ESTIMATES IN THE CORONA THEOREM AND IDEALS OF H^{∞} : A PROBLEM OF T. WOLFF

S. TREIL

The main result of the paper is that there exist functions $f_1, f_2, f \in H^{\infty}$ satisfying the "Corona condition"

$$|f_1(z)| + |f_2(z)| \ge |f(z)| \qquad \forall z \in \mathbb{D},$$

and such, that f^2 does not belong to the ideal \mathcal{I} generated by f_1, f_2 , i. e. f^2 cannot be represented as $f^2 \equiv f_1g_1 + f_2g_2, g_1, g_2 \in H^{\infty}$. This gives a negative answer to an old question by T. Wolff.

Note, that it was well known before that under the same assumptions f^p belongs to the ideal if p > 2, but a counterexample can be constructed for p < 2, so our case p = 2 is a critical one.

To get the main result we improved lower estimates for the solution of the Corona problem. Namely, we proved that given $\delta > 0$ there exist finite Blaschke products f_1 , f_2 satisfying the Corona condition

$$|f_1(z)| + |f_2(z)| \ge \delta \qquad \forall z \in \mathbb{D},$$

and such, that for any $g_1, g_2 \in H^{\infty}$ satisfying $f_1g_1 + f_2g_2 \equiv 1$ (solution of the Corona problem), the estimate $||g_1||_{\infty} \geq C\delta^{-2}\log(-\log \delta)$ holds. The estimate $||g_1||_{\infty} \geq C\delta^{-2}$ was obtained earlier by V. Tolokonnikov.