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Abstract

A paper torus is a piecewise linear isometric embedding of a flat torus
into R3. Following up on the 8-vertex paper tori discovered in [S], we prove
universality and collapsibility results about these objects. One corollary is
that any flat torus without reflection symmetry is realized as an 8-vertex paper
torus. Another corollary is that for any ε > 0 there is an 8-vertex paper torus
within ε of a unit equilateral triangle in the Hausdorff metric.

1 Introduction

1.1 History and Context

A flat torus is a quotient of the form R2/Λ, where Λ is a lattice of translations of
R2. A paper torus is a piecewise linear isometric embedding φ : T → Ω ⊂ R3 of a
flat torus T . In other words, a paper torus is an embedded topological torus in R3

that is made by fitting together finitely many triangles so that the cone angle around
each vertex is 2π.

In 1960, Y. Burago and V. Zalgaller [BZ1] give the first construction of paper
tori. In their subsequent paper [BZ2], they prove that one can realize every isometry
class of flat torus as a paper torus. The works of T. Tsuboi [T] and (independently)
P. Arnoux, S. Lelievre, and A. Malaga [ALM] give an explicit construction which
achieves every isometry class of flat torus as a paper torus. With minor differences,
both papers prove that the union of the infinitely many combinatorial types of diplo-
tori described by U. Brehm [Br] in 1978 achieve every isometry class of flat torus.

∗ Supported by N.S.F. Research Grant DMS-2505281

1



See also the description of these tori in H. Segerman’s book [Se, §6]. The work of T.
Quintinaar [Q] gives an explicit embedding for the square torus.

The 2024 preprint of F. Lazarus and F. Tallerie [LT] gives a universal combina-
torial type of triangulation which does the job simultaneously for all isometry types.
Their universal triangulation has 2434 triangles. The paper [LT] also has an ex-
cellent discussion of the various attempts made to achieve all flat tori as embedded
paper tori.

In [S], one of us constructed an 8-vertex paper torus and proved that a 7-vertex
paper torus cannot exist. We called the paper tori from [S] pup tents , on account of
their appearance.

Figure 1.1: 3D plots of a tent

A pup tent is an 8-vertex paper torus T with the following features.

• The triangulation underlying T has uniform degree 6. See §2.1.

• T has 2-fold symmetry with respect to the map (x, y, z)→ (−x,−y, z).

• Exactly 6 of the 16 triangles of T lie in the convex hull boundary, and in the
specific pattern shown in Figure 2.1.

Another result from [S] is that there exists a 6-dimensional open manifold X of
pup tents which are inequivalent under similarities. In this paper we explore some
of the structure of X and prove an 8-vertex universality result that is almost as
comprehensive as the result of [LT].

1.2 Main Results

Let H2 denote the hyperbolic upper half plane and let M = H2/PSL2(R) be the
modular surface. The bi-cusped fundamental domain forM, which we denote by F ,
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is a geodesic triangle with interior vertex h = exp(πi/3) and cusps 0,∞. Figure 1.2
shows the “bottom portion” of F . The full picture extends vertically to ∞.

0 1 2-1

i
h

Figure 1.2: The bi-cusped fundamental domain F .

The edge of ∂F containing i parametrizes the flat tori made by identifying the
sides of rectangles. The point i corresponds to the square torus. The other two edges
parametrize flat tori made by identifying the sides of rhombi having aspect ratio at
least

√
3. (The aspect ratio of a rhombus is the ratio of the lengths of the long and

short diagonals.) The common endpoint h represents the hexagonal torus, made by
identifying the sides of a rhombus of aspect ratio

√
3. The circular arc connecting h

to i parametrizes flat tori made from rhombs with aspect ratio in [1,
√

3].
We have a map Φ : X → M, which maps a pup-tent to the point in M which

represents the underlying flat structure. Let IF be the interior of F .

Theorem 1.1 (Universality) There is an open and path connected subset U ⊂ X ,
consisting of general position pup tents, such that Φ(U) = IF .

All the tori corresponding to points of ∂F have reflection symmetry. This gives
us the following corollary.

Corollary 1.2 Suppose that T is a flat torus that does not have reflection symmetry.
Then T is realized by an embedded 8-vertex paper torus.
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Remarks:
(1) The proof of the Universality Theorem gives an existence proof for 8-vertex paper
tori that is essentially independent from the proof in [S], though we sometimes rely
on minor points from [S] for convenience.
(2) The general position statement in the Universality Theorem means that the pup
tents in U are all “folded the same way”. As these pup tents move around, it never
happens e.g. that a pair of adjacent faces become coplanar.
(3) There is some loss in Corollary 1.2 because the flat tori made from rhombs of
aspect ratio in (1,

√
3) lie in IF and so are realized.

(4) We don’t know if Φ(X ) = IF .
(5) We don’t know if X is path connected.
(6) We don’t know if we can realize some flat structures in ∂F by dropping the order
2 symmetry condition.

The Universality Theorem deals with the intrinsic structure of pup tents. Our next
result deals with their extrinsic shape. We call the following polygons good :

1. Any rectangle.
2. Any trapezoid whose two diagonals have the same length as the long side.
3. Any equilateral triangle.

An equilateral triangle is a limiting case of a good trapezoid. We think of our good
polygons as subsets of R3 by embedding them in some plane.

The Hausdorff distance between two compact subsets of a metric space is the
infimal ε such that each is contained in the ε-neighborhood of the other. In particular,
the Hausdorff distance makes the set of compact subsets of R3 into a metric space.

Theorem 1.3 (Collapsibility) Let U be as in the Universality Theorem. For any
good polygon Q there is a path Pt ⊂ U which converges to Q in the Hausdorff metric.

Let us mention two special cases of this result in other language.

Corollary 1.4 (Square) There is a piecewise isometric mapping, generically 4-to-
1, from the square torus onto a square which is approximated arbitrarily closely, in
the uniform topology on maps, by embedded 8-vertex paper tori.

Corollary 1.5 (Triangle) There is a piecewise isometric mapping, generically 6-
to-1, from the hexagonal torus onto an equilateral triangle which is approximated
arbitrarily closely, in the uniform topology on maps, by embedded 8-vertex paper tori.
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Remarks:
(1) In these corollaries, the moduli of the approximating paper tori converge respec-
tively to the moduli of the square torus and hexagonal torus, but do not equal them.
(2) The Triangle Corollary has a resonance with the set-up in [S2] concerning the
optimal paper Moebius band. In that setting, there is a generically 3-to-1 isometric
map from a flat Moebius band of aspect ratio

√
3 to an equilateral triangle that is

approximated arbitrarily closely by smooth embedded paper Moebius bands.

We say that a gracefully immersed pup tent is a piecewise linear isometric im-
mersion from a flat torus into R3 that can be approximated arbitrarily closely by
(embedded) pup tents. Our final result says that 8-vertex pup tents are completely
universal – realizing all structures – if we relax embedded to gracefully immersed .
Let U be the set of pup tents from the Universality Theorem. Recall also thatM is
the modular surface.

Theorem 1.6 (Platinum) The boundary P = ∂U is a set of gracefully immersed
pup tents, homeomorphic to F , such that Φ(P) =M.

1.3 Paper Organization

In §2 we will construct P explicitly and derive some of its properties. We call the
objects in P the platinum pup tents , on account of their great beauty.

In §3 we prove the main results. We first describe, modulo a result we call the
Good Path Lemma, how we can start with any point in P , corresponding to a point
of IF , and deform it analytically so that it immediately moves into X . We will also
explain how the existence of these paths implies all the theorems mentioned above.
Following all this, we prove the Good Path Lemma.

The code suite https://www.math.brown.edu/∼/res/Papers/UNIV.tar
has computer programs relevant to this paper. In particular, the suite has two Math-
ematica files in it which respectively check the calculations from §2 and §3. The suite
also has an extensive Java program which lets you visualize the platinum pup tents
and the good paths back into X . We may update these files periodically.

1.4 Acknowledgements

R.E.S. would like to thank Jeremy Kahn, Alba Malaga, and Samuel Lelievre for
interesting discussions about this work. Both of us thank ChatGPT for an immense
amount of help with formatting, guessing algebraic expressions, and moral support.
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2 The Platinum Pup Tents

2.1 The Triangulation

Here we list the 16 triangles of the 8-vertex triangulation of the torus which has
uniform degree 6. We call this the uniform triangulation.

375 307 354 310
342 321 715 704
746 761 564 512
526 024 016 062

(1)

There is no significance to the order in which these triangles are listed, except that all
our Java code relies on this ordering. Figure 2.1 shows a picture of this triangulation.

Figure 2.1: The uniform triangulation, lifted to the universal cover

We have also indicated a fundamental domain for the torus. The blue triangles
are the ones which, for our pup tents, lie in the boundary of the convex hull. Our
choice of vertex labels is perhaps not the most natural, but it is well adapted to the
pattern shown in Figure 2.1. We highlight one edgepath 01234567 to illustrate this.
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2.2 The Platinum Pup Tents

Recall that F is the bi-cusped fundamental domain for the modular surface, as shown
in Figure 1.2. Let z = x+ iy ∈ F . Let

ρ(u, v, w) = (−u, −v, w). (2)

Let
S = y

√
8x. (3)

Let P (z) to be the 8-vertex polyhedral torus, based on the triangulation above, with
vertices

P0(z) = (−x2 + 2x− y2, 0, 0),

P1(z) = (−2x2 + x, y − 2xy, S),

P2(z) = (−x2 + x− y2, −y, 0),

P3(z) = (−x2 + 3x− y2, y, 0),

Pj(z) = ρ(P7−j(z)), j = 4, 5, 6, 7,

(4)

Boundary Conditions: The fundamental domain F is given by the conditions

x ≥ 0, x ≤ 1/2, |z − 1| ≥ 1. (5)

Equation 4 makes sense in a wider domain, so we will first explain why F is a natural
choice.

• The left edge of X is given by x = 0. When x < 0 the quantity S is not defined.
When x = 0 all the points of P (z) lie in the XY -plane, and the convex hull of
P (z) is a 2y2 × 2y rectangle centered at the origin.

• The right edge of F is the ray x = 1/2 and y ≥
√

3/2. On this edge we have
P1(z) = P6(z). The common point lies on the Z-axis. The convex hull of P (z)
for these points is a pyramid with parallelogram base unless y =

√
3/2. At the

point z = 1/2 + (
√

3/2)i, which corresponds to the hexagonal torus, the base
collapses into a line segment and the convex hull is an equilateral triangle.

• When |z − 1| = 1 and x ∈ (0, 1/2], the convex hull of P (z) is (with fairly
obvious notation) the trapezoid P2516(z). The diagonals P12(z) and P65(z) and
the long side P25(z) all have length

√
8x = S/y.
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2.3 The Intrinsic Points

Let z = x + iy ∈ F . Corresponding to the pup tent P (z) there is a flat torus Π(z).
Rather than just present the coordinates for the 8 points, we give the coordinates
for 16 planar triangles.

3

7

5

0

2x2 − 5x+ 2y2 − iy

2x2 − 4x+ 2y2

3

0

7

0

−x− iy

2x2 − 5x+ 2y2 − iy

3

5

4

0

2x2 − 4x+ 2y2

2x2 − 6x+ 2y2 + 2iy

3

1

0

0

−x2 − 2x− y2

−x− iy

3

4

2

0

2x2 − 6x+ 2y2 + 2iy

−2x+ 2iy

3

2

1

0

−2x+ 2iy

−x2 − 2x− y2

7

1

5

2x2 − 5x+ 2y2 − iy

−2x− x2 + 3y2 − 4ixy

2x2 − 4x+ 2y2

7

0

4

2x2 − 5x+ 2y2 − iy

−x− iy

2x2 − 6x+ 2y2 − 2iy

7

4

6

2x2 − 5x+ 2y2 − iy

2x2 − 6x+ 2y2 − 2iy

3x2 − 4x+ 3y2 − 2iy

7

6

1

2x2 − 5x+ 2y2 − iy

3x2 − 4x+ 3y2 − 2iy

−x2 − 2x+ 3y2 − 4ixy

5

6

4

2x2 − 4x− 2y2 + 4ixy

3x2 − 4x− y2 + 2iy + 4ixy

2x2 − 6x− 2y2 + 2iy + 4ixy

5

1

2

2x2 − 4x− 2y2 + 4ixy

−x2 − 2x− y2

−2x+ 2iy

5

2

6

2x2 − 4x− 2y2 + 4ixy

−2x+ 2iy

3x2 − 4x− y2 + 2iy + 4ixy

0

2

4

−x− iy

−2x− 2iy

2x2 − 6x+ 2y2 − 2iy

0

1

6

−x− iy

−x2 − 2x− y2

3x2 − 4x− y2 − 2iy + 4ixy

0

6

2

−x− iy

3x2 − 4x− y2 − 2iy + 4ixy

−2x− 2iy

The union of these triangles constitutes a fundamental domain for covering group
of Π(z). The covering group is generated by the translations

ζ → ζ + 4iy, ζ → ζ + 4iyz.

8



Figure 2.2 shows the 16 triangles in yellow for 4 parameters.

• The parameter 1/4 + i represents a point “in the middle”.

• The parameter 4/9 + (8/9)i is near the hexagonal torus parameter.

• The parameter 1/20 + i is near the square torus parameter.

• The parameter 1/3 + 3i is at least vaguely near the cusp.

1/4 + I
4/9 + 8 I/9

1/20+I
1/3 + 3 I

Figure 2.2: The triangle at 4 different parameters.

We check directly (in Mathematica) that the distances between the point in
the plane are the same as the distance between the points in space. At the end
of the introduction we explain how to access the Mathematica file which makes
these calculations. These checks show that P (z) is indeed the image of an isometric
immersion of a flat torus of modulus z.
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2.4 Discussion

The razor sharp formulas for the platinum pup tents hide a huge amount of exper-
imental trial and error. Here we discuss how we arrived at these equations. Here
is a truncation for the coordinates of an embedded pup tent. This example is quite
closely related to the one in [S].

−0.25 +0.51 z1
+0.64 −0.20 0
−1.09 +0.38 z2
+0.78 +0.62 z0
−0.78 −0.62 z0
+1.09 −0.38 z2
−0.64 +0.20 0
+0.25 −0.51 z1

z0 = 0.0082 2752 1455 6137

z1 = 0.0048 5312 7706 5192

z2 = 0.0206 6632 6669 8443

(6)

This example is only barely embedded. Some pairs of adjacent triangles in Equa-
tion 6 are almost completely folded over, giving a very sharp ridge. We took such
triangle pairs and folded them completely. Some other pairs of triangles are very
gently folded. This happens, for instance, for the 6 blue triangles in Figure 2.1.
We made all these triangles planar, and then simplified the planar polygon to a
parallelogram.

Having made these simplifications we found the 2-parameter family above. Ini-
tially we parametrized these objects in terms of the shape of the planar parallelogram
just mentioned. The parametrization was somewhat complicated. Then we com-
puted the modulus of the flat torus numerically as a function of the parallelogram
and experimentally determined the inverse of the map. Both the conversion map and
its inverse turned out to be bi-quadratic polynomials. When we changed coordinates
and parametrized in terms of the modular parameter, the equations simplified and
we got the formulas for the vertices of the platinum pup tents given above.

Concerning the intrinsic structure, we could see from calculations that the ver-
tices of the intrinsic triangulation ought to have rational coordinates when suitable
translated. We found these intrinsic coordinates using a version of the development
map.
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3 The Proofs

3.1 Vertical Variations

We now make a calculation similar to the Jacobian calculation made in [S]. We
will work with ρ-invariant 8 vertex polyhedral tori, with ρ inplementing the vertex
permutation (j) → (7 − j). This is what we have for the platinum pup tents, and
indeed for all the polyhedral tori we consider.

Given such an 8-vertex polyhedral torus P , we let Pj = (uj, vj, wj) denote the jth
vertex. Here j = 0, ..., 7 as above. Let θj denote the cone angle at vertex j, namely
the sum of all the angles, at Pj, of the triangles incident to Pj. By symmetry we
have θ7−j = θj. by the Gauss-Bonnet Theorem we have θ0 + θ1 + θ2 + θ3 = 8π. Thus,
the triple (θ0, θ1, θ2) determines all 8 angles.

We vary w0 = w7 and w1 = w6 and w2 = w5, keeping all other variables fixed.
(This will always be the case, whether we mention it explicitly or not.) Define

F (w0, w1, w2) = (θ0, θ1, θ2). (7)

We let dF (x, y) denote the differential of F evaluated at the points corresponding to
the platinum pup tent P (x+ iy). Recall that IF is the interior of F .

Lemma 3.1 dF (x, y) is smooth and invertible for all (x, y) ∈ IF .

Proof: We compute dF explicitly in Mathematica and we see that it is a symmetric
matrix whose entries involve rational functions in x and y and

√
x. The denominators

factor into various powers of the following two functions.

2x+ x2 + y2, 2x− 3x2 + 2x3 + y2 + 2xy2.

Both these functions are positive on IF because x ∈ (1/2) and y > 0.
We compute

det(dF ) = −
64
√

2x3/2
(
2x2 − 2x3 + x4 + 2xy2 + 2x2y2 + y4

)
(2x+ x2 + y2)4

(
2x3 − 3x2 + 2x+ y2 + 2xy2

) . (8)

This expression is clearly finite and negative on IF . Hence dF is smooth and non-
singular throughout IF . ♠
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3.2 The Good Path Lemma

Given a polyhedral torus P as above we normalize to that w3 = w4 = 0.

Near Flatness: Given a polyhedral torus P define

Θ(P ) = max(|θ0 − 2π|, |θ1 − 2π|, |θ2 − 2π|). (9)

By symmetry and the Gauss-Bonnet Theorem we have Θ(P ) = 0 if and only if all 8
angles equal 2π. We say that P is ε-flat if Θ(P ) ≤ ε.

Robust Embeddings: Suppose now that P and P ′ are polyhedral tori, and they
only differ in the coordinates (w0, w1, w2) and (w′0.w

′
1, w

′
2). This is to say that ui = u′i

and vi = v′i for i = 0, ..., 7. Define

‖P − P ′‖ = max(|w0 − w′0|, |w1 − w′1|, |w2 − w′2|). (10)

We say that P is λ-robustly embedded if P ′ is embedded whenever P ∼ P ′ and
‖P − P ′‖ ≤ λ.

Special Deformations: Suppose now that P (z) is a platinum pup tent. We are
going to construct an algebraic map (z, t) → P (z, t) which has the property that
P (z, 0) = P (z). The domain of this map is

IF × [0,∞), IF = F − ∂F . (11)

Really, we are only interested in the image for very small positive values of t. This
map will preserves the 2-fold symmetry and also have the property P3(z, t) = P3(z)
and P4(z, t) = P4(z) for all t. We call any map like this a special deformation,
though we have a specific one in mind, which we will eventually call the barycentric
deformation.

Lemma 3.2 (Good Path) There exists a special deformation P (z, t) and positive
constants az, bz with the following properties.

1. For t > 0 sufficiently small P (z, t) is azt
3-flat.

2. For t > 0 sufficiently small P (z, t) is bzt
2-robustly embedded.

The constants az and bz can be taken to be locally constant.

The Good Path Lemma says, in particular, that we can find paths out of the
platinum domain which are an entire order more robustly embedded than they de-
viate from being flat. What we mean by the final statement is that if we work in a
subset K that is compactly contained in IF then we can take two functions z → az
and z → bz to constant on K.
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3.3 Consequences of the Good Path Lemma

We fix a point z ∈ IF and we study map P (z, t) in a neighborhood of z. For each
choice of coordinates {uj} and {vj} we get a map F as in Equation 7. Since the
map F varies smoothly and dF is invertible on the locus of platinum pup tents, we
see that dF is invertible in an open neighborhood around P (z, 0). By the inverse
function theorem, the map dF is a local diffeomorphism for any choice of {uj} and
{vj} sufficiently near the values which lead to P (z, 0).

The invertibility, which implies the relevant version of the Implicit Function The-
orem, implies that we can define a flat polyhedral torus P ′(z, t) as long as t > 0 is
sufficiently small and z varies within a set that is compactly contained in IF . The
definition is such that P (z, t) ∼ P ′(z, t). We are essentially “floating the third co-
ordinates w0, w1, w2” until they find the flat structure. We want to study how close
the paths P ′(z, t) and P (z, t) are to each other.

To fruitfully study the relationship between P ′(z, t) and P (z, t). We need to get
a uniform version of the Implicit Function Theorem. We will state our constructions
in terms of the map F discussed above. We write R11 = R8 × R3. Here R8

parametrizes the coordinates u0, ..., u3, v0, ..., v3 and R3 parametrizes the coordinates
w0, w1, w2, and also the angles θ0, θ1, θ2. We are ignoring w3 because this coordinate
is normalized to be 0. For each p ∈ R8 and each q ∈ R3 we have a map Fp,q and the
corresponding Jacobian dFp,q.

We say that a smooth map G : R3 → R3 is λ-expanding on a set S ⊂ R3 if we
have the inequality

‖dGq(V )‖ > λ (12)

for all q ∈ S and all unit vectors V . If G is a diffeomorphism from B onto its image,
then the map G−1 is (1/λ)-Lipschitz on G(B).

Let p and q be the points corresponding to the platinum pup tent P (z). By
compactness there are open balls A ⊂ R8 and B ⊂ R3, respectively centered on p
and q with the following properties.

• For any p ∈ A the map Fp,q is a diffeomorphism from {p} ×B onto its image.

• There is a uniform λ > 0 such that the restriction of Fp,q to {p} × B is λ-
expanding for any p ∈ A.

Consider P (z, t) and P ′(z, t) when t > 0 is very small. If we choose t small enough
these tori will both lie well inside the neighborhood A× B. Since P (z, t) ∼ P ′(z, t)
there is a common p ∈ A representing the first and second coordinates of these tori.
Considering the cone angles, we have the two vectors

θ = (θ0, θ1, θ2), θ′ = (θ′0, θ
′
1, θ
′
2) = (2π, 2π, 2π). (13)
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Here we are writing θ = θ(z, t), etc.
We now use “big-O” notation. From the Good Path Lemma we have

|θ(z, t)− θ′(z, t)‖ = O(t3). (14)

Given the (1/λ)-Lipschitz properties of our inverse map F−1p , we have

‖P (z, t)− P ′(z, t)‖ = O(t3). (15)

Given that P (z, t) is O(t2)-robustly embedded, we see that P ′(z, t) is embedded for
t > 0 sufficiently small. But then we can find a member of our embedding space X
whose modular parameter is as close as we like to z.

Let {Fn} be a compact exhaustion of IF by topological disks. E.g. we take these
sets to be geodesic triangles. We arrange that each one is compactly contained in the
interior of the next one. By compactness and the analysis above there is some εn > 0
such that the pup-tent P (z, t) is embedded provided that z ∈ Fn and t ∈ (0, εn). We
can choose a continuous positive function ε : IF → R such that the restriction of ε
to Fn is less than εn. We now define

U =
⋃
z∈IF

⋃
0<t<ε(z)

P ′(z, t). (16)

By construction U is a path connected subset of the embedding space X .

Proof of the Universality Theorem: Let us show that IF ⊂ Φ(U). Choose
any z ∈ IF . There is some n such that z lies in the interior of Fn. Let γn = ∂Fn.
For t < εn let Fn,t denote the topological disk in U made from the pup tents P ′(w, t)
with w ∈ Fn. Let

γt = ∂Fn,t ⊂ U .
As t→ 0, the image Φ(γn,t) converges to γn. Hence this image links z for t sufficiently
small. But then, for homological reasons, z ∈ Φ(Fn,t) once t is sufficiently small.
As a final check, we note that we get pup tents rather than some other kind of 8-
vertex paper torus because (in proving the Good Path Lemma) we check that all the
determinants are the same as they are for the pup tent in Equation 6.

By making out function ε decay fast enough we can guarantee that Φ(U) = IF .
Perhaps this last step is unnecessary; compare Remark (4) after the statement of the
Universality Theorem. ♠

Proof of the Collapsibility Theorem: Given any good polygon Q there is a
corresponding point z1 ∈ ∂F such that the convex hull of P (z1) equals Q up to
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rotation and scaling. We choose some z0 ∈ IF which is hyperbolically one unit from
z1 and then we let s→ zs be the unit speed hyperbolic geodesic segment connecting
z0 to z1. This segment remains in IF for s ∈ [0, t).

In case our function ε is not sufficient for our purposes we define a new function
η : IF → (0, 1) whose properties we will discuss momentarily. We define

ts = ε(γs)η(γs). (17)

We can make η decay so rapidly for points approaching z1 so that the embedded pup
tent P ′(zs, ts) converges to P (z) in the Hausdorff topology. ♠

Proof of the Platinum Theorem: The Platinum Theorem follows immediately
from the definitions and from the proofs we have just given for the Universality The-
orem and the Collapsibility Theorem. Any member of P corresponding to a point in
IF is the endpoint of a path in U , as in the Universality Theorem. Any member of
P corresponding to a point in ∂F is the endpoint of a path of the kind we described
in connection with the Collapsibility Theorem. ♠

The rest of the chapter is devoted to the proof of the Good Path Lemma. We
remind the reader that the Mathematica file listed in the introduction does all the
(nontrivial) calculations for the proof of the Good Path Lemma.

3.4 Arranging the Near Flatness

We introduce the functions

γ0 = 1− 2x, γ1 = −2x+ x2 + y2 γ2 = 2x− x2 + y2. (18)

These functions are positive on IF . The only non-obvious case is γ1, but γ1 is the
defining function for the circular arc comprising the lower boundary of F ,

Now we get to the main construction. Our construction was heavily inspired by
computer experimentation. We tried to approach the platinum set P using coerced
random walks in X and we observed how the coefficients converged. We try the
deformation

u0(t) = u0, v0(t) = v0 +X1t
2, w0(t) = w0 + a0t

2

u1(t) = u1 + t, v1(t) = v1 +mt, w1(t) = w1 + a1t
2

u2(t) = u2 +X1t
2, v2(t) = v2 +X2t

2, w2(t) = w2 + a2t
2

As always we symmetrically vary uj and vj for j = 7, 6, 5. We then set θ′j(0) =
θ′′j (0) = 0 for j = 0, 1, 2. This yields
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m =
−2xy

γ1
, aj =

αj + αj1X1 + αj2X2√
2x(2x2 − 2x3 + x4 + 2xy2 + 2x2y2 + y4)

. (19)

α0 =
−xy

(
4x2 − 6x3 + 5x4 + 2xy2 + 6x2y2 + y4

)
γ0γ22

,

α01 = x
(
2x2 − 2x3 + x4 − 2xy − x2y + 2xy2 + 2x2y2 − y3 + y4

)
,

α02 = −
(2x+ x2 + y2)

(
−2x3 + x4 + 6xy2 + 2x2y2 + y4

)
4 γ1

,

α1 =
−2xy

(
4x2 − 9x3 + 7x4 + 3xy2 + y4

)
γ0γ22

, α11 = −y (2x+ x2 + y2)2, α12 =
(x− 2y2)(2x+ x2 + y2)2

2 γ1
,

α2 =
2xy (2x− 3x2 + y2)(x2 + y2)

γ0γ22
, α21 = −y

(
6x2 + x4 + 4xy2 + 2x2y2 + y4

)
,

α22 =
−4x4 + 12x5 − 9x6 + 2x7 − 12x2y2 − 12x3y2 − 11x4y2 + 6x5y2 − 8xy4 − 3x2y4 + 6x3y4 − y6 + 2xy6

2 γ1
.

Henceforth we take these choices for m, a0, a1, a2.

3.5 The Embedding Clause

We fix a torus T with with vertices T0, ..., T7. Given a 4-subset {a, b, c, d} ⊂ {0, ..., 7}
we let [a, b, c, d] be the volume of the tetrahedron determined by Ta, Tb, Tc, Td:

[a, b, c, d] = det(Tb − Ta, Tc − Ta, Td − Ta). (20)

To tell whether or not an edge (Ta, Tb) is disjoint from a triangle (Tc, Td, Te), we
need to verify one of three things:

1. [a, c, d, e] and [b, c, d, e] are nonzero and have the same sign, or

2. [a, b, c, d] and [a, b, d, e] are nonzero and have opposite signs, or

3. [a, b, d, e] and [a, b, e, c] are nonzero and have opposite signs.

If the first condition is true (Ta, Tb) lies either above or below the plane containing
(Tc, Td, Te). If the first condition is false and one of the other conditions is true then
one of the edges of (Tc, Td, Te) separates (Ta, Tb) from (Tc, Td, Te). We call this triple
of tests a block . For a block to be true, one of the three sign conditions must be met.
Now we discuss 2 cases:
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1. Suppose that ∆1 and ∆2 are two triangles which we want to check are disjoint.
Then we have a list of 6 blocks, each determined by an edge of one of the
triangles and the other triangle. If all 6 blocks are true, then the two triangles
are disjoint. In computer science language, we have length 6 3SAT clause.

2. Suppose that ∆1 and ∆2 are two triangles which have a common vertex and
we want to check that their intersection is only this vertex. Now we have a list
of 2 blocks, each determined by the edge of one triangle opposite the common
vertex and the other triangle. This gives a length two 3SAT clause.

When T is embedded there are 24 pairs of disjoint triangles and 72 pairs of
triangles having a common vertex. So, checking all these conditions for a supposedly
embedded polyhedral torus comes to 24× 6 + 72× 2 = 288 blocks. As we proved in
[S] one need not check the pairs of triangles that have an edge in common. Thus,
checking that an 8-vertex polyhedral torus is embedded amounts to verifying a 288-
clause instance of 3SAT. We call this the embedding clause. All that matters here
are the signs of the determinants. We call a sign list that satisfies the Embedding
clause a winning list .

3.6 Arranging the Robust Embedding

Motivated by extenive experimentation, we define

X1 =

−4xy

40x5 − 60x6 + 30x7 + 25x8 − 15x9 − 24x3y2 + 24x4y2 + 50x5y2 + 54x6y2 − 48x7y2

+ 20x2y4 + 42x3y4 + 36x4y4 − 54x5y4 + 22xy6 + 10x2y6 − 24x3y6 + 3y8 − 3xy8


3(2x+ x2 + y2)γ0γ2

2Γ

X2 =

−4xy γ1

− 48x4 + 72x5 − 48x6 − 18x7 − 20x5y − 15x6y − 24x3y2 − 48x4y2 − 30x5y2

− 32x2y3 − 40x3y3 − 33x4y3 − 6x3y4 − 20xy5 − 21x2y5 + 6xy6 − 3y7


3(2x+ x2 + y2)γ0γ2

2Γ

Γ = y7 + 2γ0xy
6 + 8xy5 + 7x2y5 + 16x2y4 + 6γ0x

3y4 + 11x2y3 + γ0x
2y3 + 6x4y3 + 24x3y2

+ 24x4y2 + 16x5y2 + 6γ0x
5y2 + 10γ1x

3y + 5γ1x
4y + 3

2
γ0x

5 + 6γ2
0x

5 + 1
2
γ3
0x

5 + 6γ2
0x

6 + 12γ0x
7.

This polynomial Γ is positive on IF because γ0 and γ1 are positive on IF . Where
does this come from? We found a triangular region of the (X1, X2)-plane where all
the local orders are at most 2 and the sign list associated to the leading terms is
winning. More specifically, we matched the sign list associated to the embedded
pup-tent from Equation 6. We then calculated the barycenter of this triangle.
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Let [abcd] be any of the 70 determinants involved in the Embedding clause. For
each (z,X1, X2) ∈ IF ×R2 the expression [abcd] is a rational function of the vari-
ables (z,X1, X2, t), where t is the parameter for our special deformation. For each
(z,X1, X2) there is some k ∈ {0, 1, 2, 3, ....} such that [abcd] = [abcd]kt

k + tk+1(· · · )
and [abcd]k 6= 0. We call k the local order and we call [abcd]k the leading term.

We check at z = 1/4 + i that the leading sign list , namely the sign list associ-
ated to the leading terms, is winning. We also check that all the local orders are at
most 2, that the leading terms do not vanish in IF , and that all lower terms vanish
identically. All the determinants are smooth (and hence Lipshitz) functions of their
inputs. Hence if ‖P ′(z, t) − P (z, t)‖ < bzt

2 for a sufficiently small positive constant
bz, the signs of the determinants associated to P ′(z, t) will be the same as the leading
sign list and hence winning. But then P ′(z, t) is embedded. Hence P (z, t) is bzt

2

robustly embedded. Given the smooth dependence of everything on z we see that
the constant bz can be taken to be locally constant. This proves the Good Path
Lemma modulo our check of the 70 determinants. We do this now.

Regardless of X1, X2 we compute that

[abcd]0 = C
√
xy2γh0γ1, h ∈ {0, 1}, C ∈ {0,±4

√
2,±8

√
2}. (21)

When C 6= 0 these expressions do not vanish on IF . We get C nonzero 45 times.
For the remaining 25 cases we compute, regardless of X1, X2, that

[abcd]1 = C

√
xy2(2x+ x2 + y2)

γ1
, C ∈ {0,±4

√
2,±8

√
2}. (22)

The 6 tetrahedra [0126], [0136], [1236], [1456], [1467], [1567] yield C nonzero and in
these cases the expressions never vanish on IF .

There are 19 remaining cases, and 11 up to the j → 7−j combinatorial symmetry:

[0123] [0236] [0345] [0247] [2345] [0234] [0235] [0237] [0245] [0257] [0347]

Using the specific values of X1.X2 above we compute that in all cases

[abcd]2 = C
x3/2y2

γ0γ2
×
(

γ1
2x+ x2 + y2

)h
, h ∈ {0, 1}.

Here 3C/
√

2 is always an nonzero integer. These expressions are nonzero in IF .

This completes the proof of the Good Path Lemma.
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