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Abstract

In this paper I will explain a rigidity conjecture that intertwines
the deep diagonal pentagram maps and Poncelet polygons. I will
also establish a simple case of the conjecture, the one involving the
3-diagonal map on a convex 8-gon with 4-fold rotational symmetry.
This case involves a textbook analysis of a pencil of elliptic curves.

1 Introduction

1.1 Conjecture and Result

Let RP? denote the real projective plane. A polygon in RP? is convex if
its image under a suitable projective transformation is a convex polygon in
the standard affine patch of RP?. See §2.1 for definitions. We call a convex
polygon Poncelet if it is inscribed in one ellipse and circumscribed about
another ellipse. More generally, a Poncelet polygon is one whose vertices lie
in one conic section and whose edges lie in lines tangent to another conic
section.

Let (n, k) be a pair of integers, not both even, withn > 7and k € (2,n/2).
Given an n-gon Py, we let Py, = T}(P;) be the n-gon obtained by intersecting
the successive k-diagonals of P;. Figure 1 shows this for (n,k) = (8,3). The
map T}, is generically defined and invertible. The same construction works in
any field, but convexity is important for us here. The maps T}, and T}, ' are
always defined on convex n-gons, though the image of a convex n-gon under
one of these maps need not be convex.
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Figure 1: P, and P, = T3(Fy).

Figure 1 gives an example of where P is convex but P is not. Starting
with Py we define the (n, k)-pentagram orbit {P;} where P; = T} (Fy).

Conjecture 1.1 Suppose that {P;} is an (n, k)-pentagram orbit and that P;
is convex for all j € Z. Then {P;} is convex Poncelet for all j € Z.

I proved in [15] that if Py is a Poncelet polygon, T'(Fy) and Fy are pro-
jectively equivalent. Thus, to prove the conjecture it is enough to prove that
the hypotheses force F, to be convex Poncelet.

In this paper I will prove a simple but nontrivial case of the conjecture.

Theorem 1.2 Suppose that Py is an 8-gon with 4-fold rotational symmetry
and {P;} is the (8,3)-pentagram orbit. Then Py is reqular if and only if P;
1s convex for all j. More precisely

1. Py has 8-fold dihedral symmetry, with symmetry lines containing the
vertices, if and only if P; is convex for all j > 0.

2. Py has 8-fold dihedral symmetry, with symmetry lines bisecting the
edges, if and only if P; is convex for all j < 0.

A version of Theorem 1.2 appears to be true when (8, 3) is replaced by a
general pair (n, k) when n is even and k is odd and the n-gons have (n/2)-fold
rotational symmetry. The proof should be similar. A much more interesting
generalization is to the case of centrally symmetric octagons, because these
include all Poncelet octagons. I have just finished proving this generalization
in a much longer paper. See [16].

The conjecture is not true for n and k both even. In this case, T}, is 2-
periodic (modulo scaling) when restricted to the space of n-gons with (n/2)-
fold rotational symmetry, and 7} has some non-regular convex fixed points
modulo scale.



1.2 Context

The classic case of the pentagram map is (n, 2) for n > 5. The case n = 5 has
been studied e.g. by Clebsch in the 19th century and Motzkin [9] in middle
of the 20th century. In 1992 I wrote a paper [13] defining the pentagram
map for general n-gons and proving in the convex case that the forward orbit
shrinks to a point. Very recently, M. Glick [2] found a kind of formula for
this collapse point.

It is nice to consider the map 75 as defined on the space P,, of n-gons mod-
ulo projective transformation. With the correct labeling, 75 is the identity
on Py and 2-periodic on Pg. I observed experimentally that the orbits of 75
in general seem to lie on tori. Motivated (for some reason) by the scattering
transform for the KdV equation, I found [14] about n algebraically inde-
pendent invariants for T,. These invariants are now called the monodromy
wwvariants or the pentagram integrals.

In [10], V. Ovsienko, S. Tabachnikov, and T showed that T3 has an invari-
ant Poisson structure of corank 2 in the odd case and corank 4 in the even
case, and that the monodromy invariants Poisson-commute with respect to
this structure. This established the complete Arnold-Liouville integrability
of the pentagam map on the larger space T, of so-called twisted n-gons. Es-
sentially what this means is that the space T, a space of dimension 2n, has a
singular foliation by manifolds of dimension about n such that the restriction
of P, to each manifold is a translation in suitable coordinates. When these
manifolds are compact they are necessarily finite unions of tori.

Subsequently, we proved in [11] that T3 is Arnold-Liouville integrable on
P, which is naturally a codimension 8 subvariety of 7,. For the subset
of convex n-gons, the manifolds in the singular foliation are compact and
hence finite unions of tori. At the same time, F. Soloviev [19] proved that
the pentagram map is algebro-geometrically integrable on P,,. This implies
in particular that the torus foliation discussed above is naturally an abelian
fibration, with the individual tori having natural desciptions as Jacobian va-
rieties for certain Riemann surfaces. Very recently, M. Weinreich [20] proved
that T, is algebro-geometrically integrable in any field of characteristic not
equal to 2. In [3], M. Glick related the pentagram map to a cluster algebra.

By now there are many generalizations of the pentagram map, and also
a number of ways to generate invariant functions and the invariant Poisson
structure. In [1], M. Gekhtman, M. Shapiro, S. Tabachnikov, A. Vainshtein
generalized the pentagram map to similar maps using longer diagonals, and



defined on spaces of so-called corrugated polygons in higher dimensions. The
work in [1] also generalizes Glick’s cluster algebra and establishes the com-
plete integrability of these maps in some form. In [7], G. Mari-Beffa defines
higher dimensional generalizations of the pentagram map and relates their
continuous limits to various families of integrable PDEs. See also [8]. In [5],
B. Khesin and F. Soloviev obtain definitive results about higher dimensional
analogues of the pentagram map, their integrability, and their connection to
KdV-type equations.

The little survey above is not meant to be complete. Now let me explain
how these various results are related to the Pentagram Rigidity Conjecture
above. First of all, the map T}, is the one used in [1]. Tt would be nice if
one could conclude from [1] that T} is completely integrable on P,,, but this
has not been directly worked out. The spaces of corrugated polygons are
somewhat different than spaces of ordinary polygons, though in some sense
closely related. Ordinary polygons are limits of corrugated polygons under
a kind of flattening operation. Let me just leave it by saying that T} is
certainly believed to be completely integrable on P,, in some sense.

The Pentagram Rigidity Conjecture is really about the global geometry
of the torus foliation of P,, (presumably) associated to Tj,. The smaller space
C,, of convex n-gons modulo projective transformations is a subset of P,,. For
k € [3,n/2) the tori in this foliation probably are not contained in C,,. So, if
T}, is not the identity on one of these tori, and moreover the intersection of the
torus with C,, is not too large, then the orbit of T} on this torus cannot stay
in C,,. (See Lemma 2.1 below.) This observation would prove the conjecture
for the n-gons corresponding to this torus. The Poncelet polygons in C,, also
lie on these tori, but 7' is the identity there.

Motivated by the Pentagram Rigidity Conjecture, A. Izosimov [4] has
recently proved that if n is odd and P € C,, is a fixed point of T3 then in fact
P is a Poncelet polygon. So, we now can say that for n odd points in C,, are
fixed by T5 if and only if they are Poncelet. The convexity is important here.
Izosimov gave some easy examples of n-gons in C P? that are fixed by T but
not Poncelet. The parity of n is also important. As I mentioned above, the
result is not true when n is even. Presumably, Izosimov’s result would also
work for general pairs (n, k) where both numbers are not even.

In the case I consider, that of T3 acting on 8-gons with 4-fold rotational
symmetry, there is just a single invariant for the map, and its level curves are
nonsingular elliptic curves except when they contain points corresponding to
octagons having 8-fold dihedral symmetery. These are the curves I analyze
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in §2.2. These elliptic indeed stretch outside Cg in the appropriate sense, and
this is enough to prove Theorem 1.2. See Figure 2 in §3.4.

The various invariant-generating machines for the pentagram map prob-
ably would turn up the invariant I found, but these machines are better
developed for T, than they are for 7T5. I just guessed the invariant for T3 by
looking at the picture, and then checked algebraically that it works. I will
explain in §3.2 what led me to the invariant.

There are two other connections I want to make between the Penta-
gram Rigidity Conjecture and other areas of mathematics. When I originally
thought of this conjecture, about 30 years ago, I had imagined it as a projec-
tive geometry analogue of the circle packing rigidity theorem [12] of B. Rodin
and D. Sullivan. Much more recently, it occured to me that the conjecture is
something like a discrete analogue of the Birkhoff-Poritsky Conjecture about
billiards in strictly convex ovals. This conjecture says roughly that if a neigh-
borhood of the boundary of the (cylindrical) billiard phase space is foliated
by invariant curves (corresponding to caustics) then the oval is an ellipse.

1.3 Organization

In §2 I will give some background information about projective geometry and
also analyze the family of elliptic curves that arises in the proof of Theorem
1.2. T will also present a few well-known results about complex tori. In §3 I
give the proof of Theorem 1.2.

The interested reader can download the computer program I wrote, which
does experiments with the 3-diagonal map on centrally symmetric octagons.
The location of the program is

http://www.math.brown.edu/~res/Java/OCTAGON.tar:

1.4 Acknowledgements

I would like to thank Misha Bialy, Misha Gehktman, Anton Izosimov, Joe
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2 Preliminaries

2.1 Projective Geometry

The real projective plane RP? is the space of lines through the origin in R?.
Equivalently it is the space of scale-equivalence-classes of nonzero vectors in
R?. Points in RP? will be denote by [z : y : z]. This point represents the
line through the origin and (z,y, z). The quotient map R* — RP? is called
projectivization.

There is a natural inclusion R*> — RP? given by

(z,y) = [v:y:1]. (1)

The image of this inclusion is known as the standard affine patch. 1 often
identify R? with its image under this inclusion, and when speaking about
points in the affine patch I will often write (z,y) for [z : y : 1]. The inclusion
in Equation 1 has an inverse, given by

[y 2] = (2/2,y/2), (2)

The line at infinity is the subset of RP? outside the standard affine patch.
The line at infinity consists of points of the form [z : y : 0]. More generally,
a line in RP? is the set of members represented by lines in a 2-dimensional
subspace of R®. We can also represent lines by triples [a : b : ¢]. This
point represents the linear subspace given by the equation az + by + cz = 0.
Conveniently, the line through 2 points is represented by the cross product of
the corresponding vectors. Likewise, the intersection of 2 lines is given by the
cross product of the corresponding vectors. These facts make computations
with the pentagram map very easy.

The dual projective space RP? is the space of lines in RP?. As our
notation suggests, there is an isomorphism between RP? and RP?. The
isomorphism sends the point represented by [u : v : w] to the line represented
by [w: v :w]. This isomorphism sends collinear points to coincident lines.

Note that all the same words apply with the field R replacing the field C.
Thus C P? is the complex projective plane. A projective variety in C P? is the
projectivization of the set V(z,y,z) = 0 where V(z,y, z) is a homogeneous
polynomial in 3 variables. This variety is called nonsingular if the (formal)
gradient VV is everywhere nonzero on the set V(x,y,z) = 0. When V
is cubic and nonsingular the corresponding projective variety is a smooth
Riemann surface of genus 1, also known as a complex torus. See [18].
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2.2 A Family of Cubics

In this section we study the solutions to the equation

(z—y)(@*+y*—1)
zy

=\ (z—y)(@® =y’ 1) = dey =0.  (3)

The second equation is a rearrangement of the first one. To bring this equa-
tion into the form we mentioned at the end of the last section, we expand
it out and then homogenize it by padding the z-variable. This gives us the
equation

Vi(z,y,z) =2’ -y’ — 2y + ay® — 22° + y2* — Awyz = 0. (4)

Let E)\ denote the complex projective variety corresponding to V' = 0.
Let p be reflection in the line {y = —z}. Call this line L. Call a subset of
RP? bounded if it lies in R? and otherwise unbounded. Below, I will prove
two results:

1. For all A # 0,42, +4iv/2 the variety E) is nonsingular, and hence a
complex torus.

2. When A € R—{-2,0,2}, the set E5 N RP? consists of 2 smooth loops,
both p-invariant, one bounded and one unbounded. The bounded loop
intersects L twice and the unbounded loop intersects L once.

Figure 2 in the next chapter shows a rough but topologically accurate picture

of Ex N R? for )\ € (0,2).

First Statement: We want to see that the gradient never vanishes on the
level set V' = 0. We compute

V, —\yz + 322 — 2zy + y? — 22
VV = 1|V,| = |-Azz — 22 + 22y — 3y? + 2° (5)
V., 22(y — ) — A\xy

To analyze this, let us first consider the points in the line at infinity that
belong to V' = 0. Indpendent of A, these are the 3 points

[1:1:0], [i:1:0], [—i:1:0].



Since both z,y # 0 and z = 0 for these points, we see from the equation that
the third coordinate of VV' is nonzero. This takes care of these points.

To consider the remaining points of V we can set z = 1. If VV = 0 we
have V,, +V,, = 0. This gives one of two equations:

y = -z, y—2x2 A (6)
When y = —z we have
Ax + 622 — 1
VV = |-z —62% +1 (7)
x(Ax —4)

This can only vanish when x = 4/\. But then

4 4 256 8
V(r by 1) BRSPS
and this vanishes only if A = +4i+/2.

When y = (22 — \)/2 we have
A4 — N2
V(J:aya]-) = %

This can only vanish when A =0, +2. &

Second Statement: Let A € R — {—2,0,2}. The set £y N RP? is a finite
disjoint union of smooth loops, permuted by p.

If C' is a bounded component and p(C) # C then C' U p(C) would in-
tersect some line 4 times, a contradiction. Hence p preserves each bounded
component, and each bounded component intersects L twice at right angles.
Since E) intersects CP? — C? three times, and exactly one of these inter-
section points, namely [1 : 1 : 0], lies in RP?, we see that E) N RP? has one
unbounded component.

Note that E, N L always consists of 3 points, namely (x, —z) for z = 0

and
A+ VA2 + 32
S # 0.
We conclude that £y, N RP? must have exactly two components, both p-
invariant, one bounded and one unbounded, and the intersections are as

claimed. &
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2.3 Uniformization

Let £ C CP? be nonsingular cubic variety. As we mentioned above, E
is a complex torus. Let f : E — FE be some birational map which is also
invertible. The birational nature of f implie that all the singularities of f
on F are removable. This means that f is a biholomorphic map of E and
orientation preserving.

As is well known, there is also a biholomorphic map ¢ : E — C/A where
A C C is a lattice. The map ¢ conjugates f to an isometry of C'/A. Thus,
we may simply equip E with the coordinates coming from ¢ and treat F as
a flat torus and f : £ — E as an orientation preserving isometry. We call
this the flat structure on F.

2.4 Minor Subsets of Tori

In this section I will prove a general lemma about flat tori. The only case
required for the proof of Theorem 1.2 is that of the circle R/Z, but the
general case might be useful for a more general version of the conjecture.
The general case rather quickly reduces to the circle case anyway.

Say that a subset S C R"/Z" is minor if there is some translation ¢ of
R"/Z" such that ¢(S) C (0,1/2)". In general, say that a subset S of a flat
torus is minor if an affine isomorphism from the flat torus to R"/Z" carries
S to a minor subset.

Lemma 2.1 Suppose p € S CY where S is a minor subset of the flat torus
Y. Suppose that f 'Y — Y is a nontrivial translation. Then the forward
orbit { f*(p)| k > 0} is not contained in S.

Proof: By affine symmetry it suffices to prove this when Y = R"/Z".
The translation f has a nontrivial action in at least one coordinate. Let
f:R"/Z" — R/Z be the projection onto this coordinate. By construction
f(S) is minor in R/Z and f covers a nontrivial translation of R/Z. This
reduction shows that it suffices to prove our result for Y = R/Z. This is
what we do. If f(p) € S then we are done. Otherwise [p — f(p)| < 1/2.
But then the forward orbit of p is at least 1/4-dense. This means that every
point of R/Z is within 1/4 of some point in the forward orbit. In particular,
the point ¢ diametrically opposed from the midpoint of S has this property.
But then the orbit point that is within 1/4 of { is disjoint from S. &



3 Proof of the Result

3.1 Formulas

Let X denote the space of labeled 8-gons with 4-fold rotational symmetry
modulo similarities in the plane. We normalize so that the 4-fold symmetry
in question is the map

pllecy:2]) =[-y:x: 2. (8)

This map fixes the origin (0,0) in the affine patch and preserves the whole
affine patch. It is just rotation by 90 degrees counterclockwise.

One possibility is that p cycles the vertex labels by 2 and the other pos-
sibility is that p cycles the vertex labels by —2. We only consider the first
possibility; the second possibility is essentially treated by symmetry. For the
purpose of getting formulas, we ignore for now the members of X which have
points on the line at infinity. We call the remaining members finite. In other
words, the finite members lie entirely in the standard affine patch.

The Map: Every finite member of X has a canonical representative P(z,y)
with vertices

(170>’ (Ivy)v (071)7 (—y,l’), <_170)7 (_Ia_y)v (07—1)7 (y,—x). (9)

Here (z,y) is really [z : y : 1], etc.
Expressed in these coordinates, and with a suitable labeling scheme, the
map T3 is given by T3(x,y) = (2/,y'), where

o = —Ax(B — 2zy), y' = +Ay(B + 2zy), (10)

Q1o + Qg

A= ,
(14 o) (ago + 2as0 + aup — 11 — 239 + Qi)

;= a'y +y'a’.

B = B0 + 2820 + B30 + Piz, Bij = z'y —y'al. (11)

In other words, T3 sends the polygon P(x,y) to the polygon P(z',y). 1
computed this map (and everything else in the paper) using Mathematica [6].
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The Invariant: Define the function

2 2
r—y)(z*—y*—1
Wi, y) = L= ) (12)
xy
A direct calculation shows that W o T3 = W. This is the invariant mentioned
in the introduction. In the next section I will explain where it comes from.

Projective Duality: Each 8-gon P, defined by its vertices, gives rise to
an 8-gon P* in the dual space defined by the successive lines. The suc-
cessive “vertices” of P* are the successive lines extending the edges of P.
Using our isomorphism, we get a second polygon (P*)# in X'. The operation
P — (P*)# is an involution given algebraically by the map

B y(z® —z+y* —y) yety—1)
D(:E,y)—<—x(xg_2x+y2+1)’x(gy2—2x—|—y2+1)) (13)

Direct calculations show
VoD=1, DTyD ' =Tyt (14)
One can also deduce these equations from abstract properties of projective

duality. I will leave this to the interested reader.

Symmetries and Factorization: Define
Ul(xay) = (yv'x)a 0-2(1‘7?/) = (_‘Ta_y> (15)
A direct calculation shows that
O'1T30'1_1 = T37 0'2T30'2_1 = Tg_l. (16)

Geometrically, the map o5 swaps the regular and star-regular 8-gons. Beau-
tifully, a calculation shows that

Ty = (Dooy). (17)

In other words T3 is the square of a simpler map. Readers familiar with the
pentagram map will not be surprised by this kind of factorization. The map
D o o4 satisfies the rule

Vo(Dooy) =-V. (18)

This equation would probably be the quickest way for the reader to show,
without symbolic manipulation, that ¥ is an invariant for T3.
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3.2 Special Cases

I first noticed that T35 behaved nicely on the sets described in this section. I
then systematically tested Laurent monomials in the defining functions for
these sets and this led me to V.

The Coordinate Axes: First of all

T3(x> 0) = (—33, O)a TS(Oa y) = (07 _y)> (19)

So, T3 preserves the coordinate axes and is an involution there. The corre-
sponding octagons look (to me) like the blades of a circular saw.

The Diagonal Line: Let A denote the diagonal line z = y. The 8-gon

Py = P(z,x) has 8-fold dihedral symmetry, with the lines of symmetry going

through the vertices. To study the (8, 3)-pentagram orbit {P;} we compute
, 1+

T3(z,z) = (', ), = 1522 (20)

The map T3 is given by a projective transformation of A. The fixed points
are

pe = £(1/v2,1/V2). (21)

The fixed point p,, which corresponds to the regular 8-gon, is attracting.
The fixed point p_, which corresponds to the star-regular 8-gon, is repelling.
Thus, every orbit on A aside from p_, is attracted to p, So, if Fy is not
regular then P; is convex for all j > 0. The inverse map T ' has p_ as an
attracting fixed point and py as a repelling fixed point. Hence P; is non-
convex for all j sufficiently negative.

The Unit Circle: Let S! denote the unit circle. Here S! corresponds to
8-gons with 8-fold dihedral symmetry in which the lines of symmetry bisect
the sides. These 8-gons are dual to the ones on A and indeed the map D
defined above has the property that D(A) = S'. Thus, the action of T3_1
on S! is conjugate to the action of T3 on A. In particular, if we start with
Cy convex then C; is convex for all j < 0 but C; is non-convex for all j
sufficiently positive.

This is a case that the reader can easily experiment with. Just draw a
“stop sign” and see what the 3-diagonal map does.
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Other Special Orbits: The material here is not needed for the proof of
Theorem 1.2 but it is nice. Let Lio; denote the diagonal line y = = F 1
and let L.y denote the circle of radius 1/+v/2 centered at (F1/2,41/2). The
union Lyg = Lo U Ly is the level set U = £2. Each of these two level sets
is the disjoint union of a diagonal line and a circle. The map T5 preserves
each component and acts there with order 3. For example

—1—x

T2z, x+1) = (2", 2" + 1), 2= (22)

X

3.3 Nontriviality

Let A € R—{-2,0,2}. We know that E\ N R? contains one bounded loop
and one unbounded loop. Since Ty preserves Fy and R? and RP?, we see
that f = T3 preserves both components of E\N RP?. Let Y be one of these.

Lemma 3.1 f cannot be the identity on Y.

Proof: Suppose f is the identity on Y. Since f is a orientation preserving
isometry F) in the flat coordinates, we see that f must be the identity on
E\. We saw in §2.2 that F) intersects the line {y = —z} in 3 distinct
points. Hence f(z,—x) = (z, —z) for two distinct nonzero points (z1, —x1)
and (z2, —22) in E). Setting the sum of the coordinates of f(z, —z) equal to
0, we get

(42%(—1 — 222 + 2* — 62° + 32217))
(=1 + 22 + 42%)(1 — 222 4 2* 4 2426 + 1628))

= 0. (23)
The only nonzero real roots are

1 /1

But the corresponding points satisfy W(x;, —x;) = =W (2, —22) # 0 so these
points cannot both lie in E). This is a contradiction. é

Remark: The points (z;, —z1) and (22, —23) constructed in the previous
proof lie on level sets where f has order 2. In particular, f? is the identity
on these two level sets.

We call an orientation preserving isometry of a metric circle a translation.
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Lemma 3.2 f is a nontrivial translation of T in the flat coordinates.

Proof: Since f is a nontrivial isometry of T, we see that f is either a trans-
lation or an orientation reversing isometry on Y. In the latter case, f must
have order 2 on Y. If f is orientation reversing on T then f is orientation re-
versing on nearby level sets. This means that f? is the identity on all nearby
level sets. But then f2 is the identity on an open subset of R*. Since f is a
birational map, this forces f2 = T3 to be the identity. This is false. #

3.4 The End of the Proof

Let C C & denote the subset of convex 8-gons. Let C_ and C, respectively
denote the subsets of C corresponding to 8-gons with 8-fold dihedral symme-
try with the lines of symmetry respectively going through the vertices and
bisecting the edges. Note that C, NC_ is precisely the point representing the
regular 8-gon.

The analysis of the special sets in §3.2 reduces us to considering polygons
in C —Cy — C_. To finish the proof it suffices to show that when we have
Py € C—C_ —C, there are indices ¢ < 0 < j such that P;, P; ¢ C. Our choice
of Py implies that W(p) € R—{—2,0,2}. Here p is the point in C representing
Py. But then p € E\ N R?, where E) is the complex torus discussed in §2.2.

Figure 2 shows a picture of the relevant sets. The shaded semidisk is
C. The lightly shaded disk is the unit disk. The sets C, and C_ are the
intersection of C with the unit circle and with the diagonal line respectively.
The blue curve is a rough but topologically accurate sketch of Ey N RP?
when A € (0,2). If A € (—2,0) the picture would be reflected in the line

{y ==}
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Figure 2: A topologically accurate sketch of Ey N R* for A € (0,2).

Let T be the component of Ey N RP? containing p. We equip YT with its
flat coordinates. Let f = T% as in the previous section. We know that f is
a nontrivial translation of Y. Let p be the reflection in the line {y = —z}.
This is the red diagonal in Figure 2. We showed in §2.2 that p(Y) = Y.
Being holomorphic, p is an isometry of T in the flat coordinates. The two
sets T NC and p(T NC) are disjoint and have equal length. Hence T NC is
minor in the sense of Lemma 2.1. By Lemma 2.1, we have f/(p) € T NC for
some j > 0. Applying the same argument to f~! gives some i < 0 such that
fi(p) € C. This completes the proof of Theorem 1.2.
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