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Abstract. Main result of this paper is the following theorem: given δ,
0 < δ < 1/3 and n ∈ N there exists an (n+1)×n inner matrix function
F ∈ H∞

(n+1)×n such that

I ≥ F ∗(z)F (z) ≥ δ2I ∀z ∈ D,

but the norm of any left inverse for F is at least [δ/(1 − δ)]−n ≥
( 3
2
δ)−n. This gives a lower bound for the solution of the Matrix Corona

Problem, which is pretty close to the best known upper bound C ·
δ−n−1 log δ−2n obtained recently by T. Trent [16]. In particular, both
estimates grow exponentially in n; the (only) previously known lower
bound Cδ−2 log(δ2n + 1) (obtained by the author [13]) grew logarith-
mically in n. Also, the lower bound is obtained for (n + 1) × n matri-
ces, thus giving the negative answer to the so-called “codimension one
conjecture.” Another important result is Theorem 2.4 connecting left
invertiblity in H∞ and co-analytic orthogonal complements.
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Notation

D Open unit disk in the complex plane C, D := {z ∈ C : |z| < 1};
T Unit circle, T := ∂D = {z ∈ C : |z| = 1};
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H2, H∞ Hardy classes of analytic functions,

Hp :=
{

f ∈ Lp(T) : f̂(k) :=
∫

T

f(z)z−k |dz|
2π

= 0 for k < 0
}

.

Hardy classes can be identified with spaces of analytic in the
unit disk D functions: in particular, H∞ is the space of all
bounded analytic in D functions;

H2
E vector-valued Hardy class H2 with values in E; if dimE = n

we often identify E with C
n and use the notation H2

n.

L∞
E→E∗ class of bounded functions on the unit circle T whose values are

bounded operators from E to E∗;

H∞
E→E∗ operator Hardy class of bounded analytic functions whose val-

ues are bounded operators from E to E∗;

‖F‖∞ := sup
z∈D

‖F (z)‖ = esssup
ξ∈T

‖F (ξ)‖.

If dimE = n < ∞, dimE∗ = m < ∞,we often identify E with
C

n and E∗ with C
m and use symbol H∞

m×n.

HΦ, TΦ Hankel and Toeplitz operators with symbol Φ.
Throughout the paper all Hilbert spaces are assumed to be separable. We

always assume that in any Hilbert space an orthonormal basis is fixed, so
any operator A : E → E∗ can be identified with its matrix. Thus besides
usual involution A �→ A∗ (A∗ is the adjoint of A), we will have two more:
A �→ AT (transpose of the matrix) and A �→ A (complex conjugation of
the matrix), so A∗ = (A)T = AT . Although everything in the paper can
be presented in invariant, “coordinate-free” form, use of transposition and
complex conjugation makes the notation easier and more transparent.

0. Introduction

0.1. What is the Operator (Matrix) Corona Problem? The Operator
Corona Problem is the problem of finding a (preferably local) necessary and
sufficient condition for a bounded operator-valued function F ∈ H∞

E→E∗ to
have a left inverse in H∞, i.e. a function G ∈ H∞

E∗→E such that

G(z)F (z) ≡ I ∀z ∈ D.(B)

If dimE < ∞ we call it the Matrix Corona Problem.
The equations of type (B) are sometimes called in the literature the Be-

zout equations, and “B” here is for Bezout. The simplest necessary condition
for (B) is

F ∗(z)F (z) ≥ δ2I, ∀z ∈ D (δ > 0)(C)

(the tag “C” is for Carleson).
If the condition (C) implies (B), we say that the Operator (Matrix)

Corona Theorem holds.
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The Operator Corona Theorem plays an important role in different ar-
eas of analysis, in particular in Operator Theory (angles between invariant
subspaces, unconditionally convergent spectral decompositions, see [6, 7, 14,
15]), as well as in Control Theory and other applications.

Let us discuss the cases when the Operator Corona Theorem holds.
The first case is dim E = 1, dimE∗ = n < ∞. In this case F =

[f1, f2, . . . , fn]T , G = [g1, g2, . . . , gn] and it is simply the famous Carleson
Corona Theorem [2], see also [4, Chapter VIII], [7, Appendix 3].

Later, using the ideas from the T. Wolff’s proof of the Carleson Corona
Theorem, M. Rosenblum [9], V. Tolokonnikov [12] and Uchiyama [17] inde-
pendently proved that the Operator Corona Theorem holds if dimE = 1,
dimE∗ = ∞.

Then, using simple linear algebra argument, P. Fuhrman [3] and V. Vas-
yunin [12]1 independently proved that the Operator Corona Theorem holds
if dimE < ∞, dimE∗ ≤ ∞2. This theorem is now commonly referred to as
the Matrix Corona Theorem.

And finally, a trivial observation: if F (z)E = E∗ ∀z ∈ D, then the left
invertibility (C) implies the invertibility of F (z), and so we can simply put
G = F−1. So in this case the Operator Corona Theorem holds as well.

As for the general Operator Corona Theorem, it was shown by the author
([13], see also [14]) that it fails in the general case dimE = +∞

0.2. What is this paper about. This paper is devoted to the following
two topics: codimension one conjecture and the estimates in the matrix
(dimE < ∞) case.

0.2.1. Codimension one conjecture. Let us discuss the codimension one con-
jecture first. As we just mentioned above, the Operator Corona Theorem
fails if dimE = ∞, but it holds if F (z)E = E∗ ∀z ∈ D. So, what hap-
pens if the operators F (z) are “almost” onto, namely if codim(F (z)E) = 1
∀z ∈ D? It was conjectured by N. Nikolski and the author that in this
case the Operator Corona Theorem holds. It was also conjectured that the
Matrix Corona Theorem holds for all (n+1)×n matrix-valued functions in
H∞

(n+1)×n with uniform (independent on n) estimates. Of course, the Oper-
ator Corona Theorem holds in the matrix case by Fuhrmann–Vasyunin, the
question is only in uniform estimates.

Besides the näıve reason that the codimension one case is very close to
the case of invertible operator-function, there were some more deep facts
that lead to the codimension one conjecture. Namely, see Lemma 2.3 and
Theorem 2.4 below, with each (n + 1) × n matrix function in H∞ one can
canonically associate an (n+1)×1 matrix (vector) with the same best norm
of a left inverse.

1It is not a typo, Vasyunin’s result was indeed published (with attribution) in the
Tolokonnikov’s paper.

2To be precise, P. Fuhrman treated only the case dim E∗ < ∞
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Since in n × 1 case it is possible to obtain the estimate in the Corona
Theorem independent of n, it seemed reasonable to propose the codimension
one conjecture, at least in its matrix version.

One of the main results of this paper is that the codimension one conjec-
ture is false. It is interesting that the above canonically associated vector
(the so called co-analytic complement) plays an important role in the con-
struction.

Other inportant results in are Theorem 2.4 and Corollary 2.6 which clar-
ify the role of co-analytic orthogonal complements in the Operator Corona
Problem.

0.2.2. Lower bounds in the Matrix Corona Theorem. The second problem
we are dealing with in this paper is the problem of estimates in the matrix
case. It was shown by V. Vasyunin [12] (see also [16]) that if dimE = n < ∞
and we normalize the function F ∈ H∞

E→E∗ as

I ≥ F ∗(z)F (z) ≥ δ2I, ∀z ∈ D,(0.1)

then one can always find a left inverse G ∈ H∞
E∗→E , GF ≡ I, such that

‖G‖∞ ≤ C(n, δ), where

C(n, δ) = C
√

n · δ−2n log δ−2n.

Recently, T. Trent [16] was able to improve this estimate with

C(n, δ) = C · δ−n−1 log δ−2n,

but in both cases C(n, δ) grows exponentially in n.
On the other hand, the author had shown in [13], see also [14, Chapter

5] that C(n, δ) cannot be uniformly (in n) bounded, namely that for any
sufficiently small δ > 0 one can find F ∈ H∞

E→E∗ , dimE = n, satisfying (0.1)
and such that any left inverse G ∈ H∞

E∗→E satisfies the inequality

‖G‖∞ ≥ c(n, δ) = Cδ−2 log(δ2n + 1)

so c(n, δ) grows logarithmically in n. From this estimates it is easy to get
that the operator Corona Theorem fails in the general case dimE = ∞.

In this paper we prove the lower bound [δ/(1− δ)]−n which is quite close
to Trent’s estimate. so his estimate is probably very close to a sharp one.
Moreover, this estimate is obtained for (n + 1)× n matrices, so it disproves
the codimension one conjecture (its matrix version).

For the exact statements the reader is referred to the next section.

1. Main results

Theorem 1.1. Given δ, 0 < δ < 1/3 and n ∈ N there exists an (n + 1)× n
inner matrix function F ∈ H∞

(n+1)×n such that

I ≥ F ∗(z)F (z) ≥ δ2I ∀z ∈ D,

but the norm of any left inverse for F is at least [δ/(1 − δ)]−n ≥ (3
2δ)−n.
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Theorem 1.2. Given δ, 0 < δ < 1/3 there exists an inner operator valued
function F ∈ H∞

E→E∗ (dimE = ∞) such that

I ≥ F ∗(z)F (z) ≥ δ2I ∀z ∈ D,

the codimension of F (z)E is E∗ is one ∀z ∈ D, but F does not have a
left inverse in H∞. Moreover, the function F can be chosen such that
codim(F (z)E) = 1 a.e. on T, or such that F (z) is onto a.e. on T.

2. Co-analytic complements and their role in the Corona
Problem

Recall that a function F ∈ H∞
E→E∗ is called inner if operators F (z) are

isometries a.e. on T, and an outer if FH2
E is dense in H2

E∗ . We will call F

co-inner (resp. co-outer) if F T is inner (resp. outer).
Let us recall that any F ∈ H∞

E→E∗ admits an inner-outer factorization
F = FiFo, where Fi ∈ H∞

E1→E∗ is inner and Fo ∈ H∞
E→E1

is outer. Let us
recall also that the inner part Fi (resp. the outer part F0) is unique up to a
constant unitary factor on the right (resp. on the left).

Let us also recall that any z-invariant subspace M (zM ⊂ M) of H2
E

can be represented as ΘH2
E1

, where E1 is an auxiliary Hilbert space and
Θ ∈ H∞

E1→E is an inner function.

2.1. Co-analytic orthogonal complements.

Definition 2.1. We say that an operator valued function v ∈ H∞
E→E∗ has

a bounded co-analytic (orthogonal) complement if there exists a function
V ∈ H∞

E1→E∗ such that ker vT (z) = V (z)E1 a.e. on T. The function V is
called a co-analytic (orthogonal) complement of v.

We will usually in this paper skip the word orthogonal, and simply say
co-analytic complement.

The reason for the word co-analytic complement is the that the equality
ker vT (z) = V (z)E1 can be rewritten as

V (z)E1 = (v(z)E)⊥ a.e. on T.

Without loss of generality (take the inner part of V ) we can always assume
that the function V is inner. Moreover, by taking the outer part of V T we
can always assume that V is also co-outer. So, when we say the co-analytic
complement we usually mean V , where V is an inner and co-outer function.
Lemma 2.2 below states that such inner and co-outer function is unique up
to a constant unitary factor on the right.

Let us also make a simple observation, that if the function v is inner
(i.e. operators v(z) are isometries a.e. on T), then the operators W (z), where
W = [v V ] ∈ H∞

E⊕E1→E∗ is defined by

W (z)(e ⊕ e1) = v(z)e + V (z)e1, e ∈ E, e1 ∈ E1

are unitary a.e. on T.
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Lemma 2.2. Let v ∈ H∞
E→E∗ have a bounded co-analytic complement V ,

where V ∈ H∞
E1→E∗ is an inner and co-outer function such that

ker vT (z) = V (z)E1 a.e. on T.

Then {
f ∈ H2

E∗ : vT f ≡ 0 a.e. on T
}

= V H2
E1

.

Moreover, any other such inner and co-outer function V2 ∈ H∞
E2→E∗ satisfies

V2 = V U , where U : E2 → E1 is a constant unitary operator.

Proof. Denote
M :=

{
f ∈ H2

E∗ : vT f ≡ 0 a.e. on T
}

.

Clearly, V H2
E1

⊂ M . Since zM ⊂ M ,

M = Ṽ H2
Ẽ
,

where Ṽ ∈ H∞
Ẽ→E∗

is an inner function.

Since V H2
E1

⊂ M = Ṽ H2
Ẽ
, the preimage Ṽ −1(V H2

E1
) is a z-invariant

subspace of H2
Ẽ
. So it can be represented as Ṽ −1(V H2

E1
) = UH2

EU
, where

U ∈ H∞
E

U
→Ẽ

is an inner function and E
U

is an auxiliary Hilbert space.

Therefore V H2
E1

= Ṽ UH2
EU

, so the space E
U

can be identified with E1 and
the function V can be factorized as V = Ṽ U . Therefore V (z)E1 ⊂ Ṽ (z)E2

a.e. on T, and so

ker v(z)T = V (z)E1 ⊂ Ṽ (z)Ẽ ⊂ ker v(z)T a.e. on T.

This implies that V (z)E1 = Ṽ (z)Ẽ and hence U(z)E1 = Ẽ a.e. on T. This
means that the function U takes unitary values a.e. on T, so UT is also
an inner function. Since V is a co-outer function, U must be a constant
(unitary operator).

The following well-known lemma asserts that a matrix valued function
always has a bounded co-analytic complement.

Let F ∈ H∞
m×n be a matrix valued function. Since any minor of F belongs

to H∞, if it is non-zero on a set of positive measure in T, then it is non-zero
a.e. on T. Recalling that the rank of a matrix A is a maximal k such that
there exists a non-zero minor of order k, we can conclude rankF (z) ≡ Const
a.e. on T. We will call this constant the rank of F (and denote rankF ).

Lemma 2.3. Let v be an n × m (m < n) matrix-valued function in H∞ =
H∞

n×m, and let rank v = n − r a.e. on T.
Then v has a bounded co-analytic complement V , where V ∈ H∞

n×r is an
inner and co-outer function.

Proof. Consider the equation vT f ≡ 0. Standard linear algebra argument
implies that there exist vector functions f1, f2, . . . , fr with entries in the
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meromorphic Nevanlina class N := {f/g : f, g ∈ H∞} such that for almost
all z ∈ T

ker vT (z) = L{f1(z), f2(z), . . . , fr(z)}.
Multiplying all entries by the product of all denominators, we obtain that
all vector functions f1, f2, . . . , fr can be chosen to have entries in H∞.

Consider subspace M ⊂ H2
n consisting of all vectors f ∈ H2

n satisfying
vT f ≡ 0. Clearly zM ⊂ M , so M can be represented as M = V H2

r′ , where
V is an n×r′ inner function. Clearly, r′ ≤ r and V (z)Cr′ ⊂ ker v(z)T a.e. on
T.

Since f1, f2, . . . , fr ∈ M = V H2
r , we have the opposite inclusion

ker vT (z) ⊂ V (z)Cr′ a.e. on T.

Both inclusions together imply that r′ = r and

ker vT (z) = V (z)Cr a.e. on T.

The rest follows from Lemma 2.2.

2.2. Left invertibility and co-analytic complements. The theorem be-
low shows relation between co-analytic complements and Corona Problem.
Let us mention, that to prove Theorems 1.1 and 1.2 one can use a weaker
version of it, namely the fact that the best possible norms of the left inverses
of F and V coincide (provided that a co-analytic complement exists). Note,
that such simple version was first proved by V. Peller and the author in [8].
However, it is always nice to have a complete understanding, so we present
the theorem in full generality.

Theorem 2.4. Let F ∈ H∞
E→E∗ be an inner function. Assume that F is left

invertible, but not right invertible in H∞. Then F has an co-analytic com-
plement V , where V ∈ H∞

E1→E∗ is an inner and co-outer function. Moreover

V (z)E1 = kerF T (z) ∀z ∈ D,

the function V is also left invertible, and the best possible norms of left
inverses for F and V coincide.

Remark 2.5. Note, that in the matrix case (dimE, dimE∗ < ∞) a simple
dimension/rank counting shows that the equality

V (z)E1 = kerF T (z) ∀z ∈ D,

and the same equality a.e. on T are equivalent.
In the general operator valued case it is not known whether one implies the

other. Numerous counterexamples in the theory of analytic range functions,
see [5] lead one to suspect that none of the implications holds.

The following corollary gives necessary and sufficient condition for the
Operator Corona Theorem to be true in the case of finite codimension.
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Corollary 2.6. Let F ∈ H∞
E→E∗ be an operator-valued function satisfying

F (z)∗F (z) ≥ δ2I ∀z ∈ D,

for some δ > 0. Assume that at a point z ∈ D (or on a set of positive measure
in T) codim(F (z)E) = n < ∞, n �= 0. Then the following statements are
equivalent:

1. F is left invertible in H∞, i.e. there exists G ∈ H∞
E∗→E such that

GF ≡ I;
2. There exists function V ∈ H∞

Cn→E∗ satisfying V (z)∗V (z) ≥ δ̃2I ∀z ∈ D,
δ̃ > 0, such that

V (z)Cn = kerF T (z) ∀z ∈ D (and a.e. on T).

Moreover, the function V always can be chosen to be inner, and if both F
and V are inner, the best norms of the left inverses for F and V coincide.

Proof. Consider the inner-outer factorization of F , F = FiFo. Note, that

F ∗
i (z)Fi(z) ≥ δ̃2I, ∀z ∈ D,

where δ̃ = δ/‖F‖∞. The condition about the codimension of F (z)E implies
that F (and therefore Fi) is not invertible in H∞. Therefore, by Theorem
2.4 we have 1 =⇒ 2.

Since the Operator Corona theorem holds for functions in H∞
Cn→E∗ , con-

dition V (z)∗V (z) ≥ δ̃2I implies that V is left invertible. Since V i is a
co-analytic complement of V , Theorem 2.4 implies that 2 =⇒ 1.

To prove Theorem 2.4 we will need the following two well known results.
Recall, that given Φ ∈ L∞

E→E∗ , Hankel and Toeplitz operators HΦ and TΦ

with symbol Φ are defined as

HΦ : H2
E → (H2

E∗)
⊥ HΦf := P−(Φf)′

TΦ : H2
E → H2

E∗ TΦf := P+(Φf),

where P+ and P− are orthogonal projections onto H2 and (H2)⊥ respec-
tively.

Theorem 2.7 (Arveson [1], Sz.-Nagy–Foias [11]). Let F ∈ H∞
E→E∗. The

following two statements are equivalent:
1. The function F is left invertible in H∞, i.e. there exists G ∈ H∞

E∗→E
such that GF ≡ I;

2. The Toeplitz operator TF is left invertible, that is

inf
f∈H2

E ,‖f‖=1
‖TF f‖ =: δ > 0.

Moreover, the best possible norm of a left inverse G is exactly 1/δ.

This theorem also can be found in the monograph [6], see Theorem 9.2.1
there.
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Note, that this theorem is stated slightly differently in different papers.
For example, Theorem 9.2.1 in [6] states that F is right invertible in H∞ if
and only if TF ∗ is left invertible: applying it to F T we get the statement of
Theorem 2.7. Similarly, the theorem in [11] states that F is left invertible
in H∞ if and only if TF# is left invertible, where F#(z) := F (z). Again,
applying this theorem to F (z) we get Theorem 2.7.

Lemma 2.8. Let F ∈ L∞
E→E∗, and let F (ξ) be an isometry a.e. on T. Then

Toeplitz operator TF is left invertible if and only if ‖HF ‖ < 1 (HF is the
Hankel operator). Moreover, ‖HF ‖2 = 1 − δ2, where

δ := inf
f∈H2

E ,‖f‖=1
‖TF f‖

Proof. Clearly Ff = TF f + HF f for f ∈ H2
E , so

‖f‖2 = ‖Ff‖2 = ‖TF f‖2 + ‖HF f‖2,

and the lemma follows immediately.

Proof of Theorem 2.4. Let G ∈ H∞
E∗→E be a left inverse of F , that is GF ≡

I. Then F T GT ≡ I, and for P ∈ H∞
E∗→E∗ , P := GT F T we have

P2 = GT (F T GT )F T = GT F T = P,

so P(z) is a projection a.e. on T (and ∀z ∈ D). Since

P(z)GT (z)e = G(z)T F (z)T G(z)T e = G(z)T e ∀e ∈ E∗,

we can conclude that P(z)E∗ = G(z)T E a.e. on T, as well as ∀z ∈ D. Since
GT is left invertible, kerP(z) = kerF (z)T a.e. on T (and ∀z ∈ D). So, for
the complementary projection Q(z), Q := I − P we have

Q(z)E∗ = ker F (z)T , a.e. on T (and ∀z ∈ D).

Note, that Q(z) �≡ 0 because F is not right invertible in H∞. Taking V to
be the inner part of Q we see that F has a co-analytic complement.

Now let us prove the rest of the theorem. Since F is left invertible,
Theorem 2.7 implies that

inf
f∈H2

E ,‖f‖=1
‖TF f‖ =: δ > 0.

By Lemma 2.8 ‖HF ‖2 = 1 − δ2 (recall that F (ξ) is an isometry a.e. on T).
Consider the operator valued function W = [F , V ] ∈ H∞

E⊕E1→E∗ ,

W (z)(e ⊕ e1) = F (z)e + V (z)e1, e ∈ E, e1 ∈ E1, z ∈ T,

where V ∈ H∞
E1→E∗ is the inner and co-outer function from the definition of

the co-analytic complement. Recall (see the beginning of the section) that
the function W takes unitary values a.e. on T.

Consider Hankel operator H
W

. Its symbol is obtained from F by adding
an analytic block, so H

W
differs from HF by a zero block. Hence

‖H
W
‖2 = ‖H

F
‖2 = 1 − δ2
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and the Toeplitz operator T
W

is left invertible.
Let us show that the adjoint operator T ∗

W
= T

W ∗ has trivial kernel.
Indeed, let T

W ∗f = 0, f ∈ H2
E∗ . Then

W ∗f =
[

F T f
V ∗f

]
∈ (H2

E⊕E1
)⊥.

Since F ∈ H∞
E→E∗ , this implies F T f ≡ 0. By Lemma 2.2 f = V g, g ∈ H2

E ,
thus g ≡ 0 and therefore f ≡ 0. So kerT

W ∗ = {0}.
The operator T

W
is left invertible and kerT ∗

W
= {0}, that means TW is

invertible. By Lemma 2.8 ‖H
W ∗‖2 = 1 − δ2. Since W ∗ differs from V ∗ by

an analytic block, Hankel operators H
V ∗ and H

W ∗ differ by a zero block,
thus

‖H
V ∗‖2 = ‖H

W ∗‖2 = ‖H
W ∗‖2 = 1 − δ2.

By the Nehari theorem ‖H
V ∗‖ = dist

L∞ (V ∗, H∞), and since the transposi-
tion does not change the norm in an operator valued L∞ and V = (V ∗)T ,

‖H
V
‖ = dist

L∞ (V , H∞) = dist
L∞ (V ∗, H∞) = ‖H

V ∗‖ =
√

1 − δ2 .

Therefore, by Theorem 2.7 the Toeplitz operator T
V

is left invertible, and
thus V is left invertible in H∞.

3. Main construction and the proof of Theorem 1.1.

For δ < 1/3 let α > 0 be a small number such that

δ

1 − α
=: δ′ <

1
3
.

Define a := δ′/(1 − δ′), so a/(1 + a) = δ′. Note, that a < 1/2.
Consider (n + 1) × n matrix F ∈ H∞,

F =




ϕ1(z) 0 0 0 . . . 0
−a ϕ2(z) 0 0 . . . 0
0 −a ϕ3(z) 0 . . . 0
0 0 −a ϕ4(z) . . . 0
...

...
...

. . . . . .
...

0 0 0 0
. . . ϕn(z)

0 0 0 0 . . . −a




,

where ϕk are some inner functions to be chosen later. Another way to
describe F is to say that its columns Fk can be represented as

Fk = ϕk(z)ek − aek+1,

where ek, k = 1, 2, . . . , n + 1 is the standard basis in C
n+1.
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It is easy to check that the n + 1 dimensional vector-function (column)

V =
(

1 − a2

1 − a2n+2

)1/2




an

an−1ϕ1

an−2ϕ1ϕ2

. . .
aϕ1ϕ2 . . . ϕn−1

ϕ1ϕ2 . . . ϕn




is inner and co-outer, and that V is orthogonal to the columns of F . Let us
now assume that ϕn has zero, for example that ϕn(0) = 0. Then ‖V (0)‖ =
an

√
(1 − a2)/(1 − a2n+2) < an/

√
1 + a2, so the norm of a left inverse to the

column V is at least
√

1 + a2/an.
It is easy to see that ‖F‖∞ ≤ 1 + a (1 comes from the main diagonal, a

from the one below).
Suppose, that we can pick the inner functions ϕk such that

‖F (z)e‖ ≥ (1 − α)a‖e‖, ∀z ∈ D,∀e ∈ C
n,

where α > 0 is from the beginning of this section.
Then for the inner part Fi of F

‖e‖ ≥ ‖Fi(z)e‖ ≥ (1 − α)a
1 + a

‖e‖ = δ‖e‖, ∀z ∈ D,∀e ∈ C
n.

Theorem 2.7 implies that the norm of an analytic left inverse to Fi is at least√
1 + a2/an. Since

δ′ =
δ

1 − α
→ δ, a =

δ′

1 + δ′
→ δ

1 + δ
as α → 0,

and α can be chosen arbitrarily small, we can construct a function Fi such
that the norm of any H∞ left inverse is at least [δ/(1−δ)]−n and the theorem
is proved.

To construct functions ϕk, pick an integer N such that (2a)N < αa. Put
ϕ1(z) = z, ϕ2(z) = zN , ϕ3(z) = zN2

, . . . , ϕn(z) = zNn−1
. In other words,

ϕ1(z) ≡ z, ϕn+1 = ϕN
n . Then for any fixed z the inequality

αa ≤ ϕk(z) ≤ 2a

holds for at most one k = k(z) (it may happen that for a some z it does not
hold for any k). Fix z ∈ D, and let k = k(z) be such number. Then in the
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matrix F (z) below

F (z) =




ϕ1

−a ϕ2

−a . . . 0
. . . ϕk−1

0 0 . . . −a ϕk 0 . . . 0
−a ϕk+1

−a
. . .

0 . . . ϕn

−a




in both, upper left and lower right blocks, the main diagonal dominates
the other non-trivial one. Therefore, both the upper left and the lower
right blocks are invertible with the estimates of the norm of the inverse
1/a and a−1(1 − α)−1 respectively. So, if we delete the kth row, we get a
(block diagonal) invertible operator with the norm of the inverse at most
a−1(1 − α)−1.

Since adding an extra row does not spoil left invertibility, we conclude
that F (z) is left invertible and

‖F (z)e‖ ≥ (1 − α)a‖e‖, ∀e ∈ C
n

4. Proof of Theorem 1.2.

Consider an operator-valued function F ,

F =




ϕ1(z) 0 0 0 . . . 0 . . .
−a ϕ2(z) 0 0 . . . 0 . . .
0 −a ϕ3(z) 0 . . . 0 . . .
0 0 −a ϕ4(z) . . . 0 . . .
...

...
...

. . . . . .
...

0 0 0 0
. . . ϕn(z) . . .

0 0 0 0 . . . −a . . .
...

...
...

...
...

. . .




,

which is an infinite dimensional analogue of the function F constructed in
the previous section. Here a, ϕ1, . . . , ϕn, . . . are exactly the same as in
Section 3. As in Section 3 we can show that

(1 + a)2I ≥ F ∗(z)F (z) ≥ (1 − α)2a2I ≥ δ2I.
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Note, that for z ∈ D operator F (z) is not onto: subspace (F (z)E)⊥ is
spanned by the vector

V :=




1
ϕ1/a

ϕ1ϕ2/a2

...
ϕ1ϕ2 . . . ϕn/an

...




On the other hand, it is easy to see that the operators F (z) are invertible
a.e. on T (the main diagonal dominates), so according to Corollary 2.6, F
does not have a left inverse. To get the statement about inner function, it
is sufficient to take the inner part of F .

To prove that it is possible to pick F such that F (z)E has codimension 1
a.e. on T, let us first notice that for the vector V above

lim
|z|→1−

‖V (z)‖ = ∞.

Therefore it is possible to find a simply connected domain D ⊂ D with
C∞-smooth boundary, which touches T exactly at one point, such that∫

∂D
log ‖V (z)‖ · |dz| = +∞.

Since for such domains the harmonic measue is equivalent to the arclength
|dz|, we can replace |dz| by the harmonic measure, and still get +∞ in the
integral. Note also, that everywhere on ∂D except the point ∂D ∩ T, the
codimension of F (z)E is 1.

So, if ω : D → D is a conformal mapping, then for F1 := F ◦ω, V1 := V ◦ω
we have that for all z ∈ clos D except one point on T

(F1(z)E)⊥ = spanV 1(z).

Notice, that also

lim
r→1−

∫
rT

log ‖V1(z)‖ · |dz| =
∫

T

log ‖V1(z)‖ · |dz| = +∞.(4.1)

But it is easy to see that F1 is not left invertible in H∞. Indeed, if F is
left invertible in H∞, Corollary 2.6 asserts that there exist a vector function
v ∈ H∞

E∗
= H∞

C→E∗
such that

(F (z)E)⊥ = span v(z)

for all z ∈ D and a.e. on T. Any such function must be represented as
v(z) = u(z)V1(z) where u is a scalar function. Since ‖V1(z)‖ ≥ 1 the function
u must be bounded, and since both v and V1 are holomorphic in D, the
function u also must be holomorphic. Therefore u ∈ H∞, which is impossible
because of (4.1).
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5. Some open problems.

In this section we discuss some open problem concerning the Operator
Corona Problem. Of course, the ultimate problem is to find a local neces-
sary and sufficient condition for left invertibility of F ∈ H∞

E→E∗ . But this
is probably hopeless, so there are several problems that seem to be more
tractable.

5.1. Operator Corona for large δ. Does there exist δ > 0 (close to 1)
such that for any F ∈ H∞

E→E∗ the inequality

I ≥ F (z)∗F (z) ≥ δ2I

implies that there exists G ∈ H∞
E∗→E such that GF ≡ I?

The counterexample constructed in this paper works only for δ < 1/3,
the method from [13] gives counterexample for δ < 1/

√
2.

5.2. Role of the co-analytic complement. As Theorem 2.4 asserts, if
F ∈ H∞

E→E∗ is invertible, there exists a left invertible G ∈ H∞
E1→E∗ such that

kerF (z)T = V (z)E1 a.e. on T.
Suppose F ∈ H∞

E→E∗ satisfies

F (z)∗F (z) ≥ δ2I ∀z ∈ D,

and suppose we know that there exists V H∞
E1→E∗ such that kerF (z)T =

V (z)E1 a.e. on T also satisfying the Corona Condition

V (z)∗V (z) ≥ ε2I.

Does this imply that F is left invertible in H∞?
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