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Abstract. We are going to show that the classical Carleson embedding theorem fails for
Hilbert space valued functions and operator measures.

Contre-exemple à un théorème de Carleson sur le plongement
ponderé à valeurs vectorielles.

Résumé. Nous allons montrer que le théorème classique de Carleson sur le plongement
ponderé est faux s’il s’agit des fonctions à valeurs vectorielles et des mesures opératorielles.

Version francaise abrégée

Soient D et T le disque et le cercle unité du plan complexe. Soit H un espace Hilbertien de
dimension n. Soit A l’opérateur de plongement de L2(H;T, dm) dans L2(H;D, dµ) donné par:
f

A7→
∑

I∈D
(
|I|−1

∫
I f dm

)
χ
TI

(z) , f ∈ L2(dm). Les résultats principaux de cette note sont les
suivants:

1) il y a une mesure définie positive µ sur D à valeurs matricielles n × n et avec une intensité
de Carleson bornée par 1 telle que la norme de plongement ‖A‖ est au moins c(log n)1/2;

2) inversement, pour toute telle mesure µ, la norme de plongement ‖A‖ est bornée par C(log n).

1 Formulation of results.

Let T be the unit circle, and {I}I∈D be the collection of its dyadic arcs. H stands for a Hilbert
space, and ( , ) denote its inner product. Let m denote normalized (m(T) = 1) Lebesgue measure
on T. Let µ be a positive operator valued Borel measure in the unit disc D. In particular µ(E) is
a nonnegative operator on H for an arbitrary Borel measurable subset of D.

For an arc I consider the Carleson box Q
I

= {z ∈ D : z/|z| ∈ I, 1 − |I| ≤ |z| < 1} built on
I in D, and let T

I
denote the half of Q

I
, for which |z| < 1 − |I|/2. Let |I| denote the length of

I. Consider the embedding operator: f A7→
∑

I∈D
(
|I|−1

∫
I f dm

)
χ
TI

(z) , f ∈ L2(dm), where D is
the set of all dyadic subarcs of the unit circle T. We are interested in the question, when is the
operator A from L2(H; dm) to L2(H;µ) bounded, i.e., when is

‖Af‖µ def=
(∫
D

(
dµ(z)(Af)(z), (Af)(z)

)
H

)1/2
≤ C‖f‖

L2 =
(∫
T
‖f‖2dm

)1/2
∀f ∈ L2(H;µ) ?
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In general, integration over an operator valued measure µ is a delicate topic. At issue is the meaning
of the integral

∫
D
(
dµ(z)(Af)(z), (Af)(z)

)
H

. However, in our case the function Af is constant on
every T

I
, so the integral is just the sum∑

I∈D

(
µ(T

I
)〈f〉

I
, 〈f〉

I

)
,

where 〈f〉
I

:= |I|−1
∫
I fdm.

The classical Carleson embedding theorem [1] implies (actually it is equivalent to) the following
result in the dyadic setting.

Theorem A. In the scalar case (dimH = 1) the operator A is bounded from L2(dm) to L2(µ)
if and only if

µ(QJ) ≤ C|J |.

Moreover, there exists an absolute constant K such that ‖A‖ ≤ K
√
C.

Corollary B. In the scalar case the embedding operator is bounded from L2(T) to L2(µ) if and
only if it is uniformly bounded on all test functions f = χJ , J ∈ D.

In fact, |J | = ‖χJ‖2L2(dm); µ(QJ) ≤ ‖TχJ‖2L2(µ).
The embedding theorems for the operator A can serve as a simple model of embedding theorems

for the operator H of harmonic extension. The matrix and operator valued embedding theorems
for H play an important role in Weighted Norm Inequalities with operator weights, in the Operator
Corona Problem, and in Control Theory.

In this note we make a nearly sharp dimensional estimates for the norm of embedding operator.
The estimate from below leads to a counterexample to the infinite dimensional Carleson embedding
theorem. Estimates from above are stated mostly for the sake of completeness. To formulate our
results we need the notion of Carleson intensity of operator valued measure.

Carleson intensity of measure. Given an operator valued measure µ on D we call the
following number ‖µ‖C its Carleson intensity:

‖µ‖2C
def= sup

1
|I|‖µ(QI)‖ = sup

I∈D
sup

e∈H:‖e‖=1

1
|I|(µ(QI)e, e) .

Theorem A claims that there exists a universal constant K such that (in the scalar case) the norm
of operator A : L2(dm)→ L2(µ) satisfies ‖A‖ ≤ K‖µ‖C .

If dimH = n, one can trivially get the estimate ‖A‖ ≤ √n‖µ‖C .
The following two theorems are the main results of this note.

Theorem 1.1 Let dimH = n. For any operator valued measure µ the following inequality
holds

‖A‖/‖µ‖C ≤ C(log n) .

Here C <∞ is an absolute constant.

Theorem 1.2 Let dimH = n. There exists an operator valued measure µ such that

‖A‖/‖µ‖C ≥ c(log n)1/2 .

Here c > 0 is an absolute constant.
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Corollary 1.3 There exists a positive operator valued measure in infinite dimensional Hilbert
space with finite Carleson intensity that does not allow bounded embedding.

Theorem 1.1 was proven independently by Nets Hawk Katz in [2]. His argument is based on an
ingenious stopping time procedure.

Acknowledgments. The authors are grateful to Jack Plotkin for reading the manuscript and
making valuable remarks.

2 Proof of Theorem 1.2.

The sought after operator valued measure µ in D will have the form

dµ =
∑

I:I∈D,|I|≥2−n

(·, ϕ
I
)ϕ

I
|I|δc

I
,

where c
I

is the center of T
I
, δc

I
is the unit point mass at c

I
, and the ϕ

I
are certain vectors in H

to be chosen later. To construct ϕ
I

we first choose a sequence {aj}∞j=0 of positive numbers (again
to be fixed later) such that ∑

(j + 1)a2
j ≤ 1 . (2.1)

We define the rank of a dyadic arc J of length 2−j by rk(J) = j. And we define the relative rank
of the dyadic arcs J, I of lengths 2−j , 2−i by rk(J : I) = |j− i|. Also rk denotes the kth Rademacher
function, rk(e2πit) = (−1)b2

ktc, t ∈ [0, 1); here bxc denotes the greatest integer less than or equal to
x. We write rk(z) =

∑
I: rk(I)=k εIχI (z), with εI = ±1. Let {em}nm=0 be a fixed orthonormal basis

in H,dimH = n+ 1. Here is the choice of ϕ
I

(x denotes an arbitrary point of I):

ϕ
I

=
∑
J :I⊂J

a
rk(J :I)

ε
J
e

rk(J)
=

i∑
j=0

ai−jrj(x)ej . (2.2)

2.1 Estimate of Carleson intensity.

Given a vector e ∈ H, e =
∑n

j=0 bjej , and a dyadic arc K, we have to estimate
∑

I:I⊂K |(e, ϕI )|
2|I|.

Fix the arc K and denote by P the orthogonal projection in H onto the linear span of em,m ≤
k

def= rk(K). One can observe that Pϕ
I

=
∑

J :K⊂J ark(J :I)
ε
J
e

rk(J)
=
∑k

j=0 ai−jrj(x)ej depends

only on i def= rk(I), when I ⊂ K, i.e. Pϕ
I

= fi, for I ⊂ K. Using this we can write

φi(x)
def=

∑
I⊂K, rk(I)=i

(e, ϕ
I
)χ

I
(x) =

∑
I,J : rk(I)=i
I⊂JÃK

a
rk(J :I)

b
rk(J)

r
rk(J)

(x)χ
I
(x) + (e, fi)χK (x) =

=

 i∑
j=k+1

ai−jrj(x)ej + (e, fi)

χ
K

(x)
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The orthogonality of the Rademacher functions on K and identity
∫
T φi(x)

2dm =∑
I:rk(I)=i,I⊂K(e, ϕ

I
)2|I| show that after summing by i

∑
I: I⊂K

(e, ϕ
I
)2|I| = |K|

n∑
i=k+1

i∑
j=k+1

a2
i−j b

2
j

+ |K|
∑
i≥k

(e, fi)2 = Σ1 + Σ2 .

The sums can be estimated using (2.1) as follows

Σ1 = |K|
n∑

j=k+1

b2j

n∑
i=j

a2
i−j ≤ |K|

n∑
j=k+1

b2j (
n∑

m=0

a2
m) =

= (
n∑

m=0

a2
m)(

∑
j≥k+1

b2j )|K| ≤ ‖e‖2|K| ,

Σ2 ≤ ‖e‖2|K|
∑
j≥k
‖fj‖2 =

= ‖e‖2|K|
k∑
`=0

n−k+`∑
i=`

a2
i ≤ ‖e‖2|K|

k∑
`=0

n∑
i=`

a2
i ≤ ‖e‖2|K|

n∑
i=0

(i+ 1)a2
i ≤ ‖e‖2|K| .

Thus, (2.1) implies that the Carleson intensity of measure µ, which is built with the help of ϕ
I

from (2.2), is bounded by
√

2.

2.2 Estimate of embedding from below.

We now build an H-valued function E(t), t ∈ T, such that∫
T ‖E(t)‖2H = n + 1 and

∫
D(dµAE,AE)H =

∑
I∈D |(〈E〉I , ϕI )H |

2|I| ≥ a2
0 + (a0 + a1)2 + · · · +

(a0 + a1 + · · ·+ an)2. Here 〈E〉
I
∈ H naturally denotes the average |I|−1

∫
I E(t)dm(t) of E over I.

As
∫
T ‖E(t)‖2Hdm(t) = ‖E‖2L2(H;dm) and

∫
D(dµAE,AE) = ‖AE‖2L2(H;µ), we have

‖A‖ ≥ 1√
n+ 1

[ n∑
`=0

(
∑̀
i=0

ai)2
]1/2

. (2.3)

This estimate finishes the proof. Indeed, it is sufficient to choose aj = β
j+1 , with β = c(log n)−1/2

to have (2.1) satisfied, and to have the right part of (2.3) at least c(log n)1/2.
To choose E we naturally follow the sign pattern for ϕ

I
. E will be a step function of constant

norm, ‖E(t)‖2 ≡ n+ 1. On each dyadic arc I, |I| = 2−n we define

E(t) def=
n∑
k=0

(ϕ
I
, ek)

|(ϕ
I
, ek)|

ek =
n∑
k=0

rk(t)ek . (2.4)

To estimate
∫
D(dµAE,AE)H =

∑
J∈D |(〈E〉J , ϕJ )|2|J | from below let us consider the following

S-function:

S2(E)(t)
def
=
∑
J :t∈J

|(〈E〉
J
, ϕ

J
)|2 . (2.5)
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Actually it is identically constant. In fact, the pattern of signs for 〈E〉
J

is exactly the same as for
ϕ
J
. Namely, for any J such that |J | = 2−`

(〈E〉
J
, ϕ

J
) = a0 + a1 + · · ·+ a` . (2.6)

Therefore, inserting (2.6) into (2.5), we get S2(E)(t) ≡ (a0+a1+· · ·+an)2+(a0+a1+· · ·+an−1)2+
· · · + a2

0. On the other hand, we have the following standard formula
∑

J∈D |(〈E〉J , ϕJ )|2|J | =∫
T S

2(E)(t)dm(t), which is just the change of order of summation and integration. Thus

∫
D
(dµAE,AE)H =

∑
J∈D
|(〈E〉

J
, ϕ

J
)|2|J | ≥

n∑
`=0

(∑̀
k=0

ak

)2

. (2.7)

Thus Theorem 1.2 and also Corollary 1.3 are fully proven.

3 Sketch of the proof of Theorem 1.1.

A detailed proof of Theorem 1.1 can be found in [5] together with the explanation of how to guess
the Bellman function for the problem.

Without loss of generality µ =
∑

I∈D µI |I|δcI , where µ
I

are n×n positive definite matrices and

δc
I

is the unit point mass at the center of T
I
. Let us consider operators M

J

def= |J |−1
∑

I⊂J µI |I|.
Let Id stand for the identity matrix. Assume that Carleson intensity ‖µ‖C ≤ 1, which means that
in the sense of positive operators M

I
≤ Id. We need to prove that for any f ∈ L2(H; dm) with

‖f‖ = 1 the following inequality is satisfied

∑
I∈D

(µ
I
〈f〉

I
, 〈f〉

I
)|I| ≤ C(log n)2 . (3.1)

Notice that the scalar measure ν def= traceµ has the simple intensity estimate ‖ν‖2C ≤ n‖µ‖2C ≤
n. As (µ

I
〈f〉

I
, 〈f〉

I
) ≤ traceµ

I
(〈‖f‖〉

I
)2, one can get the estimate in (3.1) with constant Cn

instead of C(log n)2.
It is clear that the same estimate by Cn follows for the sum

h(z) def=
∑
I∈D

((Id + zM
I
)−1µ

I
(Id + zM

I
)−1〈f〉

I
, 〈f〉

I
)|I|

for arbitrary z, |z| ≤ 1/2, because ‖(Id + zM
I
)−1‖ ≤ 2 for |z| ≤ 1/2.

On the other hand we now obtain a completely different estimate for h(x) for real x ∈ (0, 1/2).
To this end we need to consider the following Bellman functions ([3], [4])

Bx(I)
def= Bx(〈‖f‖2〉I , fI ,MI

) = 〈‖f‖2〉
I
− ((Id + xM

I
)−1〈f〉

I
, 〈f〉

I
).

It is obvious that 0 ≤ Bx(I) ≤ 〈‖f‖2〉I if x ∈ (0, 1/2). On the other hand Bx(I) satisfies the
following crucial concavity inequality (I+, I− are right and left halves of I):

Bx(I) ≥ x((Id + xM
I
)−1µ

I
(Id + xM

I
)−1〈f〉

I
, 〈f〉

I
) +

Bx(I+) +Bx(I−)
2

, (3.2)

which the reader can check by calculation. Let us continue (3.2) to the right by applying (3.2) to
the halves I+ and I−, and then to I++, I+−, I−+, I−− of I± et cetera... . If the starting arc I is the
whole T we will obtain
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xh(x) ≤ ‖f‖2 ≤ 1 . (3.3)

Now we gather the information. The function h, which is holomorphic on {z : |z| ≤ 1/2}, is
bounded by Cn globally in {z : |z| ≤ 1/2}, and also satisfies (3.3) for x ∈ (0, 1/2). Consider h
as an analytic function in Ω := 1

2D \ [(logn)−2, 1/2]. Note that |h| ≤ (log n)2 on [(logn)−2, 1/2],
and that there is a trivial estimate |h| ≤ Cn on 1

2T. Note also that the harmonic measure of 1
2T

with respect to the region Ω and the point 0 is about C/ log n. Using the standard “two constant
lemma” we get h(0) ≤ C(log n)2. But h(0) is the left part of (3.1). So (3.1) is proven, and we are
done with Theorem 1.1.

4 Open questions.

1. The growth of the norm of the embedding operator is between c(log n)1/2 and C log n for
measure with intensity bounded by 1. Which one is sharp?

2. What are the results for the harmonic embedding instead of the dyadic embedding operator
considered in this paper? We think that it is possible to prove similar estimates for the
harmonic embedding operator.

3. In the case of the harmonic embedding of vector valued functions, one suspects that a measure
can be an embedding measure for analytic vector valued functions but not for antianalytic
vector valued functions. What is an example of such a measure?

4. How can one characterize measures, which provide an embedding for analytic vector valued
functions only?
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