The Density of Shapes in Three Dimensional Barycentric Subdivision

Richard Evan Schwartz *
November 14, 2002

1 Introduction

The barycentric subdivision of an n-dimensional simplex Δ is a certain collection of (n+1)! smaller n-simplices whose union is Δ . The construction is defined by induction on n. If n=0 then Δ is a single point, and the barycentric subdivision of Δ is this same point. In general, if Δ' is one of the simplices in the barycentric subdivision of Δ then Δ' is the convex hull of a set of the form $v \cup F'$, where v is the center of mass of Δ -i.e. the barycenter—and F' is one of the simplices in the barycentric subdivision of one of the top dimensional faces F of Δ . See $[\mathbf{S}, \mathbf{p}, 123]$ or $\S 2$ below for more details.

Consider the following dynamical process: Start with an n-simplex Δ and barycentrically subdivide Δ into simplices $\Delta_1, ..., \Delta_{(n+1)!}$. Next, subdivide Δ_j into simplices $\Delta_{j1}, ..., \Delta_{j(n+1)!}$, for each j. And so forth. This process produces an infinite collection C of simplices. A natural question is: Does C consist of a dense set of shapes? By shape we mean a simplex modulo similarities.

In [**BBC**] this question was raised and answered in the 2-dimensional case. Part of their idea works in all dimensions. Let \mathcal{T} be the collection of matrices of the form $T = L/|\det(L)|^{1/n}$, where L is the linear part of an affine map from Δ to a member of C. The affine naturality of barycentric subdivision

^{*} Supported by N.S.F. Research Grant DMS-0072607

forces \mathcal{T} to be a semigroup of $SL_n(\mathbf{R})$, the group of $n \times n$ determinant-1 matrices.

When n=2, a calculation in [**BBC**] shows that \mathcal{T} contains some infinite order elliptic elements. (In general, an *elliptic element* of $SL_n(\mathbf{R})$ is a matrix which generates a subgroup having compact closure, which happens iff the matrix is diagonalizable over \mathbf{C} with all eigenvalues unit complex numbers.) The set of powers of an infinite order elliptic element is dense in a compact subgroup of $SL_2(\mathbf{R})$ and these dense sets are used to show that \mathcal{T} is dense in $SL_2(\mathbf{R})$. Hence, in the 2-dimensional case, C contains a dense set of triangles.

Using a computer search, which we detail in the next section, we found some infinite order elliptic elements in the 3-dimensional case. This seems like a lucky accident, because the set of elliptic elements in $SL_n(\mathbf{R})$ has measure zero for $n \geq 3$. Using these elliptic elements, some basic Lie group theory, and Mathematica $[\mathbf{W}]$, we prove

Theorem 1.1 The 3-dimensional barycentric subdivision process produces a dense set of shapes of tetrahedra.

A similar computer search failed to turn up any elliptic elements in the case n=4, though we certainly would have liked to make a deeper search using a more powerful computer. We think that the density result should be true in all dimensions, whether or not \mathcal{T} contains elliptic elements.

I would like to thank Bill Goldman for some interesting discussions about Lie groups and Lie algebras.

2 The Proof

Here we give a concrete description of barycentric subdivision in the 3-dimensional case. Let Δ be the convex hull of points $v_0, v_1, v_2, v_3 \in \mathbb{R}^3$. Let S_4 be the group of permutations of the set $\{0, 1, 2, 3\}$. Given $\sigma = (i_0, i_1, i_2, i_3) \in S_4$, let c_k be the center of mass of the points $v_{i_0}, ..., v_{i_k}$. Let Δ_{σ} be the convex hull of the points c_0, c_1, c_2, c_3 . The union $\bigcup_{\sigma \in S_4} \Delta_{\sigma}$ is the barycentric subdivision of Δ .

To begin our dynamical process, we take the initial tetrahedron Δ to be the convex hull of the vertices e_0, e_1, e_2, e_3 . Here e_0 is the origin and $\{e_1, e_2, e_3\}$ is the standard basis of \mathbf{R}^3 . Let A_{σ} be the affine map such that $A_{\sigma}(e_k) = c_k$ for k = 0, 1, 2, 3. Let L_{σ} be the linear part of A_{σ} . Finally, let

 $T_{\sigma} = L_{\sigma}/|\det(L_{\sigma})|^{1/3}$. By construction, $A_{\sigma}(\Delta) = \Delta_{\sigma}$ and therefore $T_{\sigma} \subset \mathcal{T}$, the semigroup discussed in §1.

We order the 24 elements of S_4 lexicographically. For instance $\sigma_1 = (0123)$ and $\sigma_2 = (0132)$. We define

$$F(i,j,k) = T_{\sigma_k} \circ T_{\sigma_j} \circ T_{\sigma_i}.$$

Say that the triple (i, j, k) is good if F(i, j, k) is an infinite order elliptic element. A computer search reveals 39 good sequences. Here is the list, modulo cyclic permutations:

We had hoped to see a divine pattern in this list, but did not.

Our density proof uses only the elements

$$S = F(23, 20, 19);$$
 $M_1 = F(5, 20, 16);$ $M_2 = F(20, 16, 5).$

Another triple of elements from the list would probably work just as well. In the appendix we include a short Mathematica program which computes:

$$S = \frac{1}{24} \begin{bmatrix} 54 & 48 & 39 \\ -6 & -32 & -35 \\ -78 & -32 & -23 \end{bmatrix};$$

$$M_1 = \frac{1}{72} \begin{bmatrix} -60 & -68 & -27 \\ 36 & 12 & 81 \\ -60 & 4 & 27 \end{bmatrix}; \qquad M_2 = \frac{1}{24} \begin{bmatrix} 18 & 12 & 21 \\ -54 & -68 & -71 \\ 54 & 52 & 43 \end{bmatrix}.$$

Lemma 2.1 S, M_1 and M_2 are infinite order elliptic elements of $SL_3(\mathbf{R})$.

Proof: The eigenvalues of S and M_j respectively are $\{1, \alpha, \overline{\alpha}\}$ and $\{1, \beta, \overline{\beta}\}$, where $\alpha = -25/48 + i\sqrt{1679}/48$ and $\beta = -31/48 + i\sqrt{1343}/48$. Both α and β have norm 1, so S and M_j are elliptic. If S had finite order then α would be a primitive nth root of unity for some n. Then α would have $\phi(n)$ distinct Galois conjugates, where ϕ is the Euler phi-function. Since α is a quadratic irrational, we have $\phi(n) = 2$. The forces $n \leq 6$. Clearly, α is not an nth root of unity for $n \leq 6$. Hence S has infinite order. The same argument works

for M_i .

Let $\langle S \rangle$ be the closure of the semigroup generated by S. Since S is infinite order elliptic, $\langle S \rangle$ is a closed 1-parameter compact subgroup. Let $G \subset SL_3(\mathbf{R})$ be the closed subgroup generated by the 8 compact subgroups $G_{ij} = M_i^j \langle S \rangle M_i^{-j}$. Here $i \in \{1, 2\}$ and $j \in \{1, 2, 3, 4\}$.

Lemma 2.2 $G = SL_3(\mathbf{R})$.

Proof: The lie algebra to $SL_3(\mathbf{R})$ is $\mathfrak{sl}_3(\mathbf{R})$, the space of traceless 3×3 matrices. Below we will justify the claim that

$$\mathfrak{s} = \begin{bmatrix} 70 & 54 & 57 \\ -114 & -107 & -104 \\ 18 & 52 & 37 \end{bmatrix} \in \mathfrak{sl}_3(\mathbf{R})$$

generates $\langle S \rangle$. By this we mean that

$$\langle S \rangle = \{ \exp(t\mathfrak{s}) | t \in \mathbf{R} \}.$$

For i and j as above we define $\mathfrak{g}_{ij} = M_i^j \mathfrak{s} M_i^{-j}$. By construction

$$G_{ij} = \{ \exp(t \mathfrak{g}_{ij}) | t \in \mathbf{R} \}.$$

Let \mathfrak{G} be the vector space spanned by the 8 vectors \mathfrak{g}_{ij} .

For any lie algebra vectors ${\mathfrak a}$ and ${\mathfrak b}$ we have the well known formula

$$\exp(\mathfrak{a} + \mathfrak{b}) = \lim_{k \to \infty} (\exp(\mathfrak{a}/k) \cdot \exp(\mathfrak{b}/k))^k$$

(See [**FH**, Exercise 8.38].) This formula easily implies that $\exp(\mathfrak{G}) \subset G$. Since $\dim(\mathfrak{sl}_3(\mathbf{R})) = 8$, all we need to prove is that $\dim(\mathfrak{G}) = 8$. There is a natural map $P : \mathfrak{sl}_3(\mathbf{R}) \to \mathbf{R}^8$. We simply string out the coordinates of a trace-zero matrix \mathfrak{g} , leaving off $\mathfrak{g}(3,3)$. It is easy to see that P is a vector space isomorphism. Let M be the 8×8 matrix whose rows are $P(\mathfrak{g}_{ij})$. We compute

$$\det(M) = \frac{1574679337686718881331462994390117}{159739999685311463424} \neq 0.$$

This is only possible if the vectors $P(\mathfrak{g}_{ij})$ span \mathbb{R}^8 .

Let $\overline{\mathcal{T}}$ be the closure of \mathcal{T} in $SL_3(\mathbf{R})$. By construction $\langle S \rangle \subset \overline{\mathcal{T}}$. Since M_j is infinite order elliptic element, $M_i^{\pm j} \in \overline{\mathcal{T}}$ for all relevant i and j. Therefore the group G_{ij} is contained in the semigroup $\overline{\mathcal{T}}$. This implies that $G \subset \overline{\mathcal{T}}$. But $G = SL_3(\mathbf{R})$. Therefore \mathcal{T} is dense in $SL_3(\mathbf{R})$. Our theorem follows immediately from this.

Our only piece of unfinished business is to justify the formula for \mathfrak{s} . By computing the eigenspaces of S we find that the matrix

$$U = \begin{bmatrix} -21 & 0 & 2 \\ -34 & -1 & -3 \\ 58 & 2 & 0 \end{bmatrix}$$

conjugates S to block triangular form:

$$U^{-1}SU = \begin{bmatrix} 1 & 0 \\ 0 & B \end{bmatrix}; \qquad B = \frac{1}{48} \begin{bmatrix} -14 & -60 \\ 30 & -36 \end{bmatrix}.$$

Note that $B \in SL_2(\mathbf{R})$ is infinite order elliptic. Let $\langle B \rangle$ be the closure of the group generated by B. We claim that the matrix

$$\mathfrak{b} = 48B - 24 \operatorname{trace}(B)I = \begin{bmatrix} 11 & -60 \\ 30 & -11 \end{bmatrix} \in \mathfrak{sl}_2(\mathbf{R})$$

generates $\langle B \rangle$ in the sense that $\langle B \rangle = \{ \exp(t\mathfrak{b}) | t \in \mathbf{R} \}$. To prove this, we note that \mathfrak{b} and B commute, when multiplied together as matrices. Hence, for any $t \in \mathbf{R}$ the element $\beta_t = \exp(t\mathfrak{b})$ commutes with any element of $\langle B \rangle$. As is well known $SL_2(\mathbf{R})$ acts isometrically on the hyperbolic plane \mathbf{H}^2 by linear fractional transformations. The group $\langle B \rangle$, which consists entirely of elliptic elements, acts as the group of isometric rotations about some fixed point $x \in \mathbf{H}^2$. Since β_t commutes with all elements of $\langle B \rangle$, it must also act as an isometric rotation about x. Hence $\beta_t \subset \langle B \rangle$ for all t. Our claim now follows easily.

Since \mathfrak{b} generates $\langle B \rangle$,

$$\mathfrak{s} = U \begin{bmatrix} 0 & 0 \\ 0 & \mathfrak{b} \end{bmatrix} U^{-1}$$

generates $\langle S \rangle$ in the sense of Lemma 2.1. Expanding out this product gives the formula for \mathfrak{s} .

3 Appendix: A Mathematica File

We refer the reader to [W] for details on the implementation of Mathematica. A copy of this file produced our calculations.

```
e[0] = \{0,0,0\}; e[1] = \{1,0,0\}; e[2] = \{0,1,0\}; e[3] = \{0,0,1\};
S4=Permutatations[{0,1,2,3}];
T[n_{-}] := (sigma = S4[[n]];
c0=(e[sigma[[1]]])/1;
c1=(e[sigma[[1]]]+e[sigma[[2]]])/2;
c2=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]])/3;
c3=(e[sigma[[1]]]+e[sigma[[2]]]+e[sigma[[3]]]+e[sigma[[4]]])/4;
L=Transpose [c1-c0,c2-c0,c3-c0];
L/Power [Abs [Det [L]], 1/3])
F[a_,b_,c_]:=Simplify[T[a].T[b].T[c]]
S=F[23,20,19]; M1=F[5,20,16]; M2=F[20,16,5];
s = \{\{70, 54, 57\}, \{-114, -107, -104\}, \{18, 52, 37\}\}
U=\{\{-21, 0, 2\}, \{-34, -1, -3\}, \{58, 2, 0\}\}
Ad[x_{-},y_{-}] := x.y.Inverse[x];
g11=Ad[M1,s];
g12=Ad[M1.M1,s];
g13=Ad[M1.M1.M1,s];
g14=Ad [M1.M1.M1.M1,s];
g21=Ad[M2,s];
g22=Ad[M2.M2,s];
g23=Ad[M2.M2.M2,s];
g24=Ad[M2.M2.M2.M2,s];
P[x_{-}] := Take[Flatten[x], 8]
M=\{P[g11], P[g12], P[g13], P[g14], P[g21], P[g22], P[g23], P[g24]\}
Det[M]
```

4 References

[BBC] I. Bárány, A.F. Beardon, T.K. Carne, Barycentric subdivision of triangles and semigroups of Mobius maps, Mathematika 43 (1996)

[FH] W. Fulton and J. Harris, Representation Theory, A First Course, GTM 129, Springer-Verlag (1991)

[S] E. Spanier, Algebraic Topology, Springer-Verlag (1966)

[W] S. Wolfram, *The Mathematica Book*, Fourth Edition, Cambridge University Press (1999)