
AN OPERATOR CORONA THEOREM.

SERGEI TREIL

Abstract. In this paper some new positive results in the Operator Cor-
ona Problem are obtained in rather general situation. The main result
is that under some additional assumptions about a bounded analytic
operator-valued function F in the unit disc D the condition

F ∗(z)F (z) ≥ δ2I ∀z ∈ D (δ > 0)

implies that F has a bounded analytic left inverse. Typical additional
assumptions are (any of the following):
(1) The trace norms of defects I−F ∗(z)F (z) are uniformly (in z ∈ D)

bounded. The identity operator I can be replaced by an arbitrary
bounded operator here, and F ∗F can be changed to FF ∗;

(2) The function F can be represented as F = F0 + F1, where F0 is a
bounded analytic operator-valued function with a bounded analytic
left inverse, and the Hilbert–Schmidt norms of operators F1(z) are
uniformly (in z ∈ D) bounded.

It is now well-known that without any additional assumption, the condi-
tion F ∗F ≥ δ2I is not sufficient for the existence of a bounded analytic
left inverse.

Another important result of the paper is the so-called Tolokonnikov’s
Lemma which says that a bounded analytic operator-valued function has
an analytic left inverse if and only if it can be represented as a “part”
of an invertible bounded analytic function. This result was known for
operator-valued function such that the operators F (z) act from a finite-
dimensional space, but the general case is new.

Contents

Notation 2
0. Introduction 2
1. Main results 4
2. Preliminaries 5
3. Proof of Theorem 2.2. 7
4. Embedding theorems and Carleson measures 9
5. Main estimates 11
6. Proof of Tolokonnikov’s Lemma (Theorem 1.2 ) 13
References 15

Date: April, 2004.
This research is partially supported by the NSF grant.

1



2 SERGEI TREIL

Notation

D Open unit disk in the complex plane C, D := {z ∈ C : |z| < 1};
T Unit circle, T := ∂D = {z ∈ C : |z| = 1};
dµ measure on D defined by dµ = 2

π log 1
|z|dxdy;

∂, ∂̄ ∂ and ∂̄-operators, ∂ = 1
2( ∂

∂x − i ∂
∂y ), ∂̄ = 1

2( ∂
∂x + i ∂

∂y );

∆̃ “normalized” Laplacian, ∆̃ = ∂∂̄ = 1
4∆ = 1

4( ∂2

∂x2 + ∂2

∂x2 );

H2, H∞ Hardy classes of analytic functions,

Hp :=
{

f ∈ Lp(T) : f̂(k) :=
∫

T
f(z)z−k |dz|

2π
= 0 for k < 0

}
.

Hardy classes can be identified with spaces of analytic in the
unit disk D functions: in particular, H∞ is the space of all
bounded analytic in D functions;

‖ · ‖, . norm; since we are dealing with vector- and operator-valued
functions, we will use the symbol ‖ . ‖ (usually with a subscript)
for the norm in a functions space, while . is used for the norm
in the underlying vector (operator) space. Thus for a vector-
valued function f the symbol ‖f‖2 denotes its L2-norm, but the
symbol f stands for the scalar-valued function whose value
at a point z is the norm of the vector f(z);

H2
E vector-valued Hardy class H2 with values in E;

L∞E→E∗
class of bounded functions on the unit circle T whose values are
bounded operators from E to E∗;

H∞
E→E∗

operator Hardy class of bounded analytic functions whose val-
ues are bounded operators from E to E∗;

‖F‖∞ := sup
z∈D

F (z) = esssup
ξ∈T

F (ξ) ;

HΦ, TΦ Hankel and Toeplitz operators with symbol Φ.
Throughout the paper all Hilbert spaces are assumed to be separable. We

always assume that in any Hilbert space an orthonormal basis is fixed, so
any operator A : E → E∗ can be identified with its matrix. Thus besides
the usual involution A 7→ A∗ (A∗ is the adjoint of A), we have two more:
A 7→ AT (transpose of the matrix) and A 7→ A (complex conjugation of
the matrix), so A∗ = (A)T = AT . Although everything in the paper can
be presented in invariant, “coordinate-free” form, use of transposition and
complex conjugation makes the notation easier and more transparent.

0. Introduction

The Operator Corona Problem is to find a (preferably local) necessary
and sufficient condition for a bounded operator valued function F ∈ H∞

E→E∗
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to have a left inverse in H∞, i.e. a function G ∈ H∞
E∗→E such that

(B) G(z)F (z) ≡ I ∀z ∈ D.

Such equations are sometimes called in the literature the Bezout equations,
and “B” here is for Bezout. The simplest necessary condition for (B) is

(C) F ∗(z)F (z) ≥ δ2I, ∀z ∈ D (δ > 0)

(the tag “C” is for Carleson).
If the condition (C) implies (B), we say that the Operator Corona Theo-

rem holds.
The Operator Corona Theorem plays an important role in different ar-

eas of analysis, in particular in Operator Theory (angles between invariant
subspaces, unconditionally convergent spectral decompositions, see [8, 9, 16,
17]), as well as in Control Theory and other applications.

Let us discuss the cases when the Operator Corona Theorem holds.
The first case is dim E = 1, dim E∗ = n < ∞. In this case F =

[f1, f2, . . . , fn]T , G = [g1, g2, . . . , gn] and it is simply the famous Carleson
Corona Theorem [4], see also [6, Chapter VIII], [9, Appendix 3].

Later, using the ideas from the T. Wolff’s proof of the Carleson Corona
Theorem, M. Rosenblum [11], V. Tolokonnikov [14] and Uchiyama [20] in-
dependently proved that the Operator Corona Theorem holds if dim E = 1,
dim E∗ = ∞.

Using simple linear algebra argument, P. Fuhrmann [5] proved that the
Operator Corona Theorem holds if dim E,dim E∗ < ∞, and later V. Vasyun-
in [14]1 extended this result to the case dim E∗ = ∞ (but still dim E < ∞).

And finally, a trivial observation: if F (z)E = E∗ ∀z ∈ D, then the left
invertibility (C) implies the invertibility of F (z), and so we can simply put
G = F−1. So in this case the Operator Corona Theorem holds as well.

As for the general Operator Corona Theorem, it was shown earlier by
the author ([15], see also [16]) that it fails if dim E = +∞. Recently it was
shown by the author in [18], that the Operator Corona Theorem fails (if
dim E = ∞) even if codim(F (z)E) = 1 ∀z ∈ D, (i.e. if F is very close to the
“square” case F (z)E = E∗ ∀z ∈ D, for which the theorem holds)

Note, that for a long time there were no positive results in the infinite-
dimensional case (dim E = ∞). Probably the first positive results in this
case are the recent results of P. Vitse [21]. She proved that the Operator
Corona Theorem holds for operator-valued functions which can be uniformly
approximated by finite sums

∑
ϕk(z)Ak, where ϕk are scalar functions in

H∞ and Ak are constant bounded operators. For such functions the im-
age F (D) of the unit disc is a relatively compact (in norm) subset of the
space of bounded linear operators, and she also studied different classes of
functions for which this condition (relative compactness) alone implies the

1It is not a typo, Vasyunin’s result was indeed published (with attribution) in the
Tolokonnikov’s paper.
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Operator Corona Theorem.2 Her technique involved using compactness and
the Grothendieck approximation property.

In this paper we prove another group of positive results in infinite-
dimensional case. Namely, we show that if an operator-valued function
F is a “small” perturbation of a “nice” function F0 (for example, if F0 is
left invertible in H∞ and F −F0 belongs to H∞ with values in the class S2

of Hilbert Schmidt operators) then the Operator Corona Theorem holds for
such functions

Note, that although this theorem might look like a result obtained from
the matrix case using some approximation type reasoning, it is not. While
there is some use of approximation in the proof, it is only used as a simple
way to justify existence of trace in one of the formulas (see Section 2.1.1
below), and the Matrix Corona Theorem is not used anywhere in the paper.

Moreover, it is probably impossible to get the results using matrix results
and approximation! Namely, one can hope to get such result by approxi-
mation, if the constants in the matrix Corona Theorem grow not too fast
when dim E → ∞. But as it was recently shown in [18], the norm of the
solution grown (at least) exponentially in dim E, so it seems hopeless to use
approximation methods.

1. Main results

Let us recall that we say that a function F ∈ H∞
E→E∗

is left invertible in
H∞ if there exists G ∈ H∞

E∗→E such that G(z)F (z) ≡ I ∀z ∈ D (and a.e. on
T).

Theorem 1.1. Let F ∈ H∞
E→E∗

satisfy one of the following conditions:
(1) There exist a constant operator A in E such that

sup
z∈D

A− F ∗(z)F (z)
S1

< ∞;

(2) There exist a constant operator A in E such that

sup
z∈D

A− F (z)F ∗(z)
S1

< ∞;

(3) There exists a constant operator B : E → E∗ such that

F (z) = B + F1(z), sup
z∈D

F1(z)
S2

< ∞.

(4) F can be represented as

F (z) = F0(z) + F1(z),

where F0 ∈ H∞
E→E∗

is left invertible in H∞ and supz∈D F1(z)
S2

<
∞.

2Note, that it is still an open problem whether the relative compactness of F (D) implies

that F can be uniformly approximated by functions of form
∑N

k=1 ϕk(z)Ak.
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Then for such F the Operator Corona Theorem holds, i.e. the condition

F ∗(z)F (z) ≥ δ2I ∀z ∈ D

for some δ > 0 implies that F is left invertible in H∞.

Theorem 1.2 (Tolokonnikov’s Lemma). A function F ∈ H∞
E→E∗

is left in-
vertible in H∞ if and only if it can be extended to an invertible operator
function, i.e. if and only if there exists an auxiliary Hilbert space E1 and a
function F̃ ∈ H∞

E⊕E1→E∗
such that F̃−1 ∈ H∞

E∗→E⊕E1
and

F̃ (z)
∣∣E = F (z) ∀z ∈ D (and a.e. on T)

Note, that the existence of F̃ trivially implies the left invertibility of F .

2. Preliminaries

We will need the following well known theorem.
Recall, that given Φ ∈ L∞E→E∗

, Hankel and Toeplitz operators HΦ and TΦ

with symbol Φ are defined as

HΦ : H2
E → (H2

E∗)
⊥ HΦf := P−(Φf)′

TΦ : H2
E → H2

E∗ TΦf := P+(Φf),

where P+ and P− are orthogonal projections onto H2 and (H2)⊥ respec-
tively.

Theorem 2.1 (Arveson [2], Sz.-Nagy–Foias [13]). Let F ∈ H∞
E→E∗

. The
following two statements are equivalent:

(1) The function F is left invertible in H∞, i.e. there exists G ∈ H∞
E∗→E

such that GF ≡ I;
(2) The Toeplitz operator TF is left invertible, that is

inf
f∈H2

E ,‖f‖2=1
‖TF f‖2 =: δ > 0.

Moreover, the best possible norm of a left inverse G is exactly 1/δ.

This theorem also can be found in the monograph [8], see Theorem 9.2.1
there.

Note, that this theorem is stated slightly differently in different papers.
For example, Theorem 9.2.1 in [8] states that F is right invertible in H∞ if
and only if TF ∗ is left invertible: applying it to F T we get the statement of
Theorem 2.1. Similarly, the theorem in [13] states that F is left invertible
in H∞ if and only if TF# is left invertible, where F#(z) := F (z). Again,
applying this theorem to F (z) we get Theorem 2.1.
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2.1. Reduction to the H2 Corona Problem. According to the above
Theorem 2.1, an operator-valued function F ∈ H∞

E→E∗
is left invertible in H∞

if and only if the Toeplitz operator TF is left invertible. The latter condition
is equivalent to the right invertibility of the adjoint operator (TF )∗ = TF

∗ =
TF T .

Since F T ∈ H∞
E∗→E , the Toeplitz operator TF T is simply the multiplication

by F T . Therefore operator-valued function F ∈ H∞
E→E∗

is left invertible in
H∞ if and only if for any g ∈ H2

E the equation

F T f = g

has a solution g ∈ H2
E∗

satisfying ‖g‖2 ≤ C‖f‖2 (where the constant C does
not depend on g)

The main step in the proof of the main result (Theorem 1.1) is the follow-
ing theorem giving a sufficient condition for solving the equation Ff = g.

Theorem 2.2. Let F ∈ H∞
E∗→E satisfy

F (z)F ∗(z) ≥ δI ∀z ∈ D
for some δ > 0. Let there exist a (real-valued) bounded subharmonic function
ϕ such that its Laplacian ∆ϕ satisfy

∆ϕ(z) ≥ F ′(z) 2 ∀z ∈ D.

Then for any g ∈ H2
E there exists a solution f ∈ H2

E∗
of the equation

Ff = g

satisfying the estimate ‖f‖2 ≤ C‖g‖2, where C = C(δ, ‖ϕ‖∞, ‖F‖∞).

2.1.1. Getting Theorem 1.1 from Theorem 2.2. As it was discussed above,
a function F ∈ H∞

E→E∗
is left invertible in H∞ if and only if for any g ∈ H2

E
the equation

F T f = g

has a solution f ∈ H2
E∗

satisfying ‖f‖2 ≤ C‖g‖2 (where the constant C does
not depend on g).

According to Theorem 2.2 this happens if one can find a subharmonic
function ϕ satisfying

∆ϕ(z) ≥ (F T )′(z) 2 = F ′(z) 2 ∀z ∈ D.

If F satisfies assumption 1 of Theorem 1.1 we put ϕ(z) = trace{A −
F ∗(z)F (z)} (replacing A by Re A = (A + A∗)/2 if necessary we can assume
without loss of generality that A = A∗) so

∆ϕ(z) = 4∂∂̄ trace{A− F ∗(z)F (z)} = 4 trace{(F ′(z))∗F ′(z)}
= 4 F ′(z) 2

S2
≥ 4 F ′(z) 2.

Formally, the above reasoning is only a general idea, not a formal proof, be-
cause we do not know that the trace appearing during differentiation exists.
However it can be easily fixed by using some approximation reasons. For
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example, the above reasoning works fine if dim E < ∞, so all operators are
finite rank ones, so there is no question about trace. So, if Pn is an increas-
ing sequence of orthogonal projections in E, such that Pn → I strongly as
n →∞, then for ϕn = trace(Pn(A− F ∗F )Pn

∆ϕn(z) = 4 trace{Pn(F ′(z))∗F ′(z)Pn} = 4 F ′(z) 2
S2

≥ 4 F ′(z)Pn
2,

and from here it follows that ∆ϕn(z) is an increasing sequence of subhar-
monic functions.

Since ϕn → ϕ pointwise as n →∞, and

PnF ′(z) 2
S2

↗ F ′(z) 2
S2

, ∀z ∈ D
as n →∞, one can conclude that indeed

∆ϕ(z) = 4 F ′(z) 2
S2

≥ 4 F ′(z) 2.

We leave details as an exercise for the reader.
Similarly, for F satisfying assumption 2 of Theorem 1.1 we can define ϕ

as
ϕ(z) = tr{A− F (z)F ∗(z)}.

If F satisfies assumption 3 of the theorem, we put

ϕ(z) = trace(F ∗
1 (z)F1(z)) = F1(z) 2

S2
.

Finally, let us suppose that F satisfies assumption 4 of the theorem. Let
us recall that F is represented as F = F0 + F1, where F0 is left invertible in
H∞. By Tolokonnikov’s Lemma (Theorem 1.2), F0 can be extended to an
invertible (in H∞) function F̃0 ∈ H∞

E⊕E1→E∗
. Since F̃0

∣∣∣E = F, , we have

(F̃0(z))−1F (z) ≡ V,

where V : E → E ⊕ E1 is an isometry whose matrix with respect to the
decomposition E ⊕ E1 is (

I
O

)
.

Therefore the function Φ = F̃−1
0 F = V + F̃−1

0 F1 satisfies the assumption
3 of the theorem. Clearly,

Φ∗(z)Φ(z) ≥ δI, ∀z ∈ D (δ > 0),

so Φ is left invertible in H∞. Hence, F is also left invertible in H∞.

3. Proof of Theorem 2.2.

3.1. Preliminaries. Our goal is for a given g ∈ H2 := H2
E , ‖g‖2 = 1 to

solve the equation

(3.1) Ff = g, f ∈ H2
E∗

with the estimate ‖f‖2 ≤ C. By a normal families argument it is enough
to suppose that F and g are analytic in a neighborhood of D. Any estimate
obtained in this case can be used to find an estimate when F is only analytic
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on D. Since F (z)F ∗(z) ≥ δ2I, it is easy to find a non-analytic solution f0 of
(3.1),

f0 := Φg := F ∗(FF ∗)−1g.

To make f0 into an analytic solution, we need to find v ∈ L2
E∗

such that
f := f0 − v ∈ H2 and v(z) ∈ ker F (z) a.e. on T. Then

Ff = F (fo − v) = Ffo − Fv = g,

and we are done. The standard way to find such v is to solve a ∂-equation
with the condition v(z) ∈ ker F (z) insured by a clever algebraic trick. This
trick also admits a “scientific” explanation, for one can get the desired for-
mulas by writing a Koszul complex. What we do in this paper essentially
amounts to solving the ∂-equation ∂v = ∂f0 on the holomorphic vector bun-
dle ker F (z). Following the ideas of Matts Andersson [1], which go back to
Bo Berndson [3] we use tools from complex differential geometry to solve
the corona problem by finding solutions to the ∂-equation on holomorphic
vector bundles.

Since our target audience consists of analysts, all differential geometry
will be well hidden. Our main technical tool will be Green’s formula

(3.2)
∫

T
u dm− u(0) =

1
2π

∫
D

∆u log
1
|z|

dxdy.

Instead of the usual Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 it is more convenient for us to

use the normalized one ∆̃ := 1
4∆ = ∂∂ = ∂∂. If we denote by µ the measure

defined by

dµ =
2
π

log
1
|z|

dxdy,

then Green’s formula can be rewritten as

(3.3)
∫

T
u dm− u(0) =

∫
D

∆̃u dµ.

3.2. Set-up. To find the function v we will use duality. We want f0 − v ∈
H2(E), therefore the equality∫

T
〈f0, h〉 dm =

∫
T
〈v, h〉 dm

must hold for all h ∈ (H2)⊥. Using Green’s formula we get∫
T
〈f0, h〉 dm =

∫
T
〈Φg, h〉 dm =

∫
D

∂∂ [〈Φg, h〉] dµ =
∫

D
∂

[
〈∂Φg, h〉

]
dµ.

Here we used the harmonic extension of h, so h is anti-analytic and h(0) = 0.
The functions Φ := F ∗(FF ∗)−1 and g are already defined in the unit disc
D.

Now the critical moment: let Π(z) := P
ker F (z)

be the orthogonal pro-

jection onto kerF (z), Π = I − F ∗ (FF ∗)−1 F . Direct computation shows
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that ∂Φ = Π(∂Φ)∗(FF ∗)−1, so Π∂Φ = ∂Φ. Therefore, if we define a vector
valued function ξ on D by ξ(z) := Π(z)h(z), then∫

D
∂

[
〈∂Φg, h〉

]
dµ =

∫
D

∂
[
〈∂Φg,Πh〉

]
dµ =

∫
D

∂
[
〈∂Φg, ξ〉

]
dµ =: L(ξ).

Suppose we are able to prove the estimate

(3.4) |L(ξ)| ≤ C‖ξ‖2, ∀ξ = Πh, h ∈ H2(E)⊥.

Then (by a Hilbert space version of Hahn–Banach Theorem, which is trivial)
L can be extended to a bounded linear functional on L2(E), so there exists
a function v ∈ L2(E), ‖v‖2 ≤ C, such that

L(ξ) =
∫

T
〈v, ξ〉 dm, ∀ξ = Πh, h ∈ H2(E)⊥.

Replacing v by Πv we can always assume without loss of generality that
v(z) ∈ ker F (z) a.e. on T. By the construction∫

T
〈v, h〉 dm =

∫
T
〈v,Πh〉 dm = L(Πh) =

∫
T
〈Φg, h〉 dm ∀h ∈ H2(E)⊥,

so v− f0 = v−Φg ∈ H2(E). Therefore, to prove the main theorem we only
need to prove the estimate (3.4).

We will need the following lemma, which is proved by direct computations.

Lemma 3.1. For Π and Φ defined above we have

∂Π = −F ∗ (FF ∗)−1 F ′Π

∂̄Φ = Π
(
F ′)∗ (FF ∗)−1

∂∂̄Φ = ∂Π(F ′)∗(FF ∗)−1 − (∂Φ)F ′Φ = ∂Π∂Φ + (∂Π)∗ΦF ′Φ

4. Embedding theorems and Carleson measures

As it is well known, Carleson measures play a prominent role in the proof
of the Corona theorem, both in Carleson’s original proof and in T. Wolff’s
proof and subsequent modifications. It is also known to the specialists, that
essentially all 3 Carleson measures can be obtained from the Laplacian of
a bounded subharmonic function. We will need the following well-known
theorem, see [9, 8], which was probably first proved by Uchiyama.

Theorem 4.1 (Carleson Embedding Theorem). Let ϕ ≥ 0 be a bounded
subharmonic function. Then for any f ∈ H2(E)∫

D
∆̃ϕ(z) · f(z) 2dµ(z) ≤ e‖ϕ‖∞‖f‖2

2.

Here dµ = 2
π log 1

|z|dx, and ∆̃ = 1
4∆∂∂.

3By “essentially all” we mean here that a Carleson measure should first be mollified,
to make it smooth, and then it can be obtained from the Laplacian of a subharmonic
function.
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Proof. Because of homogeneity, we can assume without loss of generality
that ‖ϕ‖∞ = 1. Direct computation shows that

∆̃
(
eϕ(z) f(z) 2

)
= eϕ∆̃ϕ f 2 + eϕ ∂ϕf + ∂f 2 ≥ ∆̃ϕ · f 2.

Then Green’s formula implies∫
D

∆̃ϕ f 2 dµ ≤
∫

D
∆̃

(
eϕ f 2

)
dµ

=
∫

T
eϕ f 2 dm− eϕ(0) f(0) 2 ≤ e

∫
T

f 2 dm = e ‖f‖2
2.

�

Remark 4.2. It is easy to see, that the above Lemma implies the embedding∫
D f 2 dµ ≤ C

∫
T f 2 dm (with C = e) for all analytic functions f . Using

the function 4/(2− ϕ) instead of eϕ it is possible to get the embedding for
harmonic functions with the constant C = 4. We suspect the constants e and
4 are the best possible for the analytic and harmonic embedding respectively.
We cannot prove that, but it is known that 4 is the best constant in the
dyadic (martingale) Carleson Embedding Theorem.

We will need a similar embedding theorem for functions of form ξ = Πh,
h ∈ H2(E)⊥. Such functions are not harmonic, so the Carleson Embedding
Theorem does not apply. As a result, the proof is more complicated, and
the constant is significantly worse. We will need several formulas. Recall
that Π(z) = P

ker F (z)
is the orthogonal projection onto kerF (z), Π = I −

F ∗(FF ∗)−1F , and that dµ = 2
π log 1

|z|dxdx.

Lemma 4.3. Let ϕ ≥ 0 be a bounded subharmonic function in D satisfying

∆̃ϕ(z) ≥ ∂Π(z) 2, ∀z ∈ D,

and let K = ‖ϕ‖∞. Then for all ξ of form ξ = Πh, h ∈ H2(E)⊥∫
D

∆̃ϕ(z) ξ(z) 2 dµ(z) ≤ eKeK‖ξ‖2
2

and ∫
D

∂ξ 2 dµ ≤ (1 + eKeK)‖ξ‖2
2.

Proof. Let us take arbitrary subharmonic ϕ ≥ 0 and compute ∆̃
(
eϕ ξ 2

)
.

Lemma 3.1 implies that Π∂Π = 0 and ∂ΠΠ = ∂Π. Therefore, using ∂h = 0
we get ∂ξ = ∂ (Πh) = ∂Πh + Π∂h = ∂Πh = ∂Πξ, and so

〈∂ξ, ξ〉 = 〈∂ξ,Πξ〉 = 〈∂Πξ,Πξ〉 = 0.

Therefore

∂
(
eϕ ξ 2

)
= eϕ∂ϕ ξ 2 + eϕ〈∂ξ, ξ〉+ eϕ〈ξ, ∂ξ〉 = eϕ∂ϕ ξ 2 + eϕ〈ξ, ∂ξ〉.
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Taking ∂ of this equality (and using again 〈ξ, ∂ξ〉 = 0) we get

∆̃
(
eϕ ξ 2

)
= eϕ

(
∆̃ϕ ξ 2 + ∂ϕξ + ∂ξ 2 + 〈ξ, ∆̃ξ〉

)
.

To handle 〈ξ, ∆̃ξ〉 we take the ∂ derivative of the equation 〈ξ, ∂ξ〉 = 0 to get

〈∂ξ, ∂ξ〉 − 〈ξ, ∂∂ξ〉 = 0,

and therefore 〈ξ, ∆̃ξ〉 = − ∂ξ 2 = − (∂Π)ξ 2. Since ϕ ≥ 0∫
D

(
∆̃ϕ ξ 2 − (∂Π)ξ 2

)
dµ ≤∫

D

(
∆̃ϕ ξ 2 − (∂Π)ξ 2 + ∂̄ϕξ + ∂̄ξ 2

)
eϕdµ =

∫
T

eϕ ξ 2dm;(4.1)

the equality is just Green’s formula (recall that ξ(0) = 0). In the last
inequality replacing ϕ by tϕ, t > 1 we get∫

D

(
t∆̃ϕ ξ 2 − (∂Π)ξ 2

)
dµ ≤

∫
T

etϕ ξ 2dm ≤ etK‖ξ‖2
2

Now we use the inequality ∆̃ϕ ≥ ∂Π 2. It implies ∆̃ϕ ξ 2 − ∂Πξ 2 ≥ 0,
and therefore

(t− 1)
∫

D
∆̃ϕ ξ 2dµ ≤ etK‖ξ‖2

2.

Hence ∫
D

∆̃ϕ ξ 2dµ ≤ min
t>1

etK

t− 1
‖ξ‖2

2 = eKeK‖ξ‖2
2

(minimum is attained at t = 1 + 1/K), and thus the first statement of the
lemma is proved.

To prove the second statement, put ϕ ≡ 0 in (4.1) (we do not use any
properties of ϕ except that ϕ ≥ 0 in (4.1)) to get∫

D

(
∂ξ 2 − (∂Π)ξ 2

)
dµ =

∫
T

ξ 2 dm = ‖ξ‖2
2.

But the second term can be estimated∫
D

(∂Π)ξ 2 dµ ≤
∫

D
∆̃ϕ ξ 2 dµ ≤ eKeK

and therefore
∫

D ∂ξ 2 dµ ≤ (1 + eKeK) · ‖ξ‖2
2 . �

5. Main estimates

As it was already discussed before, to prove the main result (Theorem
1.1) we need to prove Theorem 2.2, the proof of which is (see Section 3) is
reduced to the estimate (3.4), i.e. the estimate

|L(ξ)| =
∣∣∣∣∫

D
∂

[
〈∂Φg, ξ〉

]
dµ

∣∣∣∣ ≤ C‖ξ‖2, ∀ξ = Πh, h ∈ H2(E)⊥;
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here, recall dµ = 2
π log 1

|z|dxdy. Computing ∂ of the inner product we get

L(ξ) =
∫

D
∂

[
〈∂̄Φg, ξ〉

]
dµ

=
∫

D
〈∂∂̄Φg, ξ〉dµ +

∫
D
〈∂̄Φg′, ξ〉dµ +

∫
D
〈∂̄Φg, ∂̄ξ〉dµ

= I + II + III.

The assumption of Theorem 2.2 is that there exists a real-valued function
ϕ ∈ L∞(D), satisfying ∆̃ϕ(z)‖ ≥ ‖F ′(z)‖2, ∀z ∈ D. Note, that without
loss of generality we can assume that ϕ ≥ 0. Since (see Lemma 3.1) ∂Π =
−F ∗ (FF ∗)−1 F ′Π we can conclude that ‖∂Π‖2 ≤ A|∆̃ϕ|,

To estimate the first integral recall that ∂∂̄Φ = ∂Π∂̄Φ + (∂Π)∗ΦF ′Φ. We
get

I =
∫

D
〈∂∂̄Φg, ξ〉dµ =

∫
D

{
〈∂Π∂̄Φg, ξ〉+ 〈(∂Π)∗ΦF ′Φg, ξ〉

}
dµ.

Since (∂Π)∗Π = 0 we have (∂Π)∗ξ = 0, and so 〈∂Π∂̄Φg, ξ〉 = 0. Therefore

I =
∫

D
〈(∂Π)∗ΦF ′Φg, ξ〉dµ =

∫
D
〈ΦF ′Φg, (∂Π)ξ〉dµ,

and the Cauchy–Schwarz inequality implies

|I| ≤
(∫

D
ΦF ′Φg 2dµ

)1/2 (∫
D

(∂Π)ξ 2dµ

)1/2

≤
(∫

D
Φ 4 F ′ 2 g 2dµ

)1/2 (∫
D

(∂Π)ξ 2dµ

)1/2

By the Carleson embedding theorem (Theorem 4.1)∫
D

Φ 4 F ′ 2 g 2dµ ≤ ‖Φ‖4
∞e‖ϕ‖∞‖g‖2

2,

and by Lemma 4.3 ∫
D

(∂Π)ξ 2dµ ≤ C‖ξ‖2
2,

so |I| ≤ C‖g‖2‖ξ‖2.
Let us estimate II:

|II| ≤
∫

D
g′ · ∂̄Φ · ξ dµ ≤

(∫
D

g′ 2dµ

)1/2 (∫
D

∂̄Φ 2 ξ 2 dµ

)1/2

.

We know that
∫

D g′ 2dµ = ‖g‖2
2 − |g(0)|2 ≤ ‖g‖2

2. Using the fact that
∂̄Φ 2 ≤ C F ′ 2 ≤ C∆ϕ, we get using Lemma 4.3∫

D
∂̄Φ 2 ξ 2 dµ ≤ C

∫
D

∆ϕ ξ 2 dµ ≤ C ′‖ξ‖2
2,

so again we have the desired estimate for II, |II| ≤ C‖g‖2‖ξ‖2.
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The last term is estimated similarly to the first one, only simpler:

|III| ≤
∫

D
∂̄Φ · g · ∂̄ξ dµ ≤

(∫
D

∂̄Φ 2 g 2dµ

)1/2 (∫
D

∂̄ξ 2 dµ

)1/2

.

Again, ∂̄Φ 2 ≤ C∆̃ϕ, and so by Theorem 4.1∫
D

∂̄Φ 2 g 2dµ ≤ C

∫
D

∆̃ϕ g 2 dµ ≤ C ′‖g‖2
2.

And Lemma 4.3 implies that∫
D

∂̄ξ 2 dµ ≤ C‖ξ‖2
2

So, Theorem 2.2 is proved.

6. Proof of Tolokonnikov’s Lemma (Theorem 1.2 )

To prove the Tolokonnikov’s Lemma, we need the following surprising but
simple result due to N. Nikolski (personal communication).

Lemma 6.1. Let F ∈ H∞
E→E∗

satisfies

F ∗(z)F (z) ≥ δ2I, ∀z ∈ D.

Then F is left invertible in H∞
E→E∗

(i.e. there exists G ∈ H∞
E∗→E such that

GF ≡ I) if and only if there exists a function P ∈ H∞
E∗→E∗

whose values
are projections (not necessarily orthogonal) onto F (z)E for all z ∈ D (and
a.e. on T).

Remark 6.2. Note that the condition

(6.1) P(ξ)E∗ = F (z)E a.e. on T
(together with all other assumptions of the lemma except the assumption
that (6.1) holds for all z ∈ D) is not sufficient for the left invertibility of F
in H∞.

Indeed, in [18] a function F ∈ H∞
E→E was constructed, which satisfies

F ∗F ≥ δ2I and F (ξ)E = E a.e. on T, but is not left invertible in H∞.
Treating this function as a function in H∞

E→E⊕E1
, where E1 is an auxiliary

Hilbert space, one can see that the function P ∈ H∞
E→E⊕E1

, P(z) ≡ PE

satisfies (6.1), but F is still not left invertible in H∞

Proof of Lemma 6.1. Let F be left invertible in H∞, and let G be one of its
left inverses. Define P ∈ H∞

E∗→E∗
by

P(z) = F (z)G(z).

Direct computation shows that P2 = P, so the values of P are projections.
Since GF ≡ I,

G(z)E∗ = E ∀z ∈ D and a.e. on T.

Therefore

P(z)E∗ = F (z)G(z)E∗ = F (z)E a.e. on T and ∀z ∈ D,
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i.e. P(z) is indeed a projection onto F (z)E.
Suppose now that there exists a projection-valued function P ∈ H∞

E∗→E∗
,

whose values are projections onto F (z)E for all z ∈ D. We want to show
that F is left invertible in H∞.

First of all let us notice that locally, in a neighborhood of each point z0 ∈ D
the function F (z) has analytic left inverse. Indeed, if an operator G0 : E∗ →
E is a constant left inverse to the operator F (z0), i.e. if G0F (z0) = I, then

G0F (z) = I −G0 · (F (z0)− F (z)),

so the inverse of G0F (z) is given by the analytic function

A(z) :=
∞∑

k=0

[G0 · (F (z0)− F (z))]k

defined in a neighborhood of z0. So, A(z)G0 is a local analytic inverse of
F (z).

Since (for a fixed z ∈ D) the operator F (z) is left invertible, it is invertible
if we treat it as an operator from E to F (z)E. Let F †(z) : F (z)E → E be
the inverse of such “restricted” F (z).

Note, that for any (not necessarily analytic) left inverse G̃(z) of F (z)

(6.2) G̃(z)
∣∣ F (z)E = F †(z)

∣∣ F (z)E.

Since P(z) is a projection onto F (z)E, the function G,

G(z) := F †(z)P(z)

is well defined and bounded (since both F † and P are bounded). It is easy
to see that G(z)F (z) ≡ I, so to complete the proof one needs only to show
that G is analytic.

Fix a point z0 ∈ D and let Gz0(z) be a local analytic left inverse of F (z)
defined in a neighborhood of z0. It follows from (6.2) that

G(z) = F †(z)P(z) = Gz0(z)

in a neighborhood of z0, so G(z) is analytic there. Since z0 is arbitrary, G
is analytic in D. �

Proof of Tolokonnikov’s Lemma. Let F ∈ H∞
E→E∗

be left invertible in H∞,
and let P ∈ H∞

E∗→E∗
be a projection-valued function from Lemma 6.1 satis-

fying
P(z)E∗ = F (z)E ∀z ∈ D.

Define a projection-valued function Q ∈ H∞
E∗→E∗

by Q(z) := I−P(z), z ∈ D,
and let

Q = ΘR, Θ ∈ H∞
E1→E∗ is inner, R ∈ H∞

E∗→E1
is outer,

be its inner-outer factorization; here E1 is an auxiliary Hilbert space.
Since the multiplication by Q is a bounded projection in H2

E∗
, the set

E := QH2
E∗ = {f ∈ H2

E∗ : f = Qg, g ∈ H2
E∗}
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is a closed subspace of H2
E∗

. Therefore, by properties of inner-outer factor-
ization

ΘH2
E1

= closQH2
E∗ = QH2

E∗ = E ,

so E = ΘH2
E1

. In particular, this implies that Θ(z)E1 = Q(z)E∗ for all
z ∈ D.

Let us show that kerΘ(z) = {0} for all z ∈ D. Indeed, suppose for
some z0 ∈ D and e ∈ E1 we have Θ(z0)e = 0. Then for f ∈ E defined
by f(z) = Θ(z)e we have f(z0) = 0. Then f1 = f/(z − z0) is in H2

E∗
and

therefore in E . On the other hand g = (z − z0)−1e is the only L2
E1

solution
of

Θ(ξ)g(ξ) = f1(ξ) = f(ξ)/(ξ − z0) a.e. on T,

and g /∈ H2
E1

. Therefore E 6= ΘH2
E1

and we got a contradiction.
Define F̃ ∈ H∞

E⊕E1→E∗
by F̃ := F ⊕Θ, meaning that

F̃ (z)e⊕ e1 = F (z)e + Θ(z)e1, e ∈ E, e1 ∈ E1.

Since for any fixed z ∈ D the subspaces F (z)E = P(z)E∗ and Θ(z)E1 =
Q(z)E∗ are complimentary subspaces (in particular, they have trivial inter-
section), and operators F (z) and Θ(z) have trivial kernels, we have

ker F̃ (z) = {0} ∀z ∈ D.

Direct computation shows that G̃ ∈ H∞
E∗→E⊕E1

defined by

G̃(z)e = F−1(z)P(z)e⊕R(z)e, z ∈ D, e ∈ E∗

is a right inverse for F̃ . Since ker F̃ (z) = {0} for all z ∈ D, we can conclude
that F̃ is invertible in H∞. �
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