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Abstract. The main result of this paper is that for any unitary (self-
adjoint) operator U with non-trivial absolutely continuous part of the
spectrum there exists a rank one perturbation K = ba∗ = ( · , a)b, such,
that the operator T = U + K satisfies the Linear Resolvent Growth
condition (LRG),

‖(λI − T )−1‖ ≤ C/ dist(λ, σ(T )), λ ∈ C \ σ(T ),

its spectrum lies on the unit circle T (on the real line R), but T is not
similar to a normal operator.

This contrasts sharply with the result of M. Benamara and the first
author [1] that if a finite rank perturbation T = U + K of a unitary op-
erator is a contraction (‖T‖ ≤ 1), then it is similar to a normal operator
if and only if it satisfies (LRG) and its spectrum does not cover the unit
disc D.

Notation

D Open unit disk in the complex plane C, D := {z ∈ C : |z| < 1};
T Unit circle, T := ∂D = {z ∈ C : |z| = 1};
C+ Upper half-plane, C+ := {z ∈ C : Im z > 0};
RT

λ Resolvent of the operator T , RT
λ := (λI − T )−1;

a∗ If a is a vector in a Hilbert space, then a∗ := ( · , a) stands for
the linear functional (operator) f �→ (f, a);

ba∗ Stands for the operator ba∗ := b( · , a), i. e. for the operator
f �→ (f, a)b;

H2, H2
− Hardy class of analytic and antianalytic functions in the disk

or in the upper half-plane;

P+, P− Riesz projections i. e. orthogonal projections onto H2 and H2
−

respectively;

m Normalized (m(T) = 1) Lebesgue measure on T;
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|I| Length of the arc (interval) I;

0. Introduction

The similarity problem consists in finding criteria for a given operator T
in a Hilbert space H to be similar to a normal operator. Recall, that an
operator N in a Hilbert space H is called normal if N∗N = NN∗ and the
operators N and T are similar if there exists a linear isomorphism V such,
that T = V NV −1. As it is well known, normal operators are character-
ized by the existence of an orthogonal spectral resolution, or by the spectral
theorem—an infinitedimensional analogue of diagonalization of hermitian
matrices (see below for the von Neuman version of the spectral theorem).
This characterization is the main reason why the similarity is so important:
being similar to a normal operator, the given operator allows an uncondi-
tionally convergent diagonalization (instead of the orthogonal one), which
is enough for most consumers of spectral theory.

The most practically interesting case arises in the perturbation theory,
meaning that the operator T is a “small” perturbation of a given normal
operator N0, T = N0 + K. Classical cases are concerned with selfadjoint or
unitary N0. It is also worth mentioning, that that, in a sense, the classical
scattering theory concerns in part with similarity problem. One of the main
results, the famous Kato–Rosenblum theorem states, that for a selfadjoint
operator N0 and its perturbation N0+K by a selfadjoint trace class operator
K, the absolutely continuos parts of both operators are similar (and so
unitarily equivalent) to each other.

For details on the long history of the problem we refer, for example, to
[1], or to [11]. It is also worth mentioning that various approaches used in
the field can be roughly classified as those based on Friedrichs’ Γ-equations,
or on J. Wermer’s calculus, or on the Sz.-Nagy–Foias model representation.

In this paper, the reader can recognize some elements of the calculus ap-
proach. Namely, the basic Wermer’s theorem [12] says that an operator T is
similar to a normal one if and only if there exists a bounded homomorphism
j : C(σ) → L(H) from the algebra C(σ) of all continuos functions on the
spectrum σ = σ(T ) to the algebra L(H) of all bounded linear operators on
H, such that j(z) = T ; here z is the identity mapping of the complex plane,
z(ξ) ≡ ξ (independent variable). An immediate consequence is that an op-
erator T similar to a normal one satisfies the following Linear Resolvent
Growth condition

‖RT
λ ‖ = ‖(λI − T )−1‖ ≤ C

dist(λ, σ(T ))
, λ ∈ C \ σ(T ).(LRG)

Of course, this observation does not depend on any theory and is a straight-
forward corollary of the similarity by itself: if T = V NV −1, then

‖RT
λ ‖ = ‖V RN

λ V −1‖ ≤ ‖V ‖ · ‖V −1‖ · ‖RN
λ ‖ = ‖V ‖ · ‖V −1‖ · 1

dist(λ, σ(N))
,

and σ(T ) = σ(N).
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The simplest, and often the most practical test for the similarity would
be the converse of the last observation. Thus, the Resolvent test Problem,
as a part of Similarity Problem, is to know for what classes of T or of
perturbations T = N + K of a “good” normal operator N , the above LRG
condition implies that T is similar to a normal operator. Such kind of results
are important for applications, since LRG condition is usually easy to check.

Of course, the Linear Resolvent Growth is not sufficient for the similarity
to a normal operator. The simplest example here is probably the forward
shift S, i. e. the multiplication by the independent variable z in the Hardy
space H2 = H2(D), Sf(z) = zf(z) (equivalent definition: Sen = en+1,
n ≥ 0, where {en}∞n=0 is the standard orthonormal basis in �2). The shift
operator S satisfies the LRG condition with constant 1, but it is clearly not
similar to a normal operator.

This example shows, that it is reasonable to apply the Resolvent Test
only to operators with “thin” spectrum, where we can hope to “probe”
spectral properties of the operator using only simplest rational functions
as test functions (instead of all continuous functions, as in J. Wermer’s
theorem).

In [1], [6], [5] several results in this direction were obtained. For example,
it was proved in [1] that if a perturbation T = U + K where U is unitary
and rankK < ∞ is contractive (i.e. ‖T‖ ≤ 1), then T is similar to a normal
operator if and only if the Linear Resolvent Growth condition (LRG) holds
and the spectrum σ(T ) does not cover the unit disc D. 1

In this paper we consider the same situation, but without the assumption
‖T‖ ≤ 1. We show that in this case the situation is completely different.
Namely, the following theorem holds.

Theorem 0.1. Given a unitary operator U with non-trivial absolutely con-
tinuous part of the spectrum, there exists a rank one perturbation

T = U − ( · , a)b = U − ba∗

such, that the spectrum σ(T ) belongs to the unit circle T, the operator T
satisfies the Linear resolvent Growth (LRG) condition, but T is not similar
to a normal (unitary)2 operator.

Remark 0.2. The above theorem also true for rank one perturbation of self-
adjoint operators (with non-trivial absolutely continous part of spectrum).
One can just follow the proof for unitary operators, or use the Cayley trans-
form. We leave details to the reader.

1A simple example shows that it is possible to have σ(T ) = clos D for a finite rak (rank
1) perturbation of a unitary operator. Let U be the bilateral shift i. e. the multiplication
by the independent variable z in L2(T) = L2(T, dm), and let en(z) = zn, n ∈ Z be the
standard orthonormal basis in L2(T ). Then the operator T = U −e0e

∗
−1 = U − (, · , e−1)e0

is unitarily equivalent to the orthogonal sum of the forward shift S and its adjoint S∗. So,
σ(T ) = clos D and T is clearly not similar to a normal operator.

2Any normal operator with spectrum on the unit circle is unitary.
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The above theorem is the main result of the paper. The cases of unitary
operators U with singular spectrum (continuous or discrete) represents an
open problem, as well as the general question to describe all rank one per-
turbations of a unitary operator which are similar to a normal one. While
there are several criteria of similarity to a unitary operator, see, for example,
[8], in our situation (if one considers it in the spectral representation of the
unitary operator U) they give rise to two weight estimates for the Hilbert
Transform, and that is still an open problem. The general case, when eigen-
values appear in the complement of the unit circle is completely understood
only when the resulting operator is a contraction: for general operators we
do not know any results in this direction.

To complete the introduction let us recall that operators T : H → H
having unitary spectrum (σ(T ) ⊂ T) and satisfying (LRG) but not similar
to a unitary operator are known for a long time (see, for example, [7]), but
in all these examples the “non-unitarity defects” I − T ∗T , I − TT ∗ are not
controllable.

The paper is organized as follows: in Section 1 the problem is reduced
to two weight estimates for the Hilbert Transform. Section 2 discusses
F. Nazarov’s counterexample to Sarason’s conjecture, which is the basis of
our counterexample. In section 3 we present the main construction, proving
the theorem, stated above.

We tried to make the paper as self-contained as possible: in particular, we
do not assume any familiarity with the perturbation theory. Although one
can reduce the problem to the two weight estimate for the Hilbert Trans-
form using, for example, S. Naboko’s [8] criterion of similarity to a unitary
operator, we do not use it: we use only elementary analytic methods.

1. Perturbations of unitary operators

Let T be a perturbation of a unitary operator U , T = U + K. Then

λI − T = λI − U − K = (λI − U)(I − (λI − U)−1K)(1.1)

= (λI − U)(I − RU
λ K)

We are interested in the case when K is a rank one operator,

K = ( · , a)b = ba∗.

In this case

I − RU
λ K = I − ( · , a)RU

λ b = I − (RU
λ b)a∗.

Since the operator I − ba∗ is identity on (L{a, b})⊥, the determinant
det(I − ba∗) = det

(
I − ( · , a)b

)
is well defined.

Lemma 1.1.

det(I − ba∗) = det
(
I − ( · , a)b

)
= 1 − (b, a).
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Proof. Pick an orthonormal basis in L{a, b} such that b has coordinates
(β, 0) in this basis. Let a has coordinates (α1, α2). Then in this basis

ba∗
∣∣∣ L{a, b} =

(
β
0

) (
α1 α2

)
=

(
βα1 βα2

0 0

)
,

and therefore

det(I − ba∗) = det
(

1 − βα1 −βα2

0 1

)
= 1 − βα1 = 1 − (b, a).

Lemma 1.2. Let K := ba∗ be a rank one operator. Operator I − K is
invertible if and only if d := det(I − K) = 1 − (b, a) �= 0. In this case

(I − K)−1 = I +
1
d
K.

Proof. Note that a∗b = (b, a), and therefore K2 = ba∗ba∗ = (b, a)ba∗ =
(b, a)K, and similarly Kn = (b, a)n−1K. Therefore for |λ| < 1/‖K‖
(I − λK)−1 = I + λK + λ2K2 + . . .

= I + λK · (1 + λ(b, a) + λ2(b, a)2 + . . . ) = I +
λ

1 − λ(b, a)
K.

Taking analytic continuation to the point λ = 1 we get

(I − K)−1 = I +
1

1 − (b, a)
K = I +

1
d
K.

Proposition 1.3. Let T = U + K, where K = ba∗. For λ /∈ σ(U) let
bλ := RU

λ b := (λI − U)−1b, and aλ := (RU
λ )∗a, and d(λ) = det(I − bλa∗) =

1 − (bλ, a).
Then, if λ /∈ σ(U) the operator λI−T is invertible if and only if d(λ) �= 0,

and, moreover

RT
λ = (λI − T )−1 = RU

λ +
1

d(λ)
RU

λ KRU
λ = RU

λ +
1

d(λ)
bλa∗λ .

Proof. Formula (1.1) implies that

RT
λ := (λI − T )−1 = (I − RU

λ K)−1RU
λ

and it follows from Lemma 1.2 that

(I − RU
λ K)−1 = (I − (RU

λ b)a∗)−1 = I +
1

d(λ)
RU

λ K.

To prove the main theorem (Theorem 0.1) it is sufficient to consider the
case when U is a unitary operator with simple spectrum, so it can be realized
as the multiplication by the independent variable z, on L2(µ), where µ is a
measure on the unit circle T (the spectral measure of T ).
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Indeed, any unitary operator (in a separable Hilbert space) can be rep-
resented as an orthogonal sum of operators with simple spectrum, and to
prove the theorem it is sufficient to consider just one operator in the sum.

The assumption that the operator has non-trivial absolutely continuous
part of the spectrum means that for at least one operator in the sum, the
corresponding measure has non-trivial absolutely continuous part.

In fact, we can without loss of generality assume that the measure µ is
absolutely continuous (consider only perturbations ba∗ with with a = b = 0
a. e. with respect to the singular part µs of the measure µ). But for now we
just assume that the operator U doesn’t have isolated eigenvalues, i. e. that
the measure µ doesn’t have isolated atoms. In this case

σ(U) = σess(U) = suppµ,

where suppµ stands for the closed support of the measure µ, and σess is the
essential specrum. Therefore

σ(U) = σess(U) = σess(T ) ⊂ σ(T )

Since a unitary operator satisfies the linear resolvent growth condition (with
constant 1), we have

‖RU
λ ‖ =

1
dist(λ, σ(U))

≤ 1
dist(λ, σ(T ))

.

So, to estimate the resolvent RT
λ we need to estimate

‖RT
λ − RU

λ ‖ =
∥∥∥ 1
d(λ)

bλa∗λ

∥∥∥ =
1

|d(λ)|‖aλ‖ · ‖bλ‖.

It is easy to compute that

bλ =
(
RU

λ b
)
(z) =

b(z)
λ − z

, z ∈ T

and hence

‖bλ‖2 =
∫

T

|f(z)|2
|λ − z|2 dµ(z) =

∫
T

|f(z)|2
|1 − λz|2 dµ(z) =

∣∣1 − |λ|2
∣∣−1Pλ(|b|2dµ),

where Pλ(dν) denotes the Poisson (harmonic) extension of the measure ν at
the point λ ∈ C \ T,

Pλ(dν) :=
∫

T

|1 − |λ|2|
|1 − λz|2 dν(z).

Similarly,
aλ :=

(
(RU

λ )∗a
)
(z) = a(z)/(λ − z), z ∈ T,

and so
‖aλ‖2 =

∣∣1 − |λ|2
∣∣−1Pλ(|a|2dµ).

Notice, that the determinant d(λ) also can be easily computed:

d(λ) = 1 − (bλ, a) = 1 −
∫

T

b(z)a(z)
λ − z

dµ(z).(1.2)
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Gathering everything together we get that the linear resolvent growth
condition for T is equivalent to the estimate

Pλ(|a|2dµ) · Pλ(|b|2dµ) ≤ C|d(λ)|2 (1 − |λ|2)2
dist(λ, σ(T ))2

, λ ∈ C \ σ(T )(1.3)

In the case of unitary spectrum (σ(T ) ⊂ T), the last estimate can be
further simplified using the following lemma by Y. Domar [3].

Lemma 1.4. Let σ be a closed subset of the unit circle T, and ϕ be a non-
negative subharmonic function in C \ σ satisfying

|ϕ(λ) ≤ 1
dist(λ, T)

=
1

|1 − |λ| | , |λ| �= 1.

Then
ϕ(λ) ≤ C

dist(λ, σ)
, λ ∈ C \ σ,

where C is some absolute constant.

This lemma, applied to the subharmonic functions ϕ = ϕx,y, ϕx,y(λ) =
|(RT

λ x, y)| implies that in the case of unitary spectrum the LRG condition
‖RT

λ ‖ ≤ C/dist(λ, σ(T )) follows from (and so is equivalent to) a weaker one
‖RT

λ ‖ ≤ C ′/|1−|λ| |. So, in the case of unitary spectrum the condition (1.3),
which is equivalent to (LRG), can be replaced by

Pλ(|a|2dµ) · Pλ(|b|2dµ) ≤ C|d(λ)|2(1 + |λ|)2, λ ∈ C \ T.

Moreover, since for a measure ν on the circle T we have Pλ(dν) = P1/λ(dν),
the latter condition is equivalent to

Pλ(|a|2dµ) · Pλ(|b|2dµ) ≤ C|d(λ)|2, λ ∈ D.(1.4)

To prove the theorem let us now make some simplifying assumptions.
As we already discussed above, we can assume without loss of generality

that our unitary operator U is a multiplication by the independent variable
z in L2(µ) where µ is an absolutely continuous (with respect to Lebesgue
measure) measure on the unit circle T.

Moreover, we can always assume (again without losing generality) that
dµ = χ

E
dm, where E is a measurable set, and m is the normalized (m(T) =

1) Lebesgue measure on T. Indeed, if dµ = wdm, we put E := {x ∈
T : w(x) �= 0}, and it is an easy exercise to show that the operators of
multiplication by z in L2(µ) and L2(χ

E
dm) are unitarily equivalent.

We will be considering only perturbations with the functions a and b
having disjoint supports, i. e. satisfying ab ≡ 0,

In this case d ≡ 1, σ(T ) = σ(U) = Clos(E) ⊂ T, so, the estimate (1.4)
(and so (LRG)) can be rewritten as

Pλ(|a|2dm) · Pλ(|b|2dm) ≤ C < ∞, λ ∈ D.

Here we assume that a and b are supported on E, so we de not have to write
χ

E
dm. In what follows we will even skip dm and write it as P(|a|2)P(|b|2) ≤

C.
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Let us now find what does it mean in this case that T is similar to a
normal operator. First of all, since σ(T ) ⊂ T, the normal operator has to
be a unitary one.

So, let us T = V UV −1, where U is a unitary operator. By the Spectral
Theorem (see [2]), U can be realized as the multiplication by the independent
variable z in a Von Neuman integral

H :=
∫

T

⊕E(z)dν(z),

where ν is a scalar spectral measure of the operator U . Fix such a realization.
Pick f, g ∈ L2(χ

E
dm), ‖f‖ = ‖g‖ = 1 (again we can assume that f =

g = 0 outside of E). Let f̃ := V −1f , g̃ := V ∗g, f̃ , g̃ ∈ H. Then

((λI − T )−1f, g) = ((λI − U)−1f̃ , g̃) =
∫

T

1
λ − z

· (f̃(z), g̃(z))
E(z)

dν(z).

If we define the (complex-valued) measure ν̃ = ν̃
f,g

by

ν̃
f,g

(X) =
∫

X
(f̃(z), g̃(z))

E(z)
dν(z),

for Borel measurable subsets X ⊂ T, then

(RT
λ f, g) =

∫
T

1
λ − z

dν̃f,g(z) = −C[νf,g](λ) = C[−νf,g](λ),

where C[µ] stands for the Cauchy transform of a a measure µ on T, C[µ](λ) =∫
T
(z − λ)−1dµ.
Note that

var(ν̃
f,g

) =
∫

T

|(f̃(z), g̃(z))
E(z)

|dν(z)

≤
∫

T

‖f̃(z)‖ · ‖g̃(z)‖dν(z)

≤
(∫

T

‖f̃(z)‖2dν(z)
)1/2(∫

T

‖g̃(z)‖2dν(z)
)1/2

= ‖f̃‖ · ‖g̃‖ ≤ ‖V ‖ · ‖V −1‖,
so for any f and g the weak resolvent (RT

λ f, g) = ((λI − T )−1f, g) is the
Cauchy integral of a complex measure of bounded variation.

But such Cauchy transforms admit very simple description. Since

C[µ](λ) =




∑
n≥0

µ̂(n + 1)λn, |λ| < 1

−
∑
n<0

µ̂(n + 1)λn, |λ| > 1

where µ̂(k) denotes the Fourier coefficient of the measure µ,
µ̂(k) :=

∫
T

zkdµ(z), we have

C[µ](λ) − C[µ](1/λ) = Pλ(zdµ(z)).
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Therefore an analytic function ϕ in C \ T is a Cauchy transform of a (com-
plex) measure µ (of bounded variation) if and only if its harmonization
ϕH(λ) := ϕ(λ) − ϕ(1/λ) is the Poisson extension of the measure zdµ(z).
And that happens if and only if sup0<r<1

∫
T
|ϕ(rz)|dm(z) < ∞.

According to a Proposition 1.3, RT
λ = RU

λ + bλa∗λ. We already know that
for a unitary operator U the weak resolvent (RU

λ f, g) is a Cauchy transform
of a measure, so we only have to check (bλa∗λf, g) = (f, aλ) · (bλ, g).

A simple computation gives us

(f, aλ) =
∫

E

f(z)a(z)
λ − z

dm(z) = −C[fadm](λ),

and similarly
(bλ, g) = −C[bgdm](λ)

(all the functions a, b, f, g are supported on E).
Recall, that for f ∈ L2 = L2(T, dm) and λ ∈ D

C[fdm](λ) = P+[zf ](λ), C[fdm](1/λ) = P−[zf ](λ),

where P+ and P− denote the Riesz projections onto H2 and H2
− respectively:

P+f =
∑

k≥0 f̂(k)zk, P− = I−P+. Of course, we extend the functions P+f ,
P−f harmonically to D.

Summarizing everything we get that the weak resolvent (RT
λ f, g) is the

Cauchy transform of a complex measure (of bounded variation) if and only
if the harmonic3 in the unit disk D function

P+(zfa) · P+(zbg) − P−(zfa) · P−(zbg)

is the Poisson extension of some complex measure of bounded variation on
T.

So, to show that Linear Resolvent Growth doesn’t imply similarity to a
normal operator it is enough to find 4 functions a, b, f, g ∈ L2, all supported
by the set E satisfying ab ≡ 0 and

Pλ(|a|2) · Pλ(|b|2) ≤ C,

and such, that the harmonic function P+(af) · P+(bg) − P−(af) · P−(bg) is
not a harmonic extension of a (complex) measure of bounded variation. To
avoid unnecessary notation we have replaced here zg by g and za by a.

To construct such functions we will use Nazarov’s counterexample to a
Sarason’s conjecture about two weight estimates for Hilbert Transform.

2. Nazarov’s counterexample to Sarason’s conjecture.

In [9] F. Nazarov proved the following result. Let H denote the Hilbert
Transform

Hf(y) =
1
π

∫
R

f(x)
y − x

dx.

3The first term in the function is a product of two analytic ones, and the second is the
product of two antianalytic, so the function is indeed harmonic



10 NIKOLAI NIKOLSKI AND SERGEI TREIL

Let a, b be functions on R. We are interested when the operator MaHMb,
where Ma, Mb are multiplication operators by the functions a and b respec-
tively, is a bounded operator on L2. It was conjectured by D. Sarason, that
the operator MaHMb is bounded if and only if

Pλ(|a|2) · Pλ(|b|2) ≤ C < ∞ λ ∈ C+;(2.1)

here for a function ϕ defined on R the symbol Pλ(ϕ) stands for its harmonic
extension at the point λ ∈ C+.

The above condition (2.1) is indeed necessary for the boundedness of the
operator MaHMb. But, as the following result by F. Nazarov asserts, this
condition is not sufficient.

Theorem 2.1. There exist functions a, b satisfying (2.1) and such, that the
operator MaHMb is not bounded on L2.

Now let us make several simple observations. First of all

‖MaHMb‖ = ‖M|a|HM|b|‖,
i. e. the norm depends only on absolute values of a and b.

The second observation is that one can replace the Hilbert Transform
H by the Riesz projection P+, where P+ is the orthogonal projection onto
H2 = H2(C+). Indeed, P+ = 1

2(I + iH) and condition (2.1) implies that
ab ∈ L∞, and therefore the operator Mab = MaMb is bounded.

Third observation is that it doesn’t matter if we work on the real line or
on the unit circle T. Indeed, let us consider conformal mapping τ from C+

onto the unit disk D, τ(z) = i−z
i+z , and let U : L2(T) → L2(R) be a unitary

mapping, Uf := 1√
π

1
x+if(τ(x)). Clearly (and it is a very well known fact),

UH2(D) = H2(C+), and

U−1MaP
C+
+ MbU = Ma1P

D
+Mb1 ,

where a1 := a ◦ τ−1, b1 := b ◦ τ−1. Since the condition (2.1) is conformally
invariant, a, b satisfy it if and only if

sup
λ∈D

Pλ(|a1|2) · Pλ(|b1|2) < ∞.

And final observation is that given an interval (an arc) I ⊂ T one can find
functions a, b satisfying (2.1), supported by I and such, that the operator
MaP+Mb is not bounded. This is easier to see on the circle T. Take the
functions a, b on the circle T, and consider a smooth finite partition of unity
1 =

∑n
1 ϕk, 0 ≤ ϕk ≤ 1, such that each ϕk is supported by a closed interval

of length at most |I|/2. Then

MaP+Mb =
∑

1≤j,k≤n

Maϕk
P+Mbϕj

,

so at least one of the operators Maϕk
P+Mbϕj

is unbounded. This can happen
only if (closed) supports of ϕk and ϕj have nontrivial intersection. Therefore
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both functions ϕka and ϕjb are supported by one interval of length at most
|I|, and rotating the picture completes the proof.

So, we get the result we will be using.

Theorem 2.2. Given an arc I ⊂ T there exist functions a, b ∈ L2 = L2(T)
supported by I, and satisfying

sup
λ∈D

Pλ(|a|2) · Pλ(|b|2) < ∞,(2.2)

and such, that the operator MaP+Mb is not bounded on L2.

Remark 2.3. The fact that a, b ∈ L2 = L2(T) follows immediately from
(2.2).

3. Constructing the counterexample

Consider a sequence of arcs In ⊂ T, |In| = 2−n−5 such that the arcs 10In

are disjoint. Here, given an interval (arc) I we denote by kI the interval
(arc) with the same center and of length k · |I|.

Let µ be a complex measure (of bounded variation) on T, and let Φ = Φµ

be it harmonic extension into the unit disk D. It is an easy exercise to check
that for any sequence rn, 1 − |In| ≤ rn < 1

∞∑
n=1

∫
2In

|Φ(rnθ)|dm(θ) ≤ C varµ

with some constant C, not depending on In, rn, µ as long as they satisfy
the above assumptions.

Now let us describe the main component of the construction. Let E be
a subset of T of positive measure. Recall, that a point of x ∈ E is called a
(Lebesgue) density point if

lim
|I|→0,Ix

m(E ∩ I)
m(I)

= 1,

and that almost all points of E are density points.

Proposition 3.1. Given a density point x0 ∈ E and numbers R, ε, δ > 0,
one can find an arbitrary small arc I ⊂ T (|I| < δ) centered at x0 and
bounded functions a, b, f , g supported by I ∩ E, such that ab ≡ 0,

sup
λ∈C+

Pλ(|a|2)Pλ(|b|2) ≤ 1, ‖f‖2 ≤ ε, ‖g‖2 ≤ ε,(3.1)

and such, that for some r, 1 − |I| ≤ r < 1 we have for the functions
F := P+(af)P+(bg), G := P−(af)P−(bg)∫

2I
|F (rθ)|dm(θ) > R,

∫
2I

|G(rθ)|dm(θ) < ε.
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Proof. Let I be a small arc (|I| < δ) centered at x. By Theorem 2.2 there
exist functions a, b ∈ L2 supported by the interval I such that the oper-
ator MbP+Ma is unbounded. Then there exists a function f ∈ L2 such
that bP+(af) /∈ L2. That means for some g ∈ L2 the function bgP+(af)
is not in L1. So we can pick bounded (L∞) functions a, b, f , g supported
by the interval I, satisfying (3.1) and such, that ‖bgP+(af)‖1 > 4R. Re-
placing g by zng(z), where n > 0 is sufficiently large number we can make
the norm ‖P−(bg)‖2 as small as we want, so the norms ‖P−(bg)P+(af)‖1,
‖P−(bg)P−(af)‖1 can be as small as we want, and the norm
‖P+(bg)P+(af)‖1 can be as close to the norm ‖bgP+(af)‖1 as we want.
So we can always achieve

‖P+(af)P+(bg)‖1 > 3R, ‖P−(af)P−(bg)‖1 < ε/2.

Now we want all the functions to be supported by I ∩E. Since all functions
are bounded, so we can assume that

‖a‖∞, ‖b‖∞ ≤ C, ‖f‖∞, ‖g‖∞ ≤ C/m(I)1/2.

Then there exists a small constant α > 0 (depending on C) such that if
m(I \ E) < αm(I), then

‖P+(χ
E

af)P+(χ
E

bg)‖1 > 2R, ‖P−(χ
E

af)P−(χ
E

bg)‖1 < ε

(the functions χ
E

af , χ
E

bg are close in L2-norm to af and bg respectively).
So, if m(I \ E) < αm(I) we can just multiply all the functions by χ

E
.

It looks like a bad circle here, since we first picked the interval I, then
the functions a, b, f , g (and so the constant C), and now we want m(I \
E)/m(I) < α = α(C). However, we can break this bad circle, because
everything can be rescaled.

This can be better explained on the real line R. Recall, that, as we already
discussed above in Section 2, we can use conformal mapping from the disk
to the upper half-plane to move freely from the circle to the real line and
back. So let everything is on the real line. Without loss of generality we can
assume that our density point x0 is the origin 0.

Since the Riesz Projection P+ commutes with the scaling operators
f(z) �→ f(kz) (for all k ∈ R \ {0}), nothing changes when we rescale the
picture, i. e. replace a(x), b(x) by a(kx), b(kx) and f(x), g(x) by k1/2f(kx),
k1/2g(kx) respectively. Nothing, except the fact that the interval I will be
replaced by k−1I, so now we can make m(I \E)/m(I) as small as we want,
because 0 is a density point of E.

Now let us pick radius r ≥ 1 − |I| sufficiently close to 1 such that for
functions F := P+(af)P+(bgb), G := P−(ag)P−(fb) we have∫

2I
|F (rθ)|dm(θ) > 3R,

∫
2I

|G(rθ)|dm(θ) < ε/2.

We are almost done, the only problem is that ab �≡ 0.
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To correct that, define

χ(eit) =
{

1, 0 ≤ t < π
0 π ≤ t < 2π

and let χn(z) := χ(zn). Our claim is, that if we replace a by χna and b by
(1 − χn)b with sufficiently large n, then we are done.

Indeed, the functions χn, (1 − χn) converge weakly in L2 to the function
1
2 as n → ∞ (the sequence χn is bounded, and

∫
fχndm → 1

2

∫
fdm for

smooth f). Since for a function ϕ ∈ L2,

P+ϕ(z) =
1

2πi

∫
T

ϕ(ξ)
ξ − z

dξ,(3.2)

one can conclude that the functions Fn := P+(χnag)P+((1−χn)bg) converge
to 1

2F uniformly on compact subsets of D.
Similarly, the functions Gn := P−(χnaf)P−((1−χn)bg) converge to 1

2G(z)
uniformly on compact subsets of D. So, for sufficiently large n,∫

2I
|Fn(rθ)|dm(θ) > R,

∫
2I

|Gn(rθ)|dm(θ) < ε.

Replace a by χna and b by (1 − χn)b with sufficiently large n, then we are
done!

Using Proposition 3.1 take the sequence of intervals In ⊂ T as above, and
construct bounded functions an, bn, fn, gn supported by In ∩ E and radii
rn, 1 − |In| ≤ rn < 1 such, that

1. anbn ≡ 0;
2. Pλ(|an|2)Pλ(|bn|2) ≤ 1 for all λ ∈ D;
3. ‖fn‖2 ≤ 2−n, ‖gn‖2 ≤ 2−n;

and such that for the functions Fn := (P+(anfn)P+(bngn),
Gn := (P−(anfn)P−(bngn) we have

4.
∫

2In

|Fn(rnθ)|dm(θ) > 2n,

∫
2In

|Gn(rnθ)|dm(θ) < 2−n.

The condition 2 implies that

1
|In|

∫
In

|an|2dm · 1
|In|

∫
In

|bn|2dm ≤ C

where C < ∞ is some absolute constant, so we can always assume that

5.
1

|In|

∫
In

|an|2dm ≤ C,
1

|In|

∫
In

|bn|2dm ≤ C.

Define

a =
∑

an b :=
∑

bn, f :=
∑

fn, g =
∑

gn.

It is easy to check that the pair a, b satisfies the condition (2.1). Indeed,
if dist(λ, Ik) ≥ |Ik| for all k, then, computing Pλ(|a|2), we can replace each
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|ak|2 on the interval Ik by its average, and since all the averages are bounded
(condition 5), we get Pλ(|a|2) ≤ C < ∞, and the same for Pλ(|b|2).

If dist(λ, Ik) < |Ik| for some k, then dist(λ, Ij) ≥ |Ik| for j �= k. We can
estimate

Pλ(|a|2) = Pλ(|ak|2) + Pλ(
∑
j �=k

|aj |2) ≤ Pλ(|ak|2) + C · (1 − |λ|)/|Ik|,

and similarly for Pλ(|bk|2),
Pλ(|b|2) ≤ Pλ(|bk|2) + C · (1 − |λ|)/|Ik|.

Recall, that the Poisson kernel Pλ is given by

Pλ(z) =
1 − |λ|2
|1 − λz|2

,

so (1 − |λ|) · Pλ(z) ≤ 1. Therefore

Pλ(|ak|2) · (1 − |λ|)/|Ik| ≤ C · |Ik|−1

∫
Ik

|ak|2dm ≤ C.

and similarly Pλ(|ak|2) · (1 − |λ|)/|Ik| ≤ C. The other two terms in the
product(

Pλ(|ak|2) + C · (1 − |λ|)/|Ik|
)(

Pλ(|bk|2) + C · (1 − |λ|)/|Ik|
)

are also trivially bounded, so indeed Pλ(|a|2)Pλ(|b|2) ≤ C < ∞.
Let us check that the harmonic function

F − G = P+(af)P+(bg) − P−(af)P−(bg)

is not a harmonic extension of a complex measure µ of bounded variation.
Formula (3.2) implies that for z ∈ D, dist(z, Ik) ≥ |Ik| we have the estimate

|P+(akfk)(z)| ≤ C

|Ik|
‖akfk‖1 ≤ C

|Ik|
‖ak‖2 · ‖fk‖2

≤ C

|Ik|
|Ik|1/22−k ≤ C2−k/2.

and similar estimate holds for |P+(bkgk)|. Therefore, for θ ∈ In,∑
k �=n

∣∣∣(P+(af)P+(bg)
)
(rnθ)

∣∣∣ ≤ C

∞∑
k=1

2−k ≤ C,

and similarly ∑
k �=n

∣∣∣(P−(af)P−(bg)
)
(rnθ)

∣∣∣ ≤ C.

Therefore for the functions Fk := (P+(akfk)P+(bkgk),
Gk := (P−(akfk)P−(bkgk)∑

k �=n

∫
2In

|Fk(rnθ)|dm(θ) ≥ 2n − C2−n
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and ∑
k �=n

∫
2In

|Gk(rnθ)|dm(θ) ≤ 2−n + C2−n

Therefore for F = P+(af)P+(bg) =
∑

n Fn and Gn = P−(af)P−(bg) =∑
n Gn, we have ∑

n

∫
2In

|F (rnθ) − G(rnθ)|dm(θ) = +∞

Therefore, F −G cannot be the harmonic extension of a (complex) measure
of bounded variation, so we got a counterexample.
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