3) for some pair 7,5 € N.
Setting k = j — 4, we have T*(3) N 3 # (). This contradiction shows that N,
has measure zero. Since € is arbitrary, we are done. #

Applying the Poincare Recurrence Lemma, we see that 7, is recurrent on
Y1, 7] for almost every choice of real r > 1. We choose a sequence 71,75, ...
which increases unboundedly, such that T, is recurrent on f~![1,7;] for all
k. Since these sets exhaust ¥,,, we see that T, is recurrent on X,,.

The recurrence property is more general than our result suggests. Let €2,
be the set of projective equivalence classes of n-gons. These n-gons need not
be convex. T, is defined on a full measure set of €2,,. As we conjectured in
[S], it seems that T, : Q, — €, is also recurrent. Our proof here has nothing
to say about this.

This paper relies on some basic projective geometry. In §2 we give some
background information on this subject. More information on projective
geometry can be found in [HJ, for instance.

All the ideas for our proof, save one, came from computer experimenta-
tion. In particular, we discovered all the computations in the paper numeri-
cally. On the negative side, some of our computations are unmotivated. We
don’t really understand why they are true. On the positive side, we know for
sure that they are true. For instance, the main thrust in this paper is that a
certain collection of matrices always has determinant 1. We computed this
determinant on millions of random samples from this family and numerically
it was as close to 1 as one could expect from a finite precision calculation.

A key idea in this paper, which did not come from computer experimen-
tation, is the notion of the corner invariant f,, defined in [S] and recalled
here in §3.1. We originally learned about f, from John Conway.



2 Projective Geometry

2.1 The Projective Plane

The real projective plane, RP?, is the space of one dimensional subspaces
of R®*. The ordinary plane, R? can be considered as a subset of RP?
in the following way: One identifies the linear subspace spanned by the
vector (z,y,1) with the point (z,3) € R Under this embedding, RP?
is a compactification of R?. It is not hard to see that RP? naturally has the
structure of a smooth manifold.

A line in RP? is the union of all 1-dimensional subspaces contained in
a given 2-dimensional subspace. Lines in RP? are actually topologically
equivalent to circles. The set RP? — R? is exactly a line in RP?, known as
the line at infinity. Every ordinary line in R? extends to a line in RP? by
adding in the point where it intersects the line at infinity.

The lines and points in RP? are intimately related. Given any two dis-
tinct points in RP? there is a unique line which contains both of them. Like-

wise, given any two distinct lines in RP? there is unique point contained on
both.

2.2 Projective Transformations

An invertible linear transformation of R®> maps one dimensional subspaces to
one dimensional subspaces. Thus, every such linear transformation induces
a diffeomorphism of RP?. This diffeomorphism is called a projective trans-
formation. Projective transformations act in such a way as to map lines in
RP? to lines in RP?.

The group of projective transformations is usually denoted by PGL3(R).
It is an 8-dimensional Lie group. We say that a collection of points in RP?
is in general position if no three are contained in the same line. Say that
a quadrilateral is a collection of 4 general position points in RP?. Each
element of PGL3(R) is determined by its action on a quadrilateral. Indeed,
given two quadrilaterals, with points labelled, there is a unique element of
PGL3(R) which maps one quadrilateral to the other.



2.3 The Cross Ratio

Suppose that pi, ps, ps,ps are 4 points on a line L ¢ RP?. One defines
the cross ratio x(p1,p2,ps, ps) in the following way. First, use an element of
PGL3(R) to identify L with (the one point extension of) the z-axis in R”.
Let x; be the image of p; under this identification. Then define

(21— x3) (72 — 24)
(z1 — 22) (23 — 24)

X(plap2’p37p4) =

This definition is independent of any choices used in identifying L with the
x-axis. x(p1, P2, P3, P4) is invariant under projective transformations. That is

X(T'(p1), T (p2), T(p3), T (ps)) = x(p1, P2, P3, Pa); T € PGL3(R).

2.4 The Hilbert Metric

We say that a set X C RP? is convez if there is a projective transformation
T such that 7'(X) is a closed compact convex subset of R?.

If X ¢ RP? is a convex set, we can define a canonical metric dx on its
interior X°. Given unequal points ps, p3 € X, let L be the line containing py
and p3. Let p; and ps be the two points where L intersects the boundary 0.X.
We order these points so that pq, po, p3, p4 come in order on L. We define

dX(p2;P3) = logx(pl,pg,pg,p4).

Note that d(pe,ps) — 0 as ps — p3 and that d(ps,p3) = d(ps,p2). The
triangle inequality is also not hard to verify. dx is known as the Hilbert
metric.

Defined as it is, in terms of cross ratios, the Hilbert metric is natural
with respect to PGL3(R). If X and Y are convex sets and 7 : X — YV
is a projective transformation mapping X to Y then 7' is an isometry as
measured relative to the two Hilbert metrics.



3 The Invariant Function

3.1 Basic Definition

Let P be an n-gon. We give an orientation to P, and we represent this
orientation by an arrow, as shown in Figure 3.1. Let p be a vertex of P and
let a,b, ..., h,7 be the points shown in Figure 3.1. We define

Op(P) = x(a,b,¢c,d);  E,(P)=x(d,e, f,9);  fo(P)=x(b,h,i,f).

Figure 3.1

The quantity f,(P) is what we called the corner invariant of P at p in
[S]. We define

fP)=11hP);  OP)=I[0xP);  E(P)=]]E,(P).

The product is taken over all vertices of P.
A short calculation shows that



To simplify the calculation, one can use the projective in variance to normal-
ize so that the 4 vertices a, b, f, g form a unit square. We omit the details.
Taking the product of this identity over all vertices, we see that

f(P)=O(P)E(P).

Remark: Here is a geometric interpretation of f(P). Let P’ be the penta-
gram of P. Let X be the convex subset of RP? whose boundary is P. Let
dx be the Hilbert metric on X. Let pi,...,p;, be the vertices of P’ listed in
order. By simply using the definition of the Hilbert metric, we have

log f(P) =) dx(p}, Pit1)-
=1
Here indices are taken mod n. In other words, log f(P) is the perimeter of
P’ as measured in the Hilbert metric on the convex set bounded by P. This
interpretation shows that f(P) > 1.

3.2 Compactness Proof

In this section we prove that the level sets f~![1,7] C ¥, are compact. Our
argument here is pretty much a repeat of what we said in [S]. Given an n-gon
P, the corner invariants f,(P) all lie in [1,00). Thus, if f(P) € [1,r] then
f»(P) € [1,7] for every vertex p of P.

Figure 3.2.

Let p1, p2, p3, P14, Ps be 5 consecutive vertices of P, as shown in Figure 3.2.
The point ps is confined to the shaded open triangle A whose vertices are
P2, P4 and g3. Here

g3 = P1P2 N PaPs.
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We set f; = f,.(P). Suppose that py, ps, ps, ps are held fixed and that ps (and
possibly other points of P) are moved around. One observes three things:

1. If z € OA is not on the segment pap; then f3 — oo as p3 — .
2. If x € papy is not equal to ps then fo — 0o as p3 — .

3. If x € pap; is not equal to py then f, — oo as p3 — .

These three observations establish the following claim: If f(P) € [1,r], and
P1, P2, P4, Ps are held fixed, then there is a compact set of positions, in the
open triangle A where ps could be.

The map P — {p1,p2, ps3, s, p5} gives a map from ¥, — 5. There are
n of these maps, depending on the choice of vertex p;. From what we have
just seen, the image of f![1, 7], under each of these maps, is compact.

Suppose now that {Py} is a sequence of convex n-gons in RP? such
that f(P,) € [1,r]. Suppose, by induction, that we can find a sequence of
projective transformations {7} such that, on a subsequence, the first m > 5
points of Ti(Py) converge. Then, using the appropriate map into X5 we see
that, on a thinner subsequence, the (m + 1)st points also converge. Hence,
the polygons Ty(Py) converge, on a subsequence, to a fixed polygon. This
proves that f~![1,r] is compact.

3.3 Invariance Proof

Here we sketch the proof that f oT,, = f. This proof is different from what
appears in [S].

Let ¥,(7) be the set projective classes of convex n-gons labelled by con-
secutive integers congruent to j mod 4. There is a canonical map from
¥, into X,(1). A polygon whose points are labelled by integers 1,2, 3... is
mapped to geometrically the same polygon whose points are labelled by inte-
gers 1,5,9,.... We denote this map by ¥,, = 3,,(1). We denote the inverse
map by ¥,(1) = %,.

The map P — P, formerly defined as a map on unlabelled n-gons, can
naturally be interpreted either as a map A, : X,(1) — X,(3) or as a map
B, : ¥,(3) = X,(1). The two interpretations are shown, for n = 7, in Figure
3.3. The map T, : ¥, — X, factors in the following way:

S = Tp(1) 2% 2,(3) 25 ,(1) = 3,



Figure 3.3.

Let ' and O be the invariants defined in the previous section. To show
that f o T, = f we will show that

(x) FoA,=0; OoA,=FE; FEoB,=0; OoB,=E.

Let P € ¥,(1). The vertices of P are labelled by integers congruent to 1
mod 4. We coordinatize P by the variables (z1,y2, ---, Tan_1, Yon ), Where

vis = Oi(P);  yir = Ey(P).

Here, for instance, O;(P) is the quantity, computed in the previous section,
for the vertex 1. In these coordinates, O(P) = [[z; and E(P) =[] ;.
We coordinatize P’ = A,(P) by the variables

T = Oi(P"); Y = E;i(P').

2 2

We coordinatize P" = B, (P') exactly as we coordinatized P, using variables
2" and y".
A calculation shows that

1 —Zj10Yj43 1 — 2z 3y
I = ( j+2Yj )y ¥ y/_:( Jj—39j )$‘—1,
! 1— 2oy /7" ! 1— 2541502/

and

! ! ! !
" _ 1—- Ti2¥j-3Y\ 4 " o__ 1— TivsYjra\
S e e N A I e R e
TioYjt1 Lj-1Yj-2

The identities in Equation (*) follow immediately from these equations.
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4 The Volume Form

4.1 Framings and Volume Forms

Suppose that X is a smooth manifold. A framing of Xisa smoothly varying
choice of basis for the tangent spaces of X. That is, for each z € X we
have a basis F} for the tangent space 7, X. If F'is a framing on X, then F
canonically determines a volume form pp. Namely, pp is the volume form
which assigns the value 1, at each point, to the basis given by F.

Suppose that X; and X, are two smooth manifolds, equipped with fram-
ings I and F; respectively. If o : X7 — X5 is a diffeomorphism, and z; € X,
is a point, we define the matrix M,,, as follows: We have the differential map

do : T$13{1 — T:EQ:-X:Q'

Here zo = a(z1). We write out this map with respect to the bases given
by Fy and F,. This is our matrix. We say that o is adapted to (Fy, F)
if det(M,) = 1 for all z € X;. Note that « is adapted to (Fi, F») iff the
differential da maps pp t0 pim,.

Suppose now that G : X — X is a smooth, free group action. Here free
means that every element of G' acts with no fixed points. In this case the
quotient X = X /G is also a smooth manifold. If T : X — X is a smooth
map which commutes with G then there is an induced map 7" : X — X.
Here is our main technical result.

Lemma 4.1 Suppose G : X — X is a smooth free group action. Suppose
T:X — X is a smooth diffeomorphism which commutes with the action of
G. Suppose there erists a smooth G-invariant framing F' on X such that T
is adapted to (F, F). Then there is a volume form u on X = X /G which is
preserved by the induced map T : X — X.

Proof: We begin with a fact from linear algebra. Suppose V is an n-
dimensional vector space, equipped with a volume form v. Suppose W C V
is a k-dimensional subspace, equipped with a volume form w. We shall denote
the quotient map V' — V/W by x — . It is an elementary fact that there
is a unique volume form ¢ on V/W such that

V(XA e ATy g AYL A e A Y)
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Here z1,...,z,—x € V are vectors such that Zi,...,T,—x is a basis for V/W,
and ¥y, ..., yx is and basis for W.

Let z € X be a point. Let 7 € X be a a point which is mapped to X under
the quotient map X 5 X. Let V= T~X be the tangent space. Let Lg be
the Lie algebra of left invariant vector fields on G. We fix a left invariant
volume form on Lg. Each element of L defines a G-invariant vector field
on X. In this way, there is a canonical embedding of L into V. Let W be
the image of Lg under this embedding, at . The tangent space to X at z
is canonically isomorphic to the quotient V/W.

Note that V has the volume form v = pp. Also, W has a volume form
given by its identification with Lg. We use the linear algebra fact above to
get a volume form p, on T,X = V/W. This construction of p, does not
depend on the choice of Z, because everything in sight is G-invariant. Let p
be the volume form on X which restricts to p, at each point € X. The
naturality of our construction implies that 7" preserves p. #

To prove Theorem 1.1 it remains to prove the Volume Lemma. Here is an
outline of its proof. Let ¥, be the space of strictly convex n- gons in RPZ.
Let G = PGL3(R). Note that G acts freely and smoothly on S, and that

n/G Y,. Let T, : £, — %, be the pentagram map, as it acts on .
Note that the T}, 1nduces the map 7, : ¥, — X,,.

We define fln () as the space of strictly convex n-gons in RP?, whose
points are labelled by consecutive integers congruent to 7 mod 4. Just as we
factored the map 7T, in §3.3, we factor T, as:

Sp = Sa(1) 22 5,(3) 2 £,(1) = 5,

The double arrows indicate maps which just change the labels. The fac-
torization here forms an obvious commuting diagram with the one given in
§3.3.

Below we will construct G-invariant framings F'(1) and F'(3), respectively
on ¥,(1) and ,(3). Then we will show that A, is adapted to (F(1), F(3)).
It follows from symmetry (or from a similar proof) that B, is adapted to
(F(3), F(1)). The composition B, o A, is therefore adapted to (F(1), F(1)).
But this composition differs from T, only in the labels on the points of the
polygons. So, there exists a G-invariant framing F' on Y, such that T}, is
adapted to (F, F). By Lemma 4.1, there exists a volume form p, on 3,
which is T,,-invariant.

11



4.2 Unit Vector in the Hilbert Metric

Suppose that L is a line in R?, and A, B,C € L are three points, such that
B separates A from C'. We define

(C—-B)(B—-A)

V(A,B,C) = |

Our expression requires some explanation. The quantities C — B, etc. are
vectors, all in the same one dimensional subspace, so that it makes sense to
multiply and divide them.

The Hilbert metric on the line segment [A, C|] is a Riemannian metric. It
is just a pointwise multiple of the Euclidean metric on [A, C]. Thus, it makes
sense to talk about the length of vectors tangent to [A, C], as measured in the
Hilbert metric. It is not hard to see that V' (A, B,C) is the tangent vector,
based at B, oriented from A to C, which has unit length in the Hilbert
metric on [A, C]. The geometric interpretation of V (A, B, C) shows that it
is invariant under projective transformations.

From the naturality of the construction, V' (A, B, C') makes sense for any
three collinear points in RP?, even if the formula breaks down. The break-
down occurs if one of the points is infinite, or, more generally, if the segment
[A, C] intersects the line at infinity.

4.3 The Framings

To construct our framing in in(]) we need to construct, for each point in
3.(j), a basis for the tangent space at that point. A point in ¥,(j) is a
polygon in RP?. A tangent vector to the point is just a collection of n
vectors in the plane, one per vertex of the polygon. To avoid using the word
“tangent” too frequently, we will call the vectors in the plane motion vectors.
Thus, a tangent vector to a polygon is a collection of n motion vectors. The
intuition is that the collection of n motion vectors tells us how to move the
polygon, to get a nearby polygon.

Suppose we are given a polygon P, a vertex p of P, and a single motion
vector v. We can interpret v as a tangent vector by setting all the other n—1
motion vectors equal to 0. We call this process ezrtension. The extension
process starts with a motion vector and promotes it to a tangent vector by
including it as the only nonzero vector in a collection of n motion vectors.
This is what we will do in constructing our basis for the tangent space to

12



in(j) We will specify a collection of 2n motion vectors vy, ..., v9,. Each
motion vector is extended to a tangent vector. Thus, the 2n motion vectors
determine 2n tangent vectors, a basis for the tangent space.

Here is the construction for in(l) Let P = pq, ps, g, ... be a polygon in
Sn(1). Let

Gj+2 = Pj—4aPj N Dj+aPj+s-
For j =1,...,n we define the motion vectors

voj = V(P2j17, Dojr3: Qojr1);  Vojr1 = V(D2j-1, P2jr3, Qojts)-

Two of these vectors are shown in Figure 4.1

1
pl7 pl3 p13

p9
q7

p21 v3

‘ v2 p21

pl 3
q bl
Figure 4.1

Here is the construction for in(3) Let P = ps,p7,p11... € in(S) This
time, we define the motion vectors

Vi1 = V(DP2ji5,P2jr15G2j—1); V25 = V(P2j-3, P2j11, 9243)-
Two of these vectors are shown in Figure 4.2.
11
pl5 ? pll
pl5
p7 p7
qs
pl9 ‘ v2
vl pl9
p(-1)
ql p(-1)
Figure 4.2

13



4.4 Form of The Matrix

We are interested in showing that the map A, : ,(1) — £,(3) is adapted
to (F'(1), F(3)), the pair of framings constructed in the previous section. In
this section we work out the matrix dA,, written with respect to these two
framings. For ease of exposition, we will consider the case n = 7.

Let A;; be the matrix entries of dﬁn. The expression \A;; is a function on
3.(1). Figure 4.3 shows polygons P and Q = A, (P). The vertices of P are
labelled by ...pg, ... and the vertices of () are labelled by ...g3, ..., ¢15.... Figure
4.3 shows what happens when we vary P along —v,. This is to say, we keep
all the vertices of P fixed, except for pg, and we slide py along the vector
—uv4. This is indicated in the picture by an arrow emanating from pg. The
other arrows in the figure indicate the motion of the points of ) which are
affected by the variation.

From Figure 4.3 one can see that \y; > 0 iff j = 2,3, and Ay; < 0 iff
Jj =6,7. Likewise As5; < 0 iff j = 2,3 and As5; > 0 iff j = 6.7. Define

A A A A
A9S — [ 42 52] A1 — [ 46 56]
A3 As3 Aar Asz

Variation along the vector w, which is a linear combination of v, and v5, does
not move q3 or ¢;. This is to say that the linear transformation represented

14



by Ags has a kernel. Hence det(A%®) = 0. Likewise, det(A%!®) = 0. The
same picture occurs at each vertex. Shifting the indices in a more or less

obvious way:

T0 AR 0 0 0 0 ABI]
ALS 0 A% 0 0 0 0
0 AS? 0 A3 0 0 0
dAd;=| 0 0 A% 0 ATB 0 0 (1)
0 0 0 A13,17 0 A21,17 0
0 0 0 0 A17,21 0 A25,21
A1,25 0 0 0 0 A21,25 0

Each 0 stands for the 2 x 2 zero matrix. The individual 2 x 2 blocks A%/ have
determinant 0. The general pattern should be clear from the case n = 7.

4.5 Computing a Block in the Matrix

Let z1, ¥, ..., Ton_1, Yo, be the invariant coordinates for P, defined in §3.3.

We also define .

- 1—yixj'

Zij

The entire structure of dA4, can be deduced from symmetry and from the
formula

(*) ASL3 —T5245 245 _
—T5Y6289 Y6289
The fact that the det A%'® = 0 implies that the formulae for any three entries
determines the fourth. We will compute A\jg = —x5245 and omit the other

two calculations, which are similar. We point out that one can verify these
calculations, numerically, on the computer.

Referring to Figure 4.5, let | XY| be the Euclidean length of the segment
having endpoints X and Y. In particular, let e = |[BC| and § = |DE)|

Figure 4.5
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Basic plane geometry gives

|AD||FD|
~ |AB||FB|
Figure 4.4 below shows the same polygons as does Figure 4.3. The vertex

Py represents a small perturbation of pg, along the motion vector —v,. The
vertex ¢i; represents a small perturbation of ¢;; along the motion vector vg.

d + O(é?).

Figure 4.4
Define
o = —|p13 — 07| . A |p13—Q11||p17—Q11|_ _ P13 — g7
|07—p9||p9—p13|’ |p13—p9||p17—109| ’ |p13—CI11||lI11 —Q7|

We set € = |pg — py| and 0 = |g11 — ¢};|. Using the definitions of our
framing for the polygon P, we see that pj — pg is —Ae + O(€?) times vy.
From the geometric fact above, 6 = Be + O(€?). Using the definition of our
framing for P’, we see that ¢}, — ¢i; is Cd + O(6?) times vg. Letting € — 0,
and recalling that A4 < 0, we have

_ 1Py — o7llp13 — qrllg11 — p7l
\07 - p13HQ7 - Q11Hp17 - P9|

Mg = By/a=

A short calculation identifies the expression above with —x5zy5.

16



4.6 Computing the Determinant

Here is the arrangement of the blocks A%?, A!32 A%5 and A%13:

Ai2 Asg
A1z As3
Mg Aze 0 0 Aes Ang
Aos Azs 0 0 Ags Ars
As6 As6
Az Ast
We define
det[/\42 )\52] det[)% /\74]
Vo = Aar_ st ;o Hy= Ao s i Do = AsgAes.
A4 As7 A24A7s

We define Hy;, V24; and Dy, by adding 27 to all of the indices in the Aj.
For instance, D; = Ag4Ay3. Equation (x) gives

Hy = Vo = 1/2s5;
Hence [] H;V;D; = 1. To finish the proof of the Volume Lemma we show
Lemma 4.2 det(dA,) = [I, H;V;D;.

Dy = z45267.

Proof: For ease of exposition, we take n = 6. The polynomial Z = det(dAg)
consists of n! signed monomials. The monomials in Z are only nonzero when
all variables have been chosen from the nonzero 2 x 2 blocks. Say that
a monomial in Z is bad if it contains two variables picked from the same
nonzero block, and otherwise good. The bad monomials cancel in pairs,
since the determinant of each block is 0.

0O 0 O 0O 0 O 0 1 0O 1 0 0

: - -
oq-* 1

0 *F 0
0 *F 1
: u ,

Figure 4.6

.
m
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Figure 4.6 illustrates a coding for the good monomials. Each good mono-
mial is specified by choosing one variable arbitrarily from each of the 6 above-
diagonal blocks A%/~ These choices, which are represented by lightly col-
ored squares, uniquely determine the variables in the below-diagonal blocks
AJ4*7 which are represented by black squares. The monomials are signed,
so that Z is a positive sum over all these monomials.

We can encode each one of these monomials by a pair of binary strings
(a,b). Both a and b have length 6. The 1 bits in @ indicate the columns in
which the light shaded square is on the right half of the 2 x 2 block. The
1 bits in b indicate the rows in which the light shaded square are on the
top half of the 2 x 2 block. For instance, the first picture is encoded by
(000000, 000000). The second picture is encoded by (010100,010010). Note
that (000000, 000000) = [T Dx.

If a has a 0 in the kth position, let a; be the string obtained by changing
this bit to a 1. For instance (010010); = (011010). We do not define ay, if a
has a 1 in the kth position. We make the same definition for b. We have the
following basic identity, which uses the fact that det AY = 0.

(%) (a,b) + (ak, b) = (a,b) Hy; (a,b) + (a,br) = (a,b)Vj.

Let x stand for either a 0 or a 1. Let S;; be the set of monomials of
the form (*...0,*...0), such that there are i copies of * in the first slot, and
j copies of x in the second slot. For example, Sy5 consists of the set of all
monomials having the form (x x 0000, * * * % x0). Obviously, Sgs is the set of
all monomials.

Formula (%) gives us det(d4s) = Y, (a,b) =

H5 Z((Z, b) = H5H4 Z((Z, b) = ..= HH'L Z(a, b) =

Ss6 S46 Sos
Sos Soo
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