
ESTIMATES IN THE CORONA THEOREM AND IDEALS
OF H∞: A PROBLEM OF T. WOLFF
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Abstract. The main result of the paper is that there exist functions
f1, f2, f ∈ H∞ satisfying the “Corona condition”

|f1(z)| + |f2(z)| � |f(z)| ∀z ∈ D,

and such, that f2 does not belong to the ideal I generated by f1, f2,
i. e. f2 cannot be represented as f2 ≡ f1g1 + f2g2, g1, g2 ∈ H∞. This
gives a negative answer to an old question by T. Wolff [10].

Note, that it was well known before that under the same assumptions
fp belongs to the ideal if p > 2, but a counterexample can be constructed
for p < 2, so our case p = 2 is a critical one.

To get the main result we improved lower estimates for the solution
of the Corona problem. Namely, we proved that given δ > 0 there exist
finite Blaschke products f1, f2 satisfying the Corona condition

|f1(z)| + |f2(z)| � δ ∀z ∈ D,

and such, that for any g1, g2 ∈ H∞ satisfying f1g1 + f2g2 ≡ 1 (solution
of the Corona problem), the estimate ‖g1‖∞ � Cδ−2 log(− log δ) holds.
The estimate ‖g1‖∞ � Cδ−2 was obtained earlier by V. Tolokonnikov.
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Notation

:= equal by definition;
C the complex plane;
D the unit disc, D := {z ∈ C : |z| < 1};
T unit circle, T := ∂D = {z ∈ C : |z| = 1};
H1, H∞ Hardy spaces: Hp := {f ∈ Lp(T ) : f(z) =

∑∞
0 akz

k}; spaces Hp

can be naturally identified with the spaces of analytic functions
on the disc D. In particular, H∞ consists of all bounded analytic
function on the unit disc D (with the supremum norm);

1. Introduction and main results

1.1. Ideals of H∞. The famous Carleson Corona Theorem states that if
functions f1, f2, . . . , fn ∈ H∞ satisfy

|f1(z)| + |f2(z)| + . . . + |fn(z)| � 1 ∀z ∈ D := {z ∈ C : |z| < 1}
then 1 belongs to the ideal generated by functions f1, f2, . . . , fn, i. e. there
exist functions g1, g2, . . . , gn ∈ H∞ such that

f1g1 + f2g2 + . . . + fngn ≡ 1.

One can try to generalize this result by replacing 1 by an arbitrary func-
tion f ∈ H∞. Namely, one can ask, does the condition

|f1(z)| + |f2(z)| + . . . + |fn(z)| � |f(z)| ∀z ∈ D(1.1)

implies that f belongs to the ideal I generated by f1, f2, . . . , fn, i. e. that
there exist functions g1, g2, . . . , gn ∈ H∞ such that

f1g1 + f2g2 + . . . + fngn ≡ f.

Note, that the above condition (1.1) is clearly necessary.
An example by Rao [7], (see also [4], Chapter VIII) shows that the answer

is negative (if one excludes the trivial case n = 1).
A natural question appears, if some power of f belongs to the ideal I.

Problem A. Let n � 2 and p � 1 be fixed, and let f1, f2, . . . , fn, f ∈ H∞.
Does the condition (1.1) imply that fp belongs to the ideal I generated by
f1, f2, . . . , fn, i. e. that there exist functions g1, g2, . . . , gn ∈ H∞ such that

f1(z)g1(z) + f2(z)g2(z) + . . . + fn(z)gn(z) ≡ f(z)p.

Note, that if f does not have zeroes in the unit disc D, we don’t have to
assume that the exponent p is integer.

There is another natural question to ask:

Problem B. Let n � 2 and p � 1 be fixed, and let f1, f2, . . . , fn, f ∈ H∞.
Does the condition(

|f1(z)| + |f2(z)| + . . . + |fn(z)|
)p � |f(z)| ∀z ∈ D

imply that f belongs to the ideal I generated by f1, f2, . . . , fn?
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Clearly, an affirmative answer to Problem B for some n and p implies the
affirmative answer to the Problem A (for the same n and p).

Problem B is a particular case of the following more general problem.
Let h be a continuous increasing (in a neighborhood of 0) function on

[0,∞).

Problem C. Let n � 2. Suppose functions f1, f2, . . . , fn, f ∈ H∞ satisfy

h
(
|f1(z)| + |f2(z)| + . . . + |fn(z)|

)
� |f(z)| ∀z ∈ D

For which functions h, this condition implies that f belongs to the ideal I
generated by f1, f2, . . . , fn?

It is known that the answers to both Problem A and Problem B are
affirmative for p > 2 and are both negative for p < 2.

Let us also mention a result by U. Cegrell, that Problem C has an affir-
mative answer for h(s) = s2/

(
(− log s)3/2(log(− log s))3/2 log(log(− log s))

)
.

Let us also mention a result by J. Bourgain [1], that if limt→0 h(t)/t = 0,
then condition (1.1) implies that f belongs to the norm closure of the ideal
I. It was also shown in [1] that this statement does not hold for h(t) ≡ t.

Problems A and B for p = 2 had remained open. In the famous problem
book [5] T. Wolff [10] posed a question about Problem A for p = 2.

Main result of the present paper is that the answer is negative. Namely,
the following theorem holds.

Theorem 1.1. There exist functions f1, f2, f ∈ H∞, such that

|f1(z)| + |f2(z)| � |f(z)| ∀z ∈ D,

but f2 does not belong to the ideal I generated by f1, f2, i. e. there are no
functions g1, g2 ∈ H∞ such that f2 ≡ f1g1 + f2g2.

Note, that the above result implies that Problem B for p = 2 also has
negative answer.

1.2. Estimates in the Corona Theorem. Suppose functions f1, f2, . . . ,
fn ∈ H∞ satisfy the estimates

1 �
(
|f1(z)|2 + |f2(z)|2 + . . . + |fn(z)|2

)1/2 � δ > 0 ∀z ∈ D.(1.2)

According to the Carleson Corona Theorem, there exist functions g1, g2, . . . ,
gn ∈ H∞ such that f1g1+f2g2+. . .+fngn ≡ 1. We are interested in estimates
of the norms ‖gk‖∞ of the solution of the Corona Problem.

The best upper estimate known is,(∑
k

|gk(z)|2
)1/2

� C

δ2
(− log δ) ∀z ∈ D.

where C is an absolute constant (not depending on n). It means that for
any corona data satisfying (1.2) one can find a solution satisfying the above
estimates (solution of the Corona Problem is clearly not unique). This
estimate was first proved by Uchiyama [9], see also [6] for another proof.
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A slightly worse estimate
(∑

k |gk(z)|2
)1/2

� C
δ2 (− log δ)3/2 was abtained

inependently by V. Tolokonnikov [8].
Note, that if we do not care about the constant C, and don’t care if it

depends on n, we can replace condition (1.2) by the following one

1 � |f1(z)| + |f2(z)| + . . . + |fn(z)| � δ > 0 ∀z ∈ D.(1.3)

It was also shown by Tolokonnikov in [8], that it is impossible to get a
better estimate than C/δ2. Namely, he constructed functions f1, f2 ∈ H∞

satisfying (1.3) such that for any solution g1, g2 ∈ H∞ of the Corona Problem
(f1g1 + f2g2 ≡ 1) the inequality ‖g1‖∞ � c/δ2 holds.

To prove the main result of the paper we will need a better lower bound.
Before stating the theorem, let us remind the reader that a finite Blaschke

product is a function B that can be represented as B(z) = c·∏n
1 bλk

(z), where
c ∈ T, bλ := (z −λ)/(1−λz), |λ| < 1 (b0 = z), and λk ∈ D. The function bλ

is called Blaschke factor, or Möbius transform.
An equivalent description is that B is a rational function with poles out-

side of the closed unit disk and unimodular on the unit circle T (i. e. satis-
fying |B(z)| = 1 on T).

Theorem 1.2. Given (small) δ > 0, there exist finite Blaschke products
f1, f2 ∈ H∞ with simple zeroes, satisfying

2 � |f1(z)| + |f2(z)| � δ > 0 ∀z ∈ D,

and such, that for any g1, g2 ∈ H∞ satisfying f1g1 +f2g2 ≡ 1, the inequality
‖g1‖∞ � Cδ−2 log(− log δ) (where C is an absolute constant) holds.

As it will be shown later in Section 3, this result implies Theorem 1.1.

2. Interpolation and estimates of the solution of the
(generalized) Corona Problem

In this section we present a well known connection of the (generalized)
Corona Problem with an interpolation problem. Let us consider the case
n = 2. Suppose we are given functions f1, f2, f ∈ H∞ and we want to find
functions g1, g2 ∈ H∞ satisfying

f1g1 + f2g2 = f.(2.1)

Suppose, that the function f2 is a Blaschke product with simple zeroes, and
let σ be the set of its zeroes. Then any function g1 from (2.1) has to be a
solution of the following interpolation problem:

g1(λ) = f(λ)/f1(λ) ∀λ ∈ σ := f−1
1 (0).(2.2)

Moreover, any solution g1 of the interpolation problem (2.2) gives rise to a
solution of the Corona Problem (2.1) (just put g2 = (f − f1g1)/f2).

The general form of the solution g1 of the interpolation problem (2.2) is
g1 = g0

1 +f2ϕ, ϕ ∈ H∞, where g0
1 is some fixed solution. Consider a bounded
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linear functional L on H1,

Lh :=
1

2πi

∫
T

g0
1(z)h(z)/f2(z)dz, h ∈ H1.

By the Hahn–Banach Theorem the functional L admits an extension to L1

with the same norm. Since all bounded linear functionals L̃ on L1 coinciding
with L on H1 can be described by the formula

L̃h :=
1

2πi

∫
T

(g0
1(z)/f2(z) + ϕ(z))h(z)dz, ϕ ∈ H∞, h ∈ L1,

we have

‖L‖ = inf{‖L̃‖ : L̃ ∈ (L1)∗, L̃
∣∣
H1= L} = inf

ϕ∈H∞
‖(g0

1/f2 + ϕ)‖∞

= inf
ϕ∈H∞

‖(g0
1 + f2ϕ)‖∞

So, the smallest possible L∞-norm of the solution g1 is

‖L‖ = sup

{
1

2πi

∫
T

g1(z)h(z)/f2(z)dz : h ∈ H1, ‖h‖1 � 1

}
.

(clearly, the integral does not depend on the choice of g1). The integral
inside the supremum can be computed using residues

1
2πi

∫
T

g1(z)h(z)/f2(z)dz =
∑
λ∈σ

g1(λ)h(λ) resλ(1/f2)

=
∑
λ∈σ

f(λ)
f1(λ)

h(λ) resλ(1/f2).

In what follows f2 will be a finite Blaschke product, so we will not have to
worry about convergence of the sum.

3. From estimates to ideals

In this section we will show how to get Theorem 1.1 from Theorem 1.2.
Pick a sequence of δk > 0, δk ↘ 0, say δk = 2−k.
By theorem 1.2 there exist finite Blaschke products fk

1 , fk
2 with simple

zeroes (k is an index, not an exponent here), satisfying

|fk
1 (z)| + |fk

2 (z)| � δk

and such that any gk
1 ∈ H∞ satisfying fk

1 gk
1 + fk

2 gk
2 ≡ 1 for gk

2 ∈ H∞

is estimated from below ‖gk
1‖∞ � Cδ−2 log(− log δ). As it was discussed

above in Section 2 any such g1 solves the interpolation problem on zeroes of
fk
2 :

gk
1 (λ) = 1/fk

1 (λ), ∀λ ∈ σk := {z ∈ C : fk
2 (z) = 0}.

Therefore, any gk
1 solving the interpolation problem

gk
1 (λ) = (δk)2/fk

1 (λ) =: ak
λ, ∀λ ∈ σk

satisfies the estimate ‖gk
1‖∞ � C log(− log δ).
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Let us remind the reader, that we interpolate in finitely many points, so, if
we perturb the interpolation data ak

λ a little, the solution of the interpolation
problem still has big norm. Namely, there exists εk > 0 such that for any
ãk

λ satisfying |ãk
λ − ak

λ| < εk the solution gk of the interpolation problem

gk(λ) = ãk
λ, ∀λ ∈ σk(3.1)

admits the estimate ‖gk‖∞ � (C/2) log(− log δk).
This follows, for example, from the fact, that Lagrange’s interpolating

polynomial depends continuously on the interpolation data.
Now it is convenient to move everything to the upper half-plane, using

the conformal mapping from the unit disc to the upper half-plane. So, from
now to the end of this section we assume that all functions are bounded
analytic functions on the upper half-plane.

Define outer functions hk by

hk(z) = exp

{
1
πi

∫
Ik

δk

t − z
dt

}
,

where Ik are some appropriate intervals. The functions hk are outer func-
tions such that

|hk(t)| =
{

δk, t ∈ Ik,
1, t ∈ R \ Ik,

and such that hk(∞) = 1.
We assume that intervals Ik are sufficiently large, and that the sets σk

(zeroes of fk
2 ) are close to centers of Ik, so the values of hk on the set σk are

close to δk. Namely, we assume that

| ak
λ − hk(λ)2/fk

1 (λ)| < εk/2 ∀λ ∈ σk,

where, let us recall, ak
λ := (δk)2/fk

1 (λ).
Let us recall that the finite Blaschke products fk

1 , fk
2 satisfy the estimate

|fk
1 (z)| + |fk

2 (z)| � δk

Since for a finite Blaschke product B on the upper half-plane we have
lim|z|→∞ |B(z)| = 1, by picking sufficiently large intervals Ik we can always
assume that

|fk
1 (z)| + |fk

2 (z)| � |hk(z)|/2 ∀z ∈ C+.

Shifting the arguments of fk
1 , fk

2 and hk by τk ∈ R, τk → ∞, we can
always assume that the products

f1(z) =
∏
k

fk
1 (z − τk), f2 :=

∏
k

fk
2 (z − τk), h :=

∏
k

hk(z − τk)

converge (here we assume that the Blaschke products fk
1,2 are also normalized

by the condition fk
1,2(∞) = 1). Moreover we can always take τk to be

sufficiently large, so the all terms in products are almost independent, so

|f1(z)| + |f2(z)| � |h(z)|/4 ∀z ∈ C+.
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and for all k

| ak
λ − h(λ)2/f1(λ)| < εk ∀λ such, that λ − τk ∈ σk.(3.2)

Suppose, now functions g1, g2 ∈ H∞ satisfy f1g1 + f2g2 ≡ h2. Then g1

solves the interpolation problems

f1(λ) = h(λ)/f1(λ) =: ãk
λ, λ − τk ∈ σk,

k = 1, 2, 3, . . .
Equation (3.2) means that |ãk

λ − ak
λ| < εk, and so (see (3.1)) one can

estimate ‖g1‖∞ � (C/2) log(− log δk). Therefore (since δk → 0) g1 /∈ H∞,
and we get the contradiction.

4. Tolokonnikov’s example

In this section we are going to present Tolokonnikov’s example [8] with
the estimate C/δ2. This example gives us a better understanding of what is
going on in the next section where we prove Theorem 1.2.

Pick a small δ > 0. Consider a Blaschke factor

B(z) = bδ(z) =
z − δ

1 − δz

Put f1(z) := δz and f2(z) := B(zn) where n is sufficiently large. Clearly
|f1| + |f2| � δ/2 if n is large enough. We want to show that any solution of
the Corona Problem has large norm.

Let g1, g2 ∈ H∞ satisfy f1g1 + f2g2 ≡ 1.
As we discussed above in Section 2 we need to estimate from below

L(h) :=
1

2πi

∫
T

g1(z)h(z)/f2(z)dz =
∑

λ∈σ(f2)

g1(λ)h(λ) resλ(1/f2)

=
∑

λ∈σ(f2)

1
f1(λ)

h(λ) resλ(1/f2),

for h ∈ H1, ‖h‖1 = 1.
The choice of h is simple: we just put h ≡ 1.
Let σ(f) denote the zero set of the function f ∈ H∞. Then

L(1) =
∑

λ∈σ(f2)

1
δλ

resλ(1/f2).

Since f2 has simple zeroes, resλ(1/f2) = 1/f ′
2(λ).

The further computations are just simple and straightforward calculus
exercises, but let us give some rather detailed explanation to highlight main
idea.

Note that zeroes of f2 are exactly the solutions of λn = δ, so for such λ

f ′
2(λ) = B′(λn)nλn−1 = B′(δ)nλn−1 =

1
1 − δ2

nλn−1
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Therefore we have

L(1) =
∑

λ:λn=δ

1 − δ2

δnλn
=

∑
λ:λn=δ

1 − δ2

δ2n
=

1 − δ2

δ2
,

and so ‖g1‖∞ � (1 − δ2)/δ2.
Let us discuss now what have happened, how did an extra δ appear in the

denominator. If we analyze the construction we can see, that we took two
functions ϕ1 ≡ δ and ϕ2 = B, satisfying the corona condition |ϕ1|+|ϕ2| � δ.
For this pair there clearly is a solution of norm 1/δ (g1 ≡ 1/δ), and we wan
to get an extra δ in the denominator. And to do this we composed the
functions wit the map z �→ zn.

However, by simply considering f1(z) = ϕ1(zn), f2 = ϕ2(zn) we do not
gain anything: g1(zn), g2(zn) will be a solution of the corresponding Corona
problem. So we used a little twist: we put f2(z) := ϕ2(zn) but f1(z) :=
zϕ1(zn). If |ϕ2(z)| � δ/2 in a small neighborhood of the origin, extra z does
not spoil the corona condition significantly: since the zeroes of ϕ2 tend to
the boundary as n → ∞, we can guarantee that |f1|+ |f2| � δ/2 if n is large
enough.

The extra z guarantee that we don’t have cancellation when we compute
L(h) using residues. And when we compute residues we need to put ϕ′

2(z) =
ϕ′(zn)nzn−1 in the denominator. If we get into account an extra z we get
zn in the denominator (n is compensated, because for each zero of ϕ2 we
have n zeroes of f2). But zn = δ and that is where an extra δ appears!

There is another way to see why a better estimate appears. Let us com-
pare ∫

γ

h(z)
ϕ1(z))ϕ2(z)

dz(4.1)

and ∫
Γ

h(zn)
f1(z)

· 1
f2(z)

dz,

where γ and Γ are the contours surrounding zeroes of ϕ2 and f2 respectively
(zeroes of ϕ2 and f1 are outside of the corresponding contours). The second
integral can be rewritten as∫

Γ

h(zn)
ϕ1(zn)

· 1
ϕ2(zn)

· dz

z
=

∫
γ

h(w)
ϕ1(w)

· 1
ϕ2(w)

· dw

w

(w = zn, dw/w = ndz/z; n cancels out because the mapping z �→ zn is n to
1). So, in comparison with (4.1) we got an extra z in the denominator, so
we can hope to get something bigger.

We can get the same result by replacing in ϕ1 by zϕ1(z), but this in most
cases will significantly spoil the Corona condition. And as we discussed
above, for f1 = zϕ1(zn) under very minimal assumptions on ϕ2 the Corona
Condition still holds.

So, that is the main trick. In the next section (Section 5) we apply it
twice to get an estimate better than 1/δ2.



IDEALS 9

To conclude the section, let us note, that there is a simpler way to check
that Tolokonnikov’s construction gives the estimate C/δ2: change the role
of f1 and f2 and compute the integral using the (only) residue of f1 at 0.
An extra δ appears because |f1(z)| = δ for z ∈ T, not to 1 (i. e. f1 is not an
inner function, but δ times inner). However, this simpler computation gives
no insight whatsoever into the construction in the next section.

5. Estimates in the Corona Theorem: proof of Theorem 1.2

Let B = b−δ2 be the Blaschke factor

B(z) :=
z + δ2

1 + δ2z
.

Clearly |B(t)| � δ2 for real t ∈ [0, 1].
For a function ϕ let σ(ϕ) denote the set of its zeroes. Define ϕ(z) =

B(z2n), where n is a large integer to be chosen later, and let

ϕ1(z) :=
∏

λ∈σ(ϕ),
Im λ>0

z − λ

1 − λz
, ϕ2(z) :=

∏
λ∈σ(ϕ),
Im λ<0

z − λ

1 − λz
.

Clearly, ϕ = ϕ1ϕ2. Indeed, it is trivial, that ϕ = ξϕ1ϕ2, where ξ is a
unimodular (|ξ| = 1) constant, and since ϕ1(0)ϕ2(0) > 0, we can conclude
that ξ = 1.

Note, that the zero set σ(ϕ) consists of 2n points δ1/nξk, where ξk are
2nth roots of −1, ξ2n

k = −1, see Figure 1.
Let a = δ1/n, and let ω(z) = z−a

1−az . Define

ψj(z) = ϕj ◦ ω, j = 1, 2.

Clearly σ(ψj) = ω−1(σ(ϕ1,2)). Note, that the inverse map ω−1 is given by
the formula ω−1(z) = z+a

1+az

Pick a sufficiently large m, and define f1(z) = zψ1(zm), f2(z) = ψ2(zm).
We claim that for sufficiently large m the functions f1, f2 satisfy the

Corona Condition |f1| + |f2| � δ/2.
Indeed, since |B(t)| � δ2 for t ∈ [0, 1], it follows that |ϕ(t)| � δ2 for

t ∈ [−1, 1]. The symmetry between ϕ1 and ϕ2 implies that |ϕj(t)| � δ,
j = 1, 2 for t ∈ [−1, 1]. The maximum modulus principle implies that
|ϕ2(z)| � δ for z ∈ D, Im z � 0 and that |ϕ1(z)| � δ for z ∈ D, Im z � 0.
Therefore

|ϕ1(z)| + |ϕ2(z)| � δ ∀z ∈ D,

and the same inequality clearly holds for ψ1, ψ2.
Since ω maps the interval [−1, 1] onto itself, |ψj(0)| � δ, j = 1, 2, and

therefore in a small ε-neighborhood of the origin |ψ2(z)| � δ/2.
If m is sufficiently large, so ε1/m � 1/2, the functions f1, f2 clearly satisfy

the Corona Condition |f1| + |f2| � δ/2.



10 S. TREIL

Figure 1. Zeroes of ϕ1 (hollow points) and of ϕ2 (solid
points). Point −a is marked by the ×.

Figure 2. Zeroes of ψ1 (hollow points) and of ψ2 (solid points).
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Figure 3. Zeroes of f1 (hollow points) and of f2 (solid
points). Note, that the origin is a zero of f1.

We want to show that any solution of the Corona problem has large norm.
As it was discussed above in Section 2, we need to pick h ∈ H1, ‖h‖1 = 1
and estimate below

L(h) :=
1

2πi

∫
T

g1(z)h(z)/f2(z)dz =
∑

λ∈σ(f2)

g1(λ)h(λ) resλ(1/f2)

=
∑

λ∈σ(f2)

1
f1(λ)

h(λ) resλ(1/f2).

We put h(z) ≡ 1, and estimate L(1). Since all zeroes of f2 are simple,

resλ(1/f2) = 1/f ′
2(λ), λ ∈ σ(f2).

Recalling the definition of f1,2 we get

L(1) =
∑

λ∈σ(f2)

1
λψ1(λm)

· 1
ψ′

2(λm) · mλm−1
=

∑
λ∈σ(f2)

1
mλmψ1(λm)ψ′

2(λm)
.

Map λ → λm maps zeroes of f2 onto zeroes of ψ2, and to each zero of f2

correspond exactly m zeroes of ψ2, so we can rewrite

L(1) =
∑

z∈σ(ψ2)

1
zψ1(z)ψ′

2(z)
=

∑
z∈σ(ψ2)

1
zψ′(z)

;
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here we use identity ψ′(z) = ψ1(z)ψ′
2(z) + ψ′

1(z)ψ2(z) = ψ1(z)ψ′
2(z) if

ψ2(z) = 0. Note an extra z in the denominator: because of it we will
get large L(1).

Recalling that ψ = ϕ ◦ ω, and using the chain rule, we get

L(1) =
∑

z∈σ(ψ2)

1
zϕ′(ω(z))ω′(z)

.

Denote λ = ω(z), and let α is the inverse map for ω, α(λ) = ω−1(λ) =
(λ + a)/(1 + aλ). Then we can rewrite (using the identity α′(λ) = (1 −
a2)/(1 + aλ)2)

L(1) =
∑

λ∈σ(ϕ2)

α′(λ)
α(λ)ϕ′(λ)

=
∑

λ∈σ(ϕ2)

1 − a2

(λ + a)(1 + aλ)ϕ′(λ)
.

Note that the zero set σ(ϕ2) consists of all the solutions of the equation
z2n = −δ2 with Re z < 0. Recalling that ϕ = B(z2n) we get

ϕ′(z) = B′(−δ2)2nz2n−1 = 2nδ2/[z · (1 − δ4)], z ∈ σ(ϕ2).

So, to estimate L(1) we need to estimate the sum

L(1) =
(1 − δ4)

2δ2

∑
λ∈σ(ϕ2)

(1 − a2)λ
(λ + a)(1 + aλ)n

=
(1 − δ4)

2δ2

( ∑
λ∈σ(ϕ2)

|a+λ|<(1−a2)/10

. . . +
∑

λ∈σ(ϕ2)
|a+λ|�(1−a2)/10

. . .

)

=
(1 − δ4)

2δ2

(
Σ1 + Σ2

)
.

Note, that the distance between poits λ ∈ σ(ϕ2) is about π/n, and 1− a2 =
1 − δ2/n ∼ (2/n) log δ−1, so the sum Σ1 contains about (2/π) log δ−1 terms.
Let us recall that a = δ1/n, |λ| = δ1/n, and n is in our power and we can
make it as big as we want. So we can assume that a is close to one, and
therefore in the sum Σ1 ∣∣∣(1 − a2)λ

1 + aλ
+ 1

∣∣∣< 1/5.

Indeed,

(1 − a2)λ
1 + aλ

=
(1 + aλ − aλ − a2)λ

1 + aλ
= λ − (λ + a)aλ

1 + aλ
;

since a = |λ| = δ1/n and |a + λ| � (1 − |a|2)/10 in Σ1, then increasing n we
can make λ as close to −1 as we want. Since |1 + aλ| � 1 − a2, the second
term can be estimated by |aλ|/10.

Moreover, since all λ in Σ1 lie almost on a straight segment (for sufficiently
large n), we can assume that all the terms in Σ1 lie in a sector with vertex
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at the origin with the angle of, say π/2. Thus, to estimate Σ1 from below
we need to estimate ∑

λ∈σ(ϕ2)
|a+λ|<(1−a2)/10

1
n · |λ + a| .

The latter sum can be estimated from below by the integral (up to some
absolute multiplicative constant)∫ (1−a2)/10

1/n

dx

x
= log[(1 − a2)/10] − log(1/n) = log(n(1 − a2)) − log 10

(consider Riemann sums with size of partition about π/n; recall that the
distance between points of σ(ϕ2) is about π/n).

Taking into account that

lim
n→∞

n · (1 − a2) = lim
n→∞

n · (1 − δ2/n) = lim
n→∞

n · (1 − e(2/n) log δ) = −2 log δ

we get the estimate |Σ1| � c log(− log δ) for small δ.
The second sum Σ2 is estimated from above by the integral (again up to

an absolute multiplicative constant)

|Σ2| �
∑

λ∈σ(ϕ2)
|a+λ|�(1−a2)/10

∣∣∣ (1 − a2)λ
(λ + a)(1 + aλ)n

∣∣∣ � C

2∫
(1−a2)/10

1 − a2

x2
dx = A < ∞

(again consider Riemann sums).
Combining all estimates together we obtain that

|L(1)| � C

δ2
· log(− log δ)

for small δ. Therefore ‖g1‖∞ � Cδ−2 log(− log δ) and we are done.

6. Concluding remarks.

There is still a gap between lower bound δ−2 log log δ−1 obtained in this
paper and the best known upper bound δ−2 log δ−1 [6, 9]. The author does
not know which one of the estimates (if either) is sharp.

One of the important (at least for the author) “corollaries” of the esti-
mates is that they show that it is extremely unlikely to get an “operator
theory” proof of the Corona Theorem. While it looked plausible that one
could get an estimate δ−2 by operator means, it is hard to imagine how one
can get an estimate between δ−2 log log δ−1 and δ−2 log δ−1 in that fashion.

References

[1] J. Bourgain, On finitely generated closed ideals in H∞(D), Ann. Inst. Fourier
(Grenoble) 35 (1985), no. 4, 163–174;

[2] U. Cegrell, A generalization of the corona theorem in the unit disc, Math. Z. 203
(1990), no. 2, 255–261.



14 S. TREIL

[3] U. Cegrell, Generalizations of the corona theorem in the unit disc, (English. English
summary) Proc. Roy. Irish Acad. Sect. A, 94 (1994), no. 1, 25–30.

[4] J. W. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[5] V. P. Havin, S. V. Hruščëv, and N. K. Nikolskĭı (eds.), Linear and complex analysis

problem book, Springer-Verlag, Berlin, 1984, 199 research problems.
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N. K. Nikolskĭı (eds.), Linear and complex analysis problem book, Springer-Verlag,
Berlin, 1984, 199 research problems.

Department of Mathematics, Brown Univrsity, 151 Thayer Street / Box
1917, Providence, RI 02912, USA

E-mail address: treil@math.brown.edu

URL: http://www.math.brown.edu/˜treil


