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Abstract. It was shown in [2] that if T is a contraction in a Hilbert
space with finite defect (‖T‖ ≤ 1, rank(I−T ∗T ) <∞), and its spectrum

σ(T ) doesn’t coincide with the closed unit disk D, then the following
Linear Resolvent Growth condition

‖(λI − T )−1‖ ≤ C

dist(λ, σ(T ))
, λ ∈ C\σ(T ),

implies that T is similar to a normal operator.
The condition rank(I − T ∗T ) < ∞ characterizes how close is T to

a unitary operator. A natural question arises about relaxing this con-
dition. For example, it was conjectured in [2] that one can replace the
condition rank(I − T ∗T ) <∞ by I − T ∗T ∈ S1, where S1 denotes the
trace class.

In this note we show that this conjecture is not true, moreover it
is impossible to replace the condition rank(I − T ∗T ) < ∞ by any
reasonable condition of closedness to a unitary operator. For exam-
ple, we construct a contraction T (i. e. ‖T‖ ≤ 1), σ(T ) 6= D, satisfy-
ing I − T, I − T ∗T, I − TT ∗ ∈ S := ∩p>0Sp, where Sp stands for
the Schatten–von-Neumann class, satisfying the above Linear Resolvent
Growth condition but not similar to a normal operator.

Notation

D the unit disk {z ∈ C : |z| < 1} in the complex plane C;

sn(A) singular number of the operator A,

sn(A) = inf{‖A−K‖ : rankK ≤ n},
s0(A) = ‖A‖. For a compact operator A, the sequence sk(A)2,
k = 0, 1, 2, . . . is exactly the system of eigenvalues of A∗A (count-
ing multiplicities) taken in decreasing order;

Sp the Schatten–von-Neumann class of compact operators A such
that

∑∞
k=1 sk(A)p <∞, p > 0.

‖A‖
Sp

the norm in Sp, ‖A‖Sp :=
(∑∞

0 sn(A)p
)1/p
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0. Introduction and main results

In this note we are dealing with the question of similarity to a normal
operator. Let us recall that operators A and B are similar if there exists a
(bounded) invertible operator R such that A = RBR−1. Similarity of an
operator T to a normal operator means that the operator T admits a reach
functional calculus, for example that f(T ) is well defined for any continuous
function f on the complex plane C.

We continue with a small deviation in the history of the question. Prob-
ably, the article [11] was the first work where a criterion on the similarity
of a contraction to a unitary operator was given (we recall that an opera-
tor T is called a contraction if ‖T‖ ≤ 1). Then the result of the work was
transformed in a resolvent test by I. Gohberg and M. Krein, [6]. The next
advance in the subject was due to work by N. Nikolski and S.V. Khruschev
[9]. The authors managed to get the counterpart of the previous result for
contractions with spectra inside the unit disk D and defect operators of rank
one. In the work [2] the generality of the test was pushed up to contractions
of arbitrary finite defects.

Since for a normal operator N the norm of the resolvent can be computed
as

‖(N − λI)−1‖ =
1

dist(λ, σ(N))
,

the condition

‖(T − λI)−1‖ ≤ C

dist(λ, σ(N))
(0.1)

is necessary for the operator T to be similar to a normal operator.
The condition (0.1) above, which we will call Linear Resolvent Growth

condition (LRG), is clearly not sufficient for the similarity to a normal op-
erator: multiplication by the independent variable z on the Hardy space H2

clearly satisfies (0.1) but there is no similarity we search for.
However, if the spectrum of an operator is “thin”, and the operator is close

to a “good” operator, one can expect that the Linear Resolvent Growth (0.1)
is sufficient for the similarity to a normal operator.

It was proved in the work [2], that if a contraction T is close to a unitary
operator in the sense that it has a finite rank defect I−T ∗T , and its spectrum
doesn’t coincide with the closed unit disk D, then the Linear Resolvent
Growth (0.1) implies similarity to a normal operator.

It was also shown there that for a contraction T the condition I − T ∗T ∈
Sp, p > 1, where Sp stands for the Schatten–von-Neumann class, is not
sufficient, and it was conjectured, that the condition I−T ∗T ∈ S1 (plus the
assumption that the spectrum is not the whole closed unit disk D) guarantees
the equivalence of LRG and similarity to a normal operator.

We show in this note, that this is not the case, i.e., one can find a contrac-
tion T , with simple countable spectrum, satisfying I − T ∗T ∈ S1 (or even
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I − T ∗T ∈ ∩p>0Sp) and satisfying the Linear Resolvent Growth condition
(0.1), but not similar to a normal operator.

Moreover, we will show, that no reasonable condition of closedness to
a unitary operator (except of finite rank defect I − T ∗T ) implies that the
Linear Resolvent Growth is equivalent to the similarity to a normal operator.

Let us explain what do we mean by a “reasonable” condition. Suppose we
have a function Φ with values in R+ ∪ {∞} (which measures, how small an
operator (defect) is) defined on a non-negative operators in a Hilbert space
H, satisfying Φ(0) = 0 and such that

1. Φ is increasing, i. e. Φ(A) ≤ Φ(B) if A ≤ B;
2. Φ(A) <∞ if rankA <∞;
3. Φ is upper semicontinuous, i. e. if An ↗ A (An ≤ A, ||An −A|| → 0)

then Φ(A) ≤ limn Φ(An);
4. Φ is lower semicontinuous in the following weak sense: if rankA < ∞

and rankAn ≤ N (for some N <∞), limn ‖An‖ = 0, then limn Φ(A⊕
An) = Φ(A) (hereA⊕B means that rangeA ⊥ rangeB and (KerA)⊥ ⊥
(KerB)⊥).

We extend the function Φ to non-selfadjoint operators by putting Φ(A) :=
Φ((A∗A)1/2).

We have in mind the following examples of functions Φ:

1. Φ(A) = ‖A‖
Sp

=
(∑

sn(A)p
)1/p

, where sn(A) is nth singular value of
the operator A. In this case Φ(A) <∞ means exactly A ∈ Sp

2. Φ(A) :=
∑∞

n=1 2−n
‖A‖

S1/n

1+‖A‖
S1/n

; in this case Φ(A) < ∞ if and only if

A ∈
⋂
p>0Sp;

3. Any weighted sum of singular numbers, for example

Φ(A) =
∞∑
1

22nsn(A).

4. The function Φψ,

Φψ(A) :=
∞∑
0

ψ(sn(A)),

where ψ : R+ → R+ is an increasung and continuous at 0 function,
satisfying ψ(0) = 0.

The condition Φψ(A) < ∞ characterizes the class Sψ, introduced
in [2], A ∈ Sψ ⇐⇒ Φψ(A) < ∞. Note that if we allow ψ(0) to be
positive, then for any ψ satisfying ψ(0) > 0 the class Sψ is just the
ideal of finite rank operators.

Our main result is the following theorem.

Theorem 0.1. Let Φ be a function satisfying the conditions 1–4 above.
Given ε > 0, there exists a contraction T (i. e. ‖T‖ ≤ 1) on a Hilbert
space H such that:
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1. The spectrum σ(T ) is a countable subset of the closed unit disk D;
2. T = I +K, where Φ(K), Φ(K∗) ≤ ε;
3. Φ(I − T ∗T ) ≤ ε, Φ(I − TT ∗) ≤ ε;
4. T satisfies the Linear Resolvent Growth condition

‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
,

but
5. T is not similar to a normal operator

The authors are thankful to Professor N. Nikolski for turning their atten-
tion to the problem and stimulating discussions on the subject.

1. Proof of the main result

1.1. Preliminaries about bases. Before going to the proof, we need to
remind the reader some well-known facts about bases in a Hilbert space.

The results discussed in this subsection are of common knowledge. The
exhausting information on the subject may be found in the monograph [8],
pages 131–133, 135–142. We should mention in this connection works [13,
14, 15] also.

Let {fn}∞1 be a complete system of vectors in a Hilbert space H. The
system is called a basis if any vector f ∈ H admits a unique decomposition

f =
∞∑
1

cnfn,

where the series converges (in the norm of H), and the system is called an
unconditional basis if it is a basis and the series converges unconditionally
(for any reordering).

A complete system is called a Riesz basis if it is equivalent to the or-
thonormal basis, i. e. if there exists a bounded invertible operator R (the
so-called orthogonalizer) such that Rfn = en ∀n, where {en : n = 1, 2, . . . } is
some orthonormal basis. Clearly, an orthogonalizer is unique up to unitary
factor on the left.

The quantity r({fn}) := ‖R‖ · ‖R−1‖ is therefore well defined, and could
serve as the measure of non-orthonormality of the Riesz basis {fn}.

Clearly, a Riesz basis is an unconditional basis. Notice, (although we do
not need that in what follows), that the converse is also true: an theorem due
to Köthe and Toeplitz states that a normalized (0 < inf ‖fn‖ ≤ sup ‖fn‖ <
∞) unconditional basis is a Riesz basis.

Let us also mention the connection between Riesz bases and similarity to
normal operators. It is just a trivial observation, that if T is an operator
with simple eigenvalues and with a complete system of eigenvectors fn, n =
1, 2, . . . , then T is similar to a normal operator if and only if the system of
eigenvectors is a Riesz basis. In this case the similarity transformation is
given by an orthogonalizer R, namely RTR−1 is a normal operator.
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1.2. Global construction. Suppose we have constructed a sequence of
finite rank operators An : Cn → C

n, with simple spectrum and let {fnk }nk=1
be the system of (normalized, ‖fnk ‖ = 1) eigenvectors of An. Suppose the
operators An (note that we do not assume even that An are contractions
here) satisfy the following properties:

1. Operators An satisfy uniformly the Linear Resolvent Growth condition,
i. e.

‖(An − λI)−1‖ ≤ C

dist(λ, σ(An))
,

where the constant C doesn’t depend on n;
2. limn r(Fn) =∞, where r(Fn) = ‖RFn‖ · ‖R−1

Fn‖ is the measure of non-
orthogonality of the system Fn = {fnk }Nnk=1 of the eigenvectors of An
(recall that RFn is the orthogonalizer of the system Fn).

Then we are done with the proof of Theorem 0.1.
Let us explain why. We construct an operator T = ⊕∞n=1

(
anAn + bnI

)
,

where |bn| < 1, limn bn = 1, limn an = 0. We pick the numbers an, bn in
such a way, that the spectra of the summands anAn + bnI do not intersect,
so the resulting operator has the simple spectrum.

Since the linear transformation A 7→ aA + bI doesn’t change the Linear
Resolvent Growth condition, and, moreover, doesn’t change the constant
(we leave the proof of this fact as a simple exercise for the reader), the
resulting operator T satisfies ‖(T − λI)−1‖ ≤ C/dist(λ, σ(T )).

Since the same linear transformation doesn’t change the system of eigen-
vectors, we can conclude that the system F of eigenvectors of T is the direct
sum of eigenvectors of all An, i. e. F := ⊕∞n=1Fn.

Since r(Fn) → ∞ (see property 2 of An), the system F of eigenvectors
of T is not a Riesz basis, and therefore (since T has simple spectrum), T is
not similar to a normal operator.

It remains to show, that one can chose numbers an, bn such, that the
operator T is close to a unitary operator, namely Φ(I−T ) ≤ ε, Φ(I−T )∗ ≤ ε,
Φ(I − T ∗T ) ≤ ε, Φ(I − TT ∗) ≤ ε.

We will construct the numbers an, bn by induction. Note, that the in-
equality |an| · ‖An‖ ≤ 1 − |bn| implies that the operator Tn = anA + bnI is
a strict contraction (‖Tn‖ < 1).

So, we will always take an satisfying |an| · ‖An‖ < 1 − |bn|. Under this
assumption

‖I − Tn‖ < 1− |bn|+ |1− bn| ≤ 2 · |1− bn|.
The simple identity (I − ∆)∗(I − ∆) = I − ∆ − ∆∗ − ∆∗∆ (applied to
∆ = I − Tn, ∆ = I − T ∗n) implies that in this case

‖I − T ∗T‖, ‖I − TT ∗‖ < 6 · |1− bn|,
if |1− bn| ≤ 1/2.

Therefore, picking bn close to 1 (and an satisfying |an|·‖An‖ < 1−|bn|) we
can make the norms of the finite rank operators I−Tn, I−T ∗nTn, I−TnT ∗n ,
where Tn = anAn + bnI, as small as we want.
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Since Φ(0) = 0, property 4 of Φ implies that we can pick a contraction
T1 = a1A1 + b1I such that

Φ(I − T1) ≤ ε/2, Φ(I − T1)∗ ≤ ε/2
Φ(I − T ∗1 T1) ≤ ε/2, Φ(I − T1T

∗
1 ) ≤ ε/2.

Suppose we constructed the finite rank contractions Tk = akAk + bkI,
k = 1, 2, . . . , n − 1 such that the operator T (n−1) = T1 ⊕ T2 ⊕ . . . ⊕ Tn−1,
‖T (n−1)‖ < 1, has simple spectrum and satisfies

Φ(I − T (n−1)) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)∗) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)∗T (n−1)) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)T (n−1)∗) ≤ (1− 2−(n−1))ε.

Making the norm ‖I − Tn‖ sufficiently small we can guarantee that the
operator T (n) = T1⊕T2⊕ . . .⊕Tn has simple spectrum, satisfies ‖T (n)‖ < 1
and property 4 of Φ implies that one can make T (n) to satisfy

Φ(I − T (n)) ≤ (1− 2−n)ε,

Φ(I − T (n)∗) ≤ (1− 2−n)ε,

Φ(I − T (n)∗T (n)) ≤ (1− 2−n)ε,

Φ(I − T (n)T (n)∗) ≤ (1− 2−n)ε.

Property 3 of Φ implies that the operator T = ⊕∞n=1Tn satisfies

Φ(I − T ) ≤ ε, Φ(I − T ∗) ≤ ε
Φ(I − T ∗T ) ≤ ε, Φ(I − TT ∗) ≤ ε.

We are done (modulo the constructing of An)

1.3. More preliminaries about bases. We will need some more informa-
tion about bases. Let fn, n = 1, 2, . . . be a linearly independent sequence
of vectors. Let Pn denote the projection onto first n vectors of the system,
Pn
∑
ckfk =

∑n
1 ckfk (the operators Pn are well defined on finite linear

combinations of fk). The following characterization of bases is well-known,
see for example the monographs [12], page 46–47 or [16], pages 37–39.

Theorem 1.1 (Banach Basis Theorem). A complete system of vectors fk,
k = 1, 2, . . . is a basis if and only if supn ‖Pn‖ =: K <∞.

If one a priori assumes that the projections Pn are bounded, then the
theorem is just the Banach–Steinhaus Theorem.

We will need the following corollary characterizing the bases in terms of
so-called multipliers.

For a numerical sequence α := {αn}∞1 , let Mα be a multiplier, defined by

Mαfn = αnfn, n = 1, 2, . . .
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(a priory Mα is defined only on finite linear combinations
∑
ckfk).

For a sequence α its variation var(α) is defined as

varα :=
∞∑
1

|ak − ak+1|.

Clearly, if varα <∞, the limit limn αn =: α∞ exists and is finite.

Corollary 1.2. Let a system of vectors fn, n = 1, 2, . . . be a basis. If for a
numerical sequence α = {αn}∞1 we have varα <∞, then

‖Mα‖ ≤ K varα+ |α∞|,
where K is the constant from the Banach Basis Theorem (Theorem 1.1),
and α∞ := limn αn.

Proof. The proof follows immediately from the formula

Mα =
∞∑
n=1

(αn − αn+1)Pn + α∞I,

where Pn are the projections from the Banach Basis Theorem.

Remark 1.3. The above Corollary 1.2 holds for bases in finite-dimensional
spaces as well: one just have to extend the finite sequence α by zeroes.

Remark 1.4. We do not need this fact, but let us just mention, that the
converse of Corollary 1.2 is also true. Namely, a system of vectors fn,
n = 1, 2, . . . is a basis if and only if for any numerical sequence α of bounded
variation,the corresponding multiplier Mα is bounded. The proof is quite
easy, cf. [8, 12].

1.4. Construction of the operators An. To construct the operators An
from Section 1.2, consider a normalized (‖fn‖ = 1) system of vectors F :=
{fn}∞1 which is basis but not a Riesz basis. Such systems do exist, see an
example below in Section 2.

For the system F its measure of non-orthogonality

r(F) := ‖RF ‖ · ‖R
−1
F ‖ =∞.

Therefore, for finite truncations Fn = {fk}nk=1 we have

r(Fn) := ‖RFn‖ · ‖R
−1
Fn
‖ → ∞ as n→∞.

We define operators An as follows. Let {λn}∞1 be a strictly increasing
sequence of real numbers. Define an operator An on L{fk : k = 1, . . . Nn}
by Anfk = λkfk. It is easy to see that the operator An has simple spectrum,
and that Property 2 of An is satisfied.

We have to show that Property 1 holds, i. e. that

‖(An − λI)−1‖ ≤ C

dist(λ, σ(An))
.
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To estimate the norm ‖(An − λI)−1‖ we will use Corollary 1.2. Namely,
if we put α := {αk}∞1 , where

αk =
{

(λk − λ)−1, k ≤ n
0 k > n ,

then

‖(An − λI)−1‖ ≤ ‖Mα‖ ≤ K · varα.

So, we need to show that

varα ≤ C

dist(λ, σ(An))
.

Let λm ≤ Reλ < λm+1 (we consider the trivial cases Reλ < λ1 or
Reλ ≥ λn later). Then

varα =
m−1∑
k=1

|αk − αk+1|+
n−1∑

k=m+1

|αk − αk+1| + |αm − αm+1|+ |αn|.

The last two terms are easy to estimate:

|αm − αm+1|+ |αn| ≤ |αm|+ |αm+1|+ |αn| ≤
3

dist(λ, σ(An))
.

Let us estimate the first sum:

m−1∑
k=1

|αk − αk+1| ≤
m−1∑
k=1

∣∣∣∣ 1
λk − λ

− 1
λk+1 − λ

∣∣∣∣
=

m−1∑
k=1

∣∣∣∣∫ λk+1

λk

dz

(z − λ)2

∣∣∣∣ ≤ ∫ λm

λ1

dz

|z − λ|2 ≤
C

|λ− λm|
.

Similarly,
n−1∑

k=m+1

|αk − αk+1| ≤
C

|λ− λm|
,

and we are done. Note, that in trivial cases (Reλ < λ1 or Reλ ≥ λn) we
just need to estimate one sum using integrals.

Remark 1.5. The fact that the operators An satisfy the Linear Resolvent
Growth condition follows immediately from a more general result about
operators with spectrum on Ahlfors curves, proved in [2]. We presented the
proof only for the reader’s convenience.

Notice also, that everything above would work if we consider different
monotone sequences {λnk}nk=1, n = 1, 2, . . . , and put Anfn := λnkfn.
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2. Nontrivial conditional basis

Let us consider space L2(w), w(t) be a nonnegative measurable function
on the unit circle T = ∂D,

‖f‖2
L2(w)

:=
∫ π

−π
|f(eit)|2w(eit)

dt

2π
.

We study properties of the system of exponents {zn}∞n=0. The following
facts hold true.

Proposition 2.1 (see [15]). The system of exponents {zn}∞n=0 in its own
closed linear span in L2(w) is

1. Basis if and only if the weight w satisfies Muckenhoupt (A2) condition,

sup
I

(
1
|I|

∫
I
w

)
·
(

1
|I|

∫
I
w−1

)
<∞;

2. Unconditional (Riesz) basis iff w ∈ L∞(T), 1/w ∈ L∞(T).

Direct computations show that a weight with power singularity, say
w(z) = |z − 1|α satisfies the Muckenhoupt (A2)-condition if and only if
−1 < α < 1. By picking any non-zero α in this interval we get an example
of a basis which is not an unconditional (Riesz) basis.

Proof of Proposition 2.1. The statement is probably well-known, and we
present the proof only for the reader’s convenience.

By the Banach Basis Theorem (Theorem 1.1 above) the system {zn}∞n=0

is a basis if and only if the projections Pn, Pn(
∑
ckz

k) =
∑n

k=0 ckz
k are

uniformly bounded.
Consider the so-called Riesz projection P+, P+(

∑
ckz

k) =
∑∞

k=0 ckz
k.

Since for f ∈ L(zn : n ≥ 0)

Pnf = f − zn+1P+(zn+1f),

and multiplication by the independent variable z is a unitary operator on
L2(w), it is easy to show that the operators Pn are uniformly bounded (on
the closed linear span of {zn}∞n=0 in L2(w)) if and only if the operator P+ is
bounded on L2(w). The last is equivalent to the boundedness of the Hilbert
Transform T , T := −iP+i(I − P+), and it is well known, see [7], [4], page
254 that T is bounded on L2(w) if and only if the weight w satisfies the
Muckenhoupt (A2)-condition.

To prove statement 2, let us notice, that the system of exponents is a
Riesz basis if for any analytic polynomial f =

∑N
k=0 ckz

k

c‖f‖2
L2(w)

≤
∑
|ck|2 = ‖f‖2

L2
≤ C‖f‖2

L2(w)
.

Since the multiplication by z is a unitary operator on L2(w), the last es-
timate should hold for for any trigonometric polynomial f =

∑N
−N ckz

k,
which is possible if and only if w, 1/w ∈ L∞.
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3. Linear fractional transformations and the Linear
Resolvent Growth condition

It is probably not completely clear from the construction, but the main
reason for the result is that both Linear Resolvent Growth condition and
similarity to a normal operator are “Möbius invariant”, but the conditions
like I − T ∗T ∈ Sp are not, if one pays attention to constants.

Let us clarify this statement a bit. First of all, let us notice, that if
T = RNR−1, then ϕ(T ) = Rϕ(N)R−1 for any analytic in a neighborhood
of σ(T ) function ϕ. So, the similarity to a normal operator is preserved for
ϕ(T ).

It turns out that the Linear Resolvent Growth is preserved for linear
fractional transformations ϕ(T ) = (aT + bI)(cT + dI)−1.

Lemma 3.1. Let ϕ(z) = (az+b)/(cz+d) be a linear fractional transforma-
tion.1 If an operator T (note that we do not require it to be a contraction)
satisfies the Linear Resolvent Growth condition

‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
,(3.1)

then
‖ϕ(T )‖ ≤ 10C sup

z∈σ(T )
|ϕ(z)|.

Corollary 3.2. Let ϕ(z) = (az + b)/(cz + d) be a linear fractional trans-
formation. If an operator T satisfies the Linear Resolvent Growth condition
(3.1), then the operator ϕ(T ) satisfies the same condition with constant 10C,
i.e.

‖(ϕ(T )− λI)−1‖ ≤ 10C
dist{λ, σ(ϕ(T ))} .

Proof. Consider a function τ(z) := 1/(z − λ). The composition ϕ1 := τ ◦ ϕ
is a linear fractional transformation (for example, because it is a conformal
automorphism of the Riemann sphere Ĉ := C ∪∞). Therefore, Lemma 3.1
implies

‖(ϕ(T )− λI)−1‖ = ‖τ(ϕ(T ))‖ = ‖ϕ1(T )‖
≤ 10C sup

z∈σ(T )
|τ(ϕ(z))|

= 10C sup
w∈ϕ(σ(T ))

|τ(w)| = 10C
dist{λ, ϕ(σ(T ))} .

To complete the proof it remains to recall that according to the Spectral
Mapping Theorem (see [3, Theorem VII.3.11]) σ(ϕ(T )) = ϕ(σ(T )) for any
function ϕ analytic in a neighborhood of σ(T ).

1we include degenerate cases a = 0, c = 0 as well
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Proof of Lemma 3.1. The first trivial observation is that a linear transfor-
mation T 7→ aT + b preserves the Linear Resolvent Growth condition, and
moreover, it preserves the constant. This is indeed trivial for the shift
T 7→ T+bI, and for the transformation T 7→ aT it follows from the following
chain of estimates:

‖(aT −λI)−1‖ = |a|−1
∥∥∥(T − λ

aI
)−1
∥∥∥ ≤ 1
|a| ·

C

dist(λa , σ(T ))
=

C

dist(λ, σ(aT ))
.

Now let us prove the lemma. First of all consider the case when ϕ is a
linear function. Since the LRG condition is preserved under linear trans-
formations, we can assume without loss of generality that ϕ(z) = z. By
Riesz–Dunford formula we have

T =
1

2πi

∫
γ
z · (zI − T )−1dz

where γ is a contour surrounding σ(T ) in positive direction.
Take for γ the circle with center at 0 of radius R, R > ρ(T ), where

ρ(T ) = supz∈σ(T ) |z| is the spectral radius of T . Then

‖T‖ ≤ 1
2π
· 2πR · ρ(T ) · C

R− ρ(T )
= ρ(T ) · CR

R− ρ(T )
.

Taking the limit as R→∞ we get

‖T‖ ≤ Cρ(T ) = C sup
z∈σ(T )

|z|

Now let us consider another degenerate case, when ϕ is a proper rational
function, i. e. ϕ = a/(bz + c). In this case the conclusion of the lemma is
just the Linear Resolvent Growth condition, so the conclusion trivially holds
with the same constant C.

Finally let us consider the case of general position,

ϕ =
az + b

cz + d
, a 6= 0, c 6= 0.

Let τ be a linear transformation of C which maps −1 7→ −b/a, 0 7→ −d/c.
Then ϕ ◦ τ = α · (z − 1)/z, α ∈ C.

So, since linear transformations preserve the Linear Resolvent Growth
property, it is enough to deal with the case ϕ = (z − 1)/z. Let

δ := sup
z∈σ(T )

|ϕ(z)| = sup
z∈σ(T )

∣∣∣∣z − 1
z

∣∣∣∣ .
Consider the case δ ≥ 1/2 first. One can write

ϕ(T ) =
1

2πi

∫
Γ
ϕ(z)(zI − T )−1dz,

where Γ = γr ∪ γR , where γr, γR are circles |z| = r and |z| = R in negative
and positive directions respectively. We assume that r → 0 and R → ∞.
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One can estimate ∥∥∥∫
γ
R

. . .
∥∥∥ ≤ lim

R→∞
1

2π
· 2πR · C

R
= C

On the other hand∥∥∥∫
γr

. . .
∥∥∥ ≤ lim

r→0

1
2π
· 2πr · 1

r
· C

dist(0, σ(T ))
=

C

dist(0, σ(T ))
.

One can easily see (the level sets of |ϕ| can be computed explicitly) that the
set {z : |ϕ(z)| ≤ δ} is contained outside the disk {z : |z| = 1/(1 + δ)}, so
dist(0, σ(T )) ≥ 1/(1 + δ). Therefore∥∥∥∫

γr

. . .
∥∥∥ ≤ C · (1 + δ),

and so
‖ϕ(T )‖ ≤ C · (2 + δ) ≤ 5Cδ = 5C sup

z∈σ(T )
|ϕ(z)|,

if δ ≥ 1/2.
Now let us consider the case δ ≤ 1/2. It is easy to compute that for δ < 1

the level set {z : |ϕ(z)| ≤ δ} is the closed unit disk centered at c = 1/(1−δ2)
and of radius r = δ/(1 − δ2). By the definition of δ, the spectrum σ(T ) is
contained in this level set.

Let us write

ϕ(T ) =
1

2πi

∫
Γ
ϕ(z)(zI − T )−1dz,

where Γ now is the circle centered at c = 1/(1 − δ2) of radius 3
2r. We can

estimate

‖ϕ(T )‖ ≤ lim
r→0

1
2π
· 2π3

2
r · C

r/2
· sup
z∈Γ
|ϕ(z)| = 3C sup

z∈Γ
|(z − 1)/z|

Note that supz∈Γ |ϕ(z)| is attained at the point x = c− 3
2r = 1−3δ/2

1−δ2 . There-
fore

sup
z∈Γ
|ϕ(z)| = 1− x

x
= δ · 3/2− δ

1− 3δ/2
≤ δ · 3/2

1− 3/4
= 6δ.

Therefore ‖ϕ(T )‖ ≤ 6Cδ and we are done.

4. Conjectures and open questions

In the conclusion of the paper let us state some conjectures. Let T be
a contraction (‖T‖ ≤ 1), and let σ(T ) 6= D. Denote by Tµ the “Möbius
transformation” of T ,

Tµ := (T − µI)(I − µT )−1, µ ∈ D.
Note that it ‖T‖ ≤ 1, then ‖Tµ‖ ≤ 1, ∀µ ∈ D.
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Let us recall that ‖A‖
Sp

stands for the Schatten–von-Neumann norm of
the operator A,

‖A‖
Sp

=
( ∞∑

0

sn(A)p
)1/p

.

It was shown above in Section 3, the Linear Resolvent Growth condition,
as well as the similarity to a normal operator are invariant with respect to
linear fractional transformations, in particular, with respect to the above
“Möbius transformations”. Since the “Möbius transformation” maps a con-
traction to contraction, the following conjecture seems plausible.

Conjecture 4.1. If ‖T‖ ≤ 1, σ(T ) 6= D, and

sup
µ∈D
‖I − T ∗µTµ‖S1

<∞,(4.1)

then the Linear Resolvent Growth condition (0.1) implies that T is similar
to a normal operator.

We think that the trace class S1 plays a critical role here.

Conjecture 4.2. The condition (4.1) is sharp, i. e. given p > 1 one can
find an operator T , ‖T‖ ≤ 1, σ(T ) 6= D satisfying the Linear Resolvent
Growth condition (0.1) and

sup
µ∈D
‖I − T ∗µTµ‖Sp <∞,

but not similar to a normal operator.
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similaires à des transformations unitaires, Acta. Sci. Math., 26(1965), pp. 79–91.

[12] I. Singer, Bases in Banach spaces, I, Springer-Verlag, Berlin-Heidelberg-New York,
1970, 668 p.



14 S. KUPIN AND S. TREIL

[13] S. R. Treil, Geometric methods in spectral theory of vector-valued functions: Some
recent results, Operator Theory: Advances and Applications, 42(1989), pp. 209–280.

[14] S. R. Treil, Hankel operators, embedding theorems, and bases of the invariant sub-
spaces of the multiple shift, Algebra i Analiz, 1(1989), no.6, pp. 200–234 (Russian);
English translation: St.Petersburg Math.Journal, 1(1990), pp. 1515–1548.

[15] S. R. Treil, Unconditional bases of invariant subspaces of a contraction with finite
defects, Indiana University Mathematical Journal,

[16] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, 1991.
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