
THE MATRIX-VALUED Hp CORONA PROBLEM IN THE DISK AND
POLYDISK

SERGEI TREIL AND BRETT D. WICK

Abstract. In this paper we consider the matrix-valued Hp corona problem in the disk
and polydisk. The result for the disk is rather well known, and is usually obtained from the
classical Carleson Corona Theorem by linear algebra. Our proof provides a streamlined
way of obtaining this result and allows one to get a better estimate on the norm of the
solution. In particular, we were able to improve the estimate found in the recent work
of T. Trent in [16]. Note that, the solution of the H∞ matrix corona problem in the
disk can be easily obtained from the H2 corona problem either by factorization, or by
the Commutant Lifting Theorem. The Hp corona problem in the polydisk was originally
solved by K. C. Lin in [7] and [8]. The solution used Koszul complexes and was rather
complicated because one had to consider higher order ∂̄-equations. Our proof is more
transparent and it improves upon Lin’s result in several ways. First, we deal with the
more general matrix corona problem. Second, we were able to show that the norm of
the solution is independent of the number of generators. Additionally, we illustrate that
the norm of the solution of the H2 corona problem in the polydisk Dn grows at most
proportionally to

√
n. Our approach is based on one that was originated by M. Andersson

in [1]. In the disk it essentially depends on Green’s Theorem and duality to obtain the
estimate. In the polydisk we use Riesz projections to reduce the problem to the disk case.
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Notation

:= equal by definition;

C the complex plane;

D the unit disk, D := {z ∈ C : |z| < 1};
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T the unit circle, T := ∂D = {z ∈ C : |z| = 1};

dµ measure on D with dµ = 2
π log 1

|z|dxdy;

dm normalized Lebesgue measure on T, m(T) = 1;

〈·, ·〉 inner product;

‖ · ‖ norm; since we are dealing with matrix and operator-valued functions this sym-
bol is a bit overloaded, but we hope it will not cause any confusion. The norm
in the function spaces can be always distinguished by subscript. Thus for a
vector-valued function f the symbol ‖f‖2 denotes its L2-norm, but the symbol
‖f‖ stands for the scalar valued function whose value at a point z is the norm
of the vector f(z);

trA Trace of the operator A;

H∞(D) space of bounded analytic functions on D with the supremum norm;

Lp(Dn;E) vector-valued Lebesgue spaces;

Hp(Dn;E) vector-valued Hardy classes;

H∞(D;E → E∗) operator Hardy class of bounded analytic functions from the disk whose
values are bounded operators from E to E∗,
‖F‖∞ := sup

z∈D
‖F (z)‖;

∂, ∂̄ derivatives with respect to z and z respectively: ∂ := 1
2(∂/∂x − i∂/∂y),

∂ := 1
2(∂/∂x+ i∂/∂y)

∂j , ∂̄j derivatives with respect to the variables zj and zj respectively;

z point in Cn;

zj z with the coordinate zj omitted; slightly abusing notation we will write
z = (zj , zj) or z = (zj , zj);

∆̃ “normalized” Laplacian, ∆̃ := 1
4∆ = ∂∂̄;

Throughout the paper all Hilbert spaces are assumed to be separable. We always assume
that in any Hilbert space an orthonormal basis is fixed, so an operator A : E → E∗ can be
identified with its matrix. Thus besides the usual involution A 7→ A∗ (A∗ is the adjoint of
A), we have two more: A 7→ AT (transpose of the matrix) and A 7→ A (complex conjugation
of the matrix), so A∗ = (A)T = AT . Although everything in the paper can be presented in
an invariant, “coordinate-free”, form, use of transposition and complex conjugation makes
the notation easier and more transparent.
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0. Introduction and main result

The classical Carleson Corona Theorem, see [3], states that if functions fj ∈ H∞(D)
are such that

∑∞
j=1 |fj |2 ≥ δ2 > 0 then there exist functions gj ∈ H∞(D) such that∑∞

j=1 gjfj = 1. This is equivalent to the fact that the unit disk D is dense in the maximal
ideal space of the algebra H∞, but the importance of the Corona Theorem goes much
beyond the theory of maximal ideals of H∞.

The Corona Theorem, and especially its generalization, the so called Matrix (Operator)
Corona Theorem play an important role in operator theory (such as the angles between
invariant subspaces, unconditionally convergent spectral decompositions, computation of
spectrum, etc.). The Matrix Corona Theorem says that if F ∈ H∞(D;E∗→E) is a bounded
analytic function whose values are operators from a Hilbert space E∗, dimE∗ < +∞, to
another Hilbert space E such that

(C) F ∗(z)F (z) ≥ δ2I > 0, ∀z ∈ D,

then F has a bounded analytic left inverse G ∈ H∞(D;E∗→ E), GF ≡ I. We should
emphasize that the requirement dimE∗ < +∞ is essential here. It was shown in [13], see
also [14] or [15], that the Operator Corona Theorem fails if dimE∗ = +∞. Note also that
the above condition (C) is necessary for the existence of a bounded left inverse.

The classical Carleson Corona Theorem is a particular case of the matrix one: one just
needs to consider F being the column F = (f1, f2, . . . , fn)T . It also worth noticing that
the Matrix Corona Theorem follows from the classical one. Using a simple linear algebra
argument P. Fuhrmann, see [4], was able to get the matrix version (dimE∗,dimE < +∞)
of the theorem from the classical result of Carleson. Later, using the ideas from T. Wolff’s
proof of the Corona Theorem M. Rosenblum, V. Tolokonnikov and A. Uchiyama indepen-
dently extended the Corona Theorem to infinitely many functions fk. Using their result,
V. Vasyunin was able to get the Operator Corona Theorem in the case dimE∗ < +∞,
dimE = +∞.

Since the Corona Theorem turns out to be very important in operator theory, there
were some attempts to prove it using operator methods. While these attempts were not
completely successful, some interesting relations were discovered. In particular, it was shown
that a function F ∈ H∞ = H∞(D;E∗→E) is left invertible in H∞ if and only if the Toeplitz
operator TF is left invertible; here F denotes the complex conjugate of the matrix F .

Let us recall that given an operator function Φ ∈ L∞(T;E∗→E), the Toeplitz operator
TΦ : H2(E∗) → H2(E) with symbol Φ is defined by

TΦf := P+(Φf),

where P+ is the Riesz Projection (orthogonal projection onto H2).
Considering the adjoint operator (TF )∗ = TF

∗ = TF T one can conclude from here that F
is left invertible in H∞ if and only if the Toeplitz operator TF T : H2(E) → H2(E∗) is right
invertible. Since F T is an analytic function

TF T f = F T f, ∀f ∈ H2(E),

and F is left invertible in H∞ if and only if for any g ∈ H2(E∗) the equation

(0.1) F T f = g

has a solution g ∈ H2(E) satisfying the uniform estimate ‖f‖2 ≤ C‖g‖2.
The result that condition (C) implies (if dimE∗ < +∞) left invertibility of the Toeplitz

operator TF , or equivalently the solvability of the equation (0.1), is called the Toeplitz
Corona Theorem. In the case of the unit disk D one can easily deduce the Matrix Corona
Theorem from the Toeplitz Corona Theorem by using the Commutant Lifting Theorem.
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The main result of this paper is the Toeplitz Corona Theorem for the polydisk see The-
orem 0.2 below. To simplify the notation we used F instead of F T , so the condition (C) is
replaced by the condition FF ∗ ≥ δ2I. While in the polydisk it is not known how to get the
Corona Theorem from the Toeplitz Corona Theorem (the Commutant Lifting Theorem for
the polydisk is currently not known) the result seems to be of independent interest. In a
particular case when F from Theorem 0.2 is a row vector (a 1×n matrix) this theorem was
proved by K. C. Lin, see [7] or [8]. His approach involved using the Koszul complex to write
down the ∂̄-equations. Unfortunately, in several variables, unlike the one-dimensional case,
higher order equations appear in addition to the ∂̄-equation so the computation become
quite messy. Moreover, it is not clear how to use his technique to get the result in the
matrix case we are treating here since the Fuhrmann–Vasyunin trick of getting the matrix
result from the result for a column (row) vector does not work to solve the Toeplitz Corona
Theorem.

To prove the main result we use tools from complex differential geometry to solve ∂-
equations on holomorphic vector bundles. In doing this we are following the ideas of
M. Andersson, see [1] or [2], which in turn go back to B. Berndtsson.

While our approach is quite similar to the one used by M. Andersson, there are some
essential differences. To solve the ∂-equation he uses a Hörmander type approach with
weights and a modification of a Bochner-Kodaira-Nakano-Hörmander identity from complex
geometry. While our approach is more along the lines of T. Wolff’s proof and does not
require anything more advanced than Green’s formula.

We first use our technique to get an estimate in the Toeplitz Corona Theorem in the
disk:

Theorem 0.1. Let F ∈ H∞(D;E→E∗), dimE∗ = r < +∞, such that δ2I ≤ FF ∗ ≤ I for
some 0 < δ2 ≤ 1

e . For 1 ≤ p ≤ ∞ if g ∈ Hp(D;E∗) then the equation

Ff = g

has an analytic solution f ∈ Hp(D;E) with the estimate

(0.2) ‖f‖p ≤
(

C

δr+1
log

1
δ2r

+
1
δ

)
‖g‖p,

with C =
√

1 + e2 +
√
e+

√
2e ≈ 8.38934.

For the p = 2 case the above result with a different constant C was obtained recently
using a different method by T. Trent [16]. The constant he obtained was C = 2

√
e+2

√
2e ≈

10.9859.
The result for all p can be obtained from the case p = 2 via the Commutant Lifting

Theorem, but we present here a simple direct proof.

Remark. Note, that we do not assume dimE < +∞ here.

Using a simple modification of our proof in one dimension we are also able to get the
following result in the polydisk:

Theorem 0.2. Let F ∈ H∞(Dn;E → E∗), dimE∗ = r < +∞, such that δ2I ≤ FF ∗ ≤ I
for some 0 < δ2 ≤ 1

e . For 1 < p <∞ if g ∈ Hp(Dn;E∗) then the equation

Ff = g

has an analytic solution f ∈ Hp(Dn;E) with the estimate

(0.3) ‖f‖p ≤
(
nCC(p)n

δr+1
log

1
δ2r

+
1
δ

)
‖g‖p,
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where C =
√

1 + e2 +
√
e+

√
2e ≈ 8.38934, and C(p) = 1/ sin(π/p) the norm of the (scalar)

Riesz projection from Lp(T) onto Hp(D). For p = 2 the estimate can be improved to

(0.4) ‖f‖2 ≤
(√

nC

δr+1
log

1
δ2r

+
1
δ

)
‖g‖2,

with C =
√

1 + e2 +
√
e+

√
2e ≈ 8.38934.

0.1. Plan of the paper. We will start with proving Theorem 0.1 for p = 2.
In Section 1 we set up the main estimate needed to prove the theorem. Section 2 is

devoted to a version of the Carleson Embedding Theorem and its analogue for functions
defined on holomorphic vector bundles, which will be later used to prove the main estimates.

In Section 3 we perform computation of some derivatives and Laplacians that will be
used in the estimates. We also construct there subharmonic functions to be used in the
embedding theorems.

Section 4 deals with the main estimate for p = 2; Section 5 explains how to use the
construction for other p. In Section 6 we treat the case of the polydisk for p = 2 and in
Section 7 we treat the case of general p.

1. Reduction to the main estimate

To prove Theorem 0.1 for p = 2, for a given g ∈ H2 := H2(E∗) with ‖g‖2 = 1, we need
to solve the equation

(1.1) Ff = g, f ∈ H2(E)

with the estimate ‖f‖2 ≤ C = C(δ, r). By a normal families argument it is enough to
suppose that F and g are analytic in a neighborhood of D. Any estimate obtained in this
case can be used to find an estimate when F is only analytic on D. Since δ2I ≤ FF ∗ ≤ I,
it is easy to find a non-analytic solution f0 of (1.1),

f0 := Φg := F ∗(FF ∗)−1g.

To make f0 into an analytic solution, we need to find v ∈ L2(E) such that f := f0−v ∈ H2

and v(z) ∈ kerF (z) a.e. on T. Then

Ff = F (fo − v) = Ffo − Fv = g,

and we are done. The standard way to find such v is to solve a ∂-equation with the
condition v(z) ∈ kerF (z) insured by a clever algebraic trick. This trick also admits a
“scientific” explanation, for one can get the desired formulas by writing a Koszul complex.
What we do in this paper essentially amounts to solving the ∂-equation ∂v = ∂f0 on the
holomorphic vector bundle kerF (z). We mostly follow the ideas of Matts Andersson found
in [1]. He used ideas from complex differential geometry to solve the corona problem by
finding solutions to the ∂-equation on holomorphic vector bundles.

Since our target audience consists of analysts, all differential geometry will be well hidden.
Our main technical tool will be Green’s formula

(1.2)
∫

T
u dm− u(0) =

1
2π

∫
D

∆u log
1
|z|
dxdy.

Instead of the usual Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 it is more convenient for us to use the

“normalized” one ∆̃ := 1
4∆ = ∂∂ = ∂∂. If we denote by µ the measure defined by

dµ =
2
π

log
1
|z|
dxdy,
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then Green’s formula can be rewritten as

(1.3)
∫

T
u dm− u(0) =

∫
D

∆̃u dµ.

1.1. Set-up. To find the function v we will use duality. We want f0−v ∈ H2(E), therefore
the equality ∫

T
〈f0, h〉 dm =

∫
T
〈v, h〉 dm

must hold for all h ∈ (H2)⊥. Using Green’s formula we get∫
T
〈f0, h〉 dm =

∫
T
〈Φg, h〉 dm =

∫
D
∂∂ [〈Φg, h〉] dµ =

∫
D
∂
[
〈∂Φg, h〉

]
dµ.

Here we used the harmonic extension of h, so h is anti-analytic and h(0) = 0. The functions
Φ := F ∗(FF ∗)−1 and g are already defined in the unit disk D.

Now the critical moment: let Π(z) := P
ker F (z)

be the orthogonal projection onto kerF (z),

Π = I − F ∗ (FF ∗)−1 F . Direct computation shows that ∂Φ = Π(∂Φ)∗(FF ∗)−1, so Π∂̄Φ =
∂̄Φ. Therefore, if we define a vector valued function ξ on D by ξ(z) := Π(z)h(z), then

(1.4)
∫

D
∂
[
〈∂Φg, h〉

]
dµ =

∫
D
∂
[
〈∂Φg,Πh〉

]
dµ =

∫
D
∂
[
〈∂Φg, ξ〉

]
dµ =: L(ξ) = Lg(ξ).

Note, that L = Lg is a conjugate linear functional, i.e. L (defined by L(ξ) := L(ξ)) is a
linear functional. Suppose we are able to prove the estimate

(1.5) |L(ξ)| ≤ C(r, δ)‖ξ‖2, ∀ξ = Πh, h ∈ H2(E)⊥.

Then (by a Hilbert space version of the Hahn–Banach Theorem, which is trivial) L can be
extended to a bounded linear functional on L2(E), so there exists a function v ∈ L2(E),
‖v‖2 ≤ C, such that

L(ξ) =
∫

T
〈v, ξ〉 dm, ∀ξ = Πh, h ∈ H2(E)⊥.

Replacing v by Πv we can always assume without loss of generality that v(z) ∈ kerF (z)
a.e. on T, so Fv = 0. By the construction∫

T
〈v, h〉 dm =

∫
T
〈v,Πh〉 dm = L(Πh) =

∫
T
〈Φg, h〉 dm ∀h ∈ H2(E)⊥,

so f := f0 − v := Φg − v ∈ H2(E) is the analytic solution we want to find. It satisfies the
estimate

‖f‖2 ≤ ‖f0‖2 + ‖v‖2 ≤
1
δ
‖g‖2 + C(r, δ)‖g‖2.

Therefore, Theorem 0.1 would follow from the following proposition

Proposition 1.1. Under the assumptions of Theorem 0.1 the linear functional L defined
by (1.4) satisfies the estimate

|L(ξ)| ≤ C(r, δ)‖ξ‖2, ∀ξ = Πh, h ∈ H2(E)⊥,

with

C(r, δ) =
C

δr+1
log

1
δ2r

,

where C =
√

1 + e2 +
√
e+

√
2e.

In what follows we will need the following simple technical lemma that is proved by direct
computation.
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Lemma 1.2. For Π and Φ defined above we have

∂Π = −F ∗ (FF ∗)−1 F ′Π,

∂̄Φ = Π
(
F ′)∗ (FF ∗)−1 ,

and ∂∂̄Φ = ∂Π(F ′)∗(FF ∗)−1 − (∂Φ)F ′Φ = ∂Π∂Φ + (∂Π)∗ΦF ′Φ.

Corollary 1.3. For the projection Π defined above we have

Π∂Π = 0, (∂Π)Π = ∂Π, (∂Π)Π = 0, Π∂Π = ∂̄Π.

The above identities are well-known in complex differential geometry, but we can easily
get them from Lemma 1.2. Namely, since Π is the orthogonal projection onto kerF we have
FΠ = 0. Taking the adjoint we get ΠF ∗ = 0 which implies Π∂Π = 0. The second identity
is trivial, and the last two are obtained from the first two by taking adjoints.

2. Embedding theorems and Carleson measures

As is well known, Carleson measures play a prominent role in the proof of the Corona
theorem, both in Carleson’s original proof and in T. Wolff’s proof and subsequent modifi-
cations. It is also known to the specialists, that essentially all 1 Carleson measures can be
obtained from the Laplacian of a bounded subharmonic function. We will need the following
well-known theorem, see [10], which was probably first proved by Uchiyama.

Theorem 2.1 (Carleson Embedding Theorem). Let ϕ be a non-negative, bounded, subhar-
monic function. Then for any f ∈ H2(E)∫

D
∆̃ϕ(z)‖f(z)‖2dµ(z) ≤ e‖ϕ‖∞‖f‖2

2.

Here dµ = 2
π log 1

|z|dxdy, and ∆̃ = 1
4∆ = ∂∂.

Proof. Because of homogeneity, we can assume without loss of generality that ‖ϕ‖∞ = 1.
Direct computation shows that

∆̃
(
eϕ(z)‖f(z)‖2

)
= eϕ∆̃ϕ‖f‖2 + eϕ‖∂ϕf + ∂f‖2 ≥ ∆̃ϕ‖f‖2.

Then Green’s formula implies∫
D

∆̃ϕ ‖f‖2 dµ ≤
∫

D
∆̃
(
eϕ‖f‖2

)
dµ =

∫
T
eϕ‖f‖2 dm−eϕ(0)‖f(0)‖2 ≤ e

∫
T
‖f‖2 dm = e ‖f‖2

2.

�

Remark 2.2. It is easy to see, that the above Lemma implies the embedding
∫

D ‖f‖
2 dµ ≤

C
∫

T ‖f‖
2 dm (with C = e) for all analytic functions f . Using the function 4/(2−ϕ) instead

of eϕ it is possible to get the embedding for harmonic functions with the constant C = 4. We
suspect the constants e and 4 are the best possible for the analytic and harmonic embedding
respectively. We cannot prove that, but it is known that 4 is the best constant in the dyadic
(martingale) Carleson Embedding Theorem.

We will need a similar embedding theorem for functions of form ξ = Πh, h ∈ H2(E)⊥.
Such functions are not analytic or harmonic2, so the classical Carleson Embedding Theorem
does not apply. As a result, the proof is more complicated, and the constant is significantly
worse.

1By “essentially all” we mean here that a Carleson measure should first be mollified, to make it smooth,
and then it can be obtained from the Laplacian of a subharmonic function.

2To be precise, such functions are anti-holomorphic functions (with respect to the metric connection) on
the holomorphic hermitian vector bundle ker F (z)
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We will need several formulas. Recall that Π(z) = P
ker F (z)

is the orthogonal projection

onto kerF (z), Π = I − F ∗(FF ∗)−1F , and that dµ = 2
π log 1

|z|dxdy.

Lemma 2.3. Let ϕ be a non-negative, bounded, subharmonic function in D satisfying

∆̃ϕ(z) ≥ ‖∂Π(z)‖2, ∀z ∈ D,

and let K = ‖ϕ‖∞. Then for all ξ of the form ξ = Πh, h ∈ H2(E)⊥∫
D

∆̃ϕ(z) ‖ξ(z)‖2 dµ(z) ≤ eKeK‖ξ‖2
2

and ∫
D
‖∂ξ‖2 dµ ≤ (1 + eKeK)‖ξ‖2

2.

Proof. Let us take an arbitrary non-negative bounded subharmonic function ϕ and compute
∆̃
(
eϕ‖ξ‖2

)
. Corollary 1.3 implies that Π∂Π = 0 and ∂ΠΠ = ∂Π. Therefore, using ∂h = 0

we get ∂ξ = ∂ (Πh) = ∂Πh+ Π∂h = ∂Πh = ∂Πξ, and so

〈∂ξ, ξ〉 = 〈∂ξ,Πξ〉 = 〈∂Πξ,Πξ〉 = 0.

Therefore

∂
(
eϕ‖ξ‖2

)
= eϕ∂ϕ‖ξ‖2 + eϕ〈∂ξ, ξ〉+ eϕ〈ξ, ∂ξ〉 = eϕ∂ϕ‖ξ‖2 + eϕ〈ξ, ∂ξ〉.

Taking ∂ of this equality (and again using 〈ξ, ∂ξ〉 = 0) we get

∆̃
(
eϕ‖ξ‖2

)
= eϕ

(
∆̃ϕ‖ξ‖2 + ‖∂ϕξ + ∂ξ‖2 + 〈ξ, ∆̃ξ〉

)
.

To handle 〈ξ, ∆̃ξ〉 we take the ∂ derivative of the equation 〈ξ, ∂ξ〉 = 0 to get

〈∂ξ, ∂ξ〉+ 〈ξ, ∂∂ξ〉 = 0,

and therefore 〈ξ, ∆̃ξ〉 = −‖∂ξ‖2 = −‖(∂Π)ξ‖2. Since ϕ ≥ 0∫
D

(
∆̃ϕ‖ξ‖2 − ‖(∂Π)ξ‖2

)
dµ ≤∫

D

(
∆̃ϕ‖ξ‖2 − ‖(∂Π)ξ‖2 + ‖∂̄ϕξ + ∂̄ξ‖2

)
eϕdµ =

∫
T
eϕ‖ξ‖2dm;(2.1)

the equality is just Green’s formula (recall that ξ(0) = 0). In the last inequality replacing
ϕ by tϕ, t > 1 we get∫

D

(
t∆̃ϕ‖ξ‖2 − ‖(∂Π)ξ‖2

)
dµ ≤

∫
T
etϕ‖ξ‖2dm ≤ etK‖ξ‖2

2.

Now we use the inequality ∆̃ϕ ≥ ‖∂Π‖2. It implies ∆̃ϕ ‖ξ‖2 − ‖∂Πξ‖2 ≥ 0, and therefore

(t− 1)
∫

D
∆̃ϕ ‖ξ‖2dµ ≤ etK‖ξ‖2

2.

Hence ∫
D

∆̃ϕ ‖ξ‖2dµ ≤ min
t>1

etK

t− 1
‖ξ‖2

2 = eKeK‖ξ‖2
2

(minimum is attained at t = 1+1/K), and thus the first statement of the lemma is proved.
To prove the second statement, put ϕ ≡ 0 in (2.1) (we do not use any properties of ϕ

except that ϕ ≥ 0 in (2.1)) to get∫
D

(
‖∂ξ‖2 − ‖(∂Π)ξ‖2

)
dµ =

∫
T
‖ξ‖2 dm = ‖ξ‖2

2.
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But the second term can be estimated as∫
D
‖(∂Π)ξ‖2 dµ ≤

∫
D

∆̃ϕ ‖ξ‖2 dµ ≤ eKeK‖ξ‖2
2,

and therefore
∫

D ‖∂ξ‖
2 dµ ≤ (1 + eKeK)‖ξ‖2

2 . �

3. Finding the correct subharmonic functions

There will be points in the proof where we would like to invoke Carleson’s Embedding
Theorem. To do so we will need a non-negative, bounded, subharmonic function. In this
section we construct the necessary subharmonic functions so they will be available when we
finally estimate the integral in question. With this in mind we define the two functions used
and collect their relevant properties. First, we recall a basic fact that will aid in showing
that the functions we construct are subharmonic.

Lemma 3.1. Let A(t) be a differentiable n×n matrix-valued function. Define the function
f(t) = det(A(t)). Then

f ′(t) = det(A(t)) tr(A−1(t)A′(t)).

Proof. Fix a point t and for brevity of notation let us use A instead of A(t). Since A(·) is
differentiable

det(A(t+ h)) = det(A+A′h+ o(h)) = detAdet(I +A−1A′h+ o(h))

= detA
∏

(1 + hµk + o(h))

where µk are the eigenvalues of A−1(t)A′(t). Expanding this product we have∏
(1 + hµk + o(h)) = 1 + h

∑
µk + o(h) = 1 + h tr(A−1A′) + o(h).

Then
det(A(t+ h)) = det(A) + h det(A) tr(A−1A′) + o(h),

which implies the desired formula for the derivative. �

Define the function ϕ = tr(log(δ−2FF ∗)) = log
(
δ−2n det(FF ∗)

)
. Then a straight forward

application of the above lemma gives

∆̃ϕ = ∂∂ϕ

= ∂[tr((FF ∗)−1F (F ′)∗)]
= tr[(FF ∗)−1F ′Π(F ′)∗]

with the last line following by substitution of Π. For another approach to this computation
see [16]. Using the identities Π2 = Π, tr(AB) = tr(BA), and recalling that

∂Π = −F ∗(FF ∗)−1F ′Π

we get

∆̃ϕ = tr
[
(FF ∗)−1 F ′Π(F ′)∗

]
= tr

[
F ∗ (FF ∗)−1 F ′ΠΠ(F ′)∗ (FF ∗)−1 F

]
= tr [∂Π(∂Π)∗]
≥ ‖∂Π‖2,

with the last inequality following since tr[AA∗] ≥ ‖A‖2. This function will play a prominent
role in the estimation of certain integrals. We should also note that

0 ≤ ϕ ≤ K := log
1
δ2n

.
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We will also need another function to help in the estimation of the linear functional L in
question. Let λ = tr((FF ∗)−1). A simple computation gives,

∆̃λ = tr
[
Φ∗(F ′)∗ (FF ∗)−1 F ′Φ

]
− tr

[
(FF ∗)−1 F ′Π(F ′)∗ (FF ∗)−1

]
≥ tr

[
Φ∗(F ′)∗ (FF ∗)−1 F ′Φ

]
− δ−2 tr [∂Π(∂Π)∗] .

Now we define the function ψ = λ+ δ−2ϕ. Then, recalling that Φ = F ∗(FF ∗)−1 we get

∆̃ψ ≥ tr
[
Φ∗(F ′)∗ (FF ∗)−1 F ′Φ

]
= tr

[
(ΦF ′Φ)∗ΦF ′Φ

]
≥

∥∥ΦF ′Φ
∥∥2
.

So ψ is subharmonic and 0 ≤ ψ ≤ n
δ2 + 1

δ2 log 1
δ2n . We should note that the assumption

0 < δ2 ≤ 1
e implies log δ−2 ≥ 1. This gives

0 ≤ ψ ≤ L :=
2
δ2

log
1
δ2n

.

4. Estimating the integral

Now we need to estimate L(ξ). Computing ∂ of the inner product we get

L(ξ) =
∫

D
∂
[
〈∂̄Φg, ξ〉

]
dµ

=
∫

D
〈∂∂̄Φg, ξ〉dµ+

∫
D
〈∂̄Φg′, ξ〉dµ+

∫
D
〈∂̄Φg, ∂̄ξ〉dµ

= I + II + III.

We need to estimate each of the above integrals as closely as possible. Each integral has
a term involving derivatives of Π, g and ξ. The idea is to separate the integrals using
Cauchy-Schwarz, giving one derivative to each term.

We now estimate the first integral. Recalling that ∂∂̄Φ = ∂Π∂̄Φ + (∂Π)∗ΦF ′Φ we get

I =
∫

D
〈∂∂̄Φg, ξ〉dµ =

∫
D

{
〈∂Π∂̄Φg, ξ〉+ 〈(∂Π)∗ΦF ′Φg, ξ〉

}
dµ.

Since (∂Π)∗Π = 0 we have (∂Π)∗ξ = 0, and so 〈∂Π∂̄Φg, ξ〉 = 0. Therefore

I =
∫

D
〈(∂Π)∗ΦF ′Φg, ξ〉dµ =

∫
D
〈ΦF ′Φg, (∂Π)ξ〉dµ,

and the Cauchy-Schwarz inequality implies

|I| ≤
(∫

D
‖ΦF ′Φg‖2dµ

)1/2(∫
D
‖(∂Π)ξ‖2dµ

)1/2

.

To estimate the second factor we use Lemma 2.3. Recall that the function

ϕ = log
(
δ−2n det(FF ∗)

)
,

constructed in Section 3 satisfies the inequalities

(4.1) ∆̃ϕ ≥ ‖∂Π‖2, and 0 ≤ ϕ ≤ K := log δ−2n.
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Therefore, Lemma 2.3 implies∫
D
‖(∂Π)ξ‖2dµ ≤ eKeK‖ξ‖2

2 = eδ−2n log δ−2n‖ξ‖2
2.

To estimate the first factor, notice that the function ψ constructed in Section 3 satisfies

∆̃ψ ≥ ‖ΦF ′Φ‖2, and 0 ≤ ψ ≤ L := 2δ−2 log δ−2n.

Then the Carleson Embedding Theorem (Theorem 2.1) implies∫
D
‖ΦF ′Φg‖2dµ ≤ eL‖g‖2

2 = 2eδ−2 log δ−2n‖g‖2
2,

and thus

|I| ≤
√
KL ‖ξ‖2‖g‖2 =

√
2e

δn+1
log δ−2n‖ξ‖2‖g‖2.

Now we estimate II. By the Cauchy-Schwarz inequality, we have

|II| ≤
∫

D
|〈∂̄Φg′, ξ〉|dµ

≤
(∫

D
‖∂̄Φ‖2‖ξ‖2dµ

)1/2(∫
D
‖g′‖2dµ

)1/2

.

Observe that ∆̃‖g‖2 = ‖g′‖2 since g is holomorphic. So, applying Green’s Theorem to the
second factor we get ∫

D
‖g′‖2dµ =

∫
T
‖g‖2dm− ‖g(0)‖2 ≤ ‖g‖2

2.

To estimate the first integral, notice, that

‖Φ‖2 = ‖Φ∗Φ‖ = ‖(FF ∗)−1‖ ≤ δ−2

(recall that Φ = F ∗(FF ∗)−1). Since ∂̄Φ = −(∂Π)∗Φ, we can estimate

‖∂̄Φ‖2 = ‖(∂̄Φ)∗∂̄Φ‖ = ‖Φ∗∂Π(∂Π)∗Φ‖ ≤ ‖∂Π(∂Π)∗‖ · ‖Φ‖2 ≤ δ−2‖∂Π‖2.

Therefore (see (4.1)), ‖∂̄Φ‖2 ≤ δ−2∆̃ϕ, where ϕ = log
(
δ−2n det(FF ∗)

)
is the subharmonic

function constructed in Section 3. Applying Lemma 2.3 we get∫
D
‖∂̄Φ‖2‖ξ‖2dµ ≤ δ−2

∫
D

∆̃ϕ‖ξ‖2dµ ≤ δ−2eKeK‖ξ‖2
2,

where K = log δ−2n, see (4.1). Joining the estimates together, we get

|II| ≤ δ−1
√
eKeK/2‖g‖2‖ξ‖2 ≤ δ−1√eKeK/2‖g‖2‖ξ‖2 =

√
e

δn+1
log δ−2n‖g‖2‖ξ‖2

(since δ2 ≤ 1
e , the value of K satisfies K1/2 ≤ K).

Finally moving on to integral III. Using Cauchy-Schwarz, we have

|III| ≤
∫

D
|〈∂̄Φg, ∂̄ξ〉|dµ

≤
(∫

D
‖∂̄Φ‖2‖g‖2dµ

)1/2(∫
D
‖∂̄ξ‖2dµ

)1/2

.

As we already have shown above, ‖∂̄Φ‖2 ≤ δ−2∆̃ϕ. The Carleson Embedding Theorem
(Theorem 2.1) implies∫

D
‖∂̄Φ‖2‖g‖2dµ ≤ δ−2

∫
D

∆̃ϕ‖g‖2dµ ≤ δ−2eK‖g‖2
2.
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Using Lemma 2.3 we can estimate∫
D
‖∂̄ξ‖2dµ ≤ (1 + eKeK)‖ξ‖2

2 ≤ (e−1 + e)KeK‖ξ‖2
2.

Here we are using the fact that K ≥ 1 for δ2 ≤ 1/e. Combining the estimates, we get

|III| ≤
√

1 + e2KeK/2‖g‖2‖ξ‖2 =
√

1 + e2

δn+1
log δ−2n‖g‖2‖ξ‖2.

Joining the estimates for I, II, III we get

Proposition 4.1. Under the assumptions of Theorem 0.1 the linear functional L defined
by (1.4) satisfies the estimate

|L(ξ)| ≤ C(r, δ)‖ξ‖2, ∀ξ = Πh, h ∈ H2(E)⊥,

with

C(r, δ) =
C

δr+1
log

1
δ2r

,

where C =
√

1 + e2 +
√
e+

√
2e.

Proposition 4.1 is just a restatement of Proposition 1.1, and this then proves Theorem
0.1 for the case of p = 2. Note, that the constant C is a bit better than the constant
2
√

2e+ 2
√
e ≈ 10.9859 obtained by T. Trent in [16].

5. The Hp Corona Problem in the Disk

Now we indicate how we can use the H2 result to figure out the Hp result. We can use
much of the same approach as in the H2(E) case. Our goal is to solve the equation

Ff = g, f ∈ Hp(E)

for the given g ∈ Hp(E∗), with ‖g‖p = 1, and furthermore we want the estimate ‖f‖p ≤ C.
Again we will have the obvious non-analytic solution to the problem

f0 := Φg := F ∗(FF ∗)−1g.

To make this into an analytic solution we will need to find a function v ∈ Lp(E) such that
f0 − v ∈ Hp and v(z) ∈ kerF (z). This will be accomplished by duality. As in the H2(E)
case we need ∫

T
〈f0, h〉dm =

∫
T
〈v, h〉dm

to hold for all h ∈ Hp(E)⊥ = Hq
0(E) (this uses the standard duality of Hp spaces see [5]

or [10]). Again we can ensure that v ∈ kerF (z) since ∂Φ = Π∂Φ. So we need to get an
estimate on the linear functional

L(ξ) = Lg(ξ) =
∫

D
∂
[
〈∂Φg, ξ〉

]
dµ

with ξ = Πh and h ∈ Hp(E)⊥. If we can then prove that

|L(ξ)| ≤ C‖ξ‖q

then by the Hahn-Banach Theorem and duality in Lp spaces with values in a Hilbert space
we would have the existence of a function v ∈ Lp(E) with ‖v‖p ≤ C, such that

L(ξ) =
∫

T
〈v, ξ〉dm, ∀ξ = Πh, h ∈ Hp(E)⊥.
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Then replacing v by Πv we can assume without loss of generality that v(z) ∈ kerF (z) a.e.
on T. But then the construction would give,∫

T
〈v, h〉dm =

∫
T
〈v,Πh〉dm = L(Πh) =

∫
T
〈Φg, h〉dm, ∀h ∈ H2(E)⊥,

so v − f0 ∈ Hp(E). So we only need to show how to prove the estimate

|L(ξ)| ≤ C‖ξ‖q.

The main idea is to use the L2 result we just proved. Namely, if we replace g by g̃ = ϕ−1g

and ξ by ξ̃ = ϕξ, where ϕ is an appropriate (scalar) outer function, then

Lg(ξ) = Lg̃(ξ̃)

Suppose we are able to find the outer function ϕ such that ‖g̃‖2‖ξ̃‖2 ≤ ‖g‖p‖ξ‖q. Then,
since ϕ is analytic, g̃ ∈ H2(E) and

ξ̃ ∈ K := closL2{Πh : h ∈ H2(E)⊥}.
Therefore we can apply the L2 result we have proved before to get

(5.1) |Lg(ξ)| = |Lg̃(ξ̃)| ≤
C

δn+1
log δ−2n‖g̃‖2‖ξ̃‖2 ≤

C

δn+1
log δ−2n‖g‖p‖ξ‖q.

To find the function ϕ we need to consider the cases p < 2 and p > 2 separately.
First look at the case p < 2. Consider the outer part of g, i.e. a scalar-valued outer

function gout such that
|gout(z)| = ‖g(z)‖ a.e. on T.

Define

g̃(z) = (gout)p/2−1(z)g(z) and

ξ̃(z) = (gout)
1−p/2(z)ξ(z).

Then ‖g̃‖2 = ‖g‖p/2
p , and computation using Hölder’s Inequality gives and ‖ξ̃‖2 ≤

‖ξ‖q‖g‖1−p/2
p , where 1/p+1/q = 1. Therefore ‖g̃‖2‖ξ̃‖2 ≤ ‖g‖p‖ξ‖q and the main inequality

(5.1) is proved.
The case when p > 2 is analogous, except in this case we need to construct a scalar outer

function ξout such that
|ξout(z)| = ‖ξ(z)‖ a.e. on T.

Note, that here we cannot say that ξout is the outer part of ξ, because ξ is neither holomor-
phic nor antiholomorphic. So, a little more explanation is needed.

First of all recall that we assumed in Section 1 (without loss of generality) that F is an
analytic function in a slightly bigger disk than D, so the projection Π = I − F ∗(FF ∗)−1F
is real analytic on the unit circle T. Second, we only need to estimate the functional L on a
dense set, so we can assume that the test function h is a trigonometric polynomial in (H2)⊥.
Therefore the function ξ = Πh is real analytic on T, and so

∫
T log ‖ξ(z)‖dm(z) > −∞ which

guarantees existence of the outer function ξout.
Similarly to the reasoning for p < 2 define

ξ̃ := (ξout)
q/2−1ξ and

g̃ := (ξout)1−q/2g,

where 1/p + 1/q = 1. Then ‖ξ̃‖2 = ‖ξ‖q/2
q and applying Hölder inequality to g̃ we get

‖g̃‖2 ≤ ‖g‖p‖ξ‖1−q/2
p (note, that the computations are the same as in the case 1 < p < 2 if

we interchange p with q and g with ξ). Then again ‖g̃‖2‖ξ̃‖2 ≤ ‖g‖p‖ξ‖q, so (5.1) holds.



14 SERGEI TREIL AND BRETT D. WICK

As we discussed in the beginning of this section, the main estimate (5.1) implies (via
duality) the solution of the Hp corona problem for 1 < p ≤ ∞.

The case p = 1 requires just a little more work since L1 is not the dual of L∞, and a
bounded linear functional on L1 is generally a measure. Namely, the main estimate (5.1)
implies that L is a bounded conjugate-linear functional, and by Hahn–Banach Theorem it
can be extended to a bounded conjugate-linear functional on L∞(E). Since any bounded
linear functional on L∞ is a bounded linear functional on the space of continuous functions
on the unit circle, there exists a vector-valued measure ν such that

L(ξ) =
∫

T
〈dν, ξ〉.

Without loss of generality one can replace ν with Πν, then∫
T
〈dν, h〉 =

∫
T
〈dν, ξ〉 = L(Πh) =

∫
T
〈f0, h〉dm.

Then rewriting this, and treating f0dm as a vector-valued measure we have∫
T
〈(f0dm− dν), h〉 = 0

for any antianalytic polynomial h. Then applying the F. & M. Riesz Theorem, see [10], we
can conclude that the measure f0dm−dν is absolutely continuous with respect to Lebesgue
measure, and moreover it is an analytic measure meaning f0dm − dν = (f0 − v)dm with
f0−v ∈ H1(E). (Of course, the F. & M. Riesz Theorem is usually stated for scalar measures,
but applying it to the “coordinate” of the measure with respect to some orthonormal basis,
one can easily see that it holds for measures with values in a separable Hilbert space as
well) �

6. The H2 Corona Problem in the Polydisk

In the following sections we will be considering operator- and vector-valued functions on
the polydisk Dn. taking values in appropriate Hardy classes. We begin with the H2(E)
case. The general goal from previous sections has not changed. We want, for a given
F ∈ H∞(Dn;E→E∗) and g ∈ H2 := H2(Dn;E∗) with ‖g‖2 = 1, to solve the equation

(6.1) Ff = g, f ∈ H2(Dn;E)

with the estimate ‖f‖2 ≤ C. Again by a normal families argument it is enough to suppose
that F and g are analytic in a neighborhood of Dn because any estimate obtained can be
used to get an estimate when F is only analytic in Dn. It is still easy to find a non-analytic
solution f0 of (6.1),

f0 := Φg := F ∗(FF ∗)−1g,

because we have δ2I ≤ FF ∗ ≤ I. We will again need to find a v ∈ L2(Tn;E) such that
f := f0 − v ∈ H2(Dn;E) with v(z) ∈ kerF (z) a.e. on Tn. Our approach is straight forward
reduction to the one variable case, unfortunately this approach will not yield a proof of the
H∞ Corona problem on the polydisk since the projections are not bounded when p = ∞.

We will denote a point in Dn or Tn by z = (z1, z2, . . . , zn). We will use the symbol zj for
z without the coordinate zj and, slightly abusing notation, we can then write z = (zj , zj) =
(zj , zj).

Let Hp
j = Hp

j (Dn;E) be a subspace of Lp(Tn;E) consisting of all functions analytic in
zj , i.e.

(6.2) Hp
j (Dn;E) :=

{
f ∈ Lp(Tn, E) : f(zj , ·) ∈ Hp(D;E) for almost all zj ∈ Tn−1

}
.



THE MATRIX-VALUED Hp CORONA PROBLEM IN THE DISK AND POLYDISK 15

6.1. Lemmas about decompositions.

Lemma 6.1. Any h ∈ H2(Dn;E)⊥ can be written as h =
∑n

j=1 hj with hj ∈ H2
j (Dn;E)⊥.

Proof. Let Pj := P
H2

j

be the orthogonal projection onto H2
j := H2

j (Dn;E). We can decom-

pose h in the following way,

h = P1h+ (I − P1)h = h1 + h1 h1 ∈ H2
1 (Dn;E), h1 = P1h.

Similarly,

h1 = P2h
1 + (I − P2)h1 = h2 + h2 h2 ∈ H2

2 (Dn;E), h2 = P2P1h.

Continuing the procedure we get

hk−1 = Pkh
k−1 + (I − Pk)hk−1 = hk + hk hk ∈ H2

k(Dn;E), hk = Pk · · ·P2P1h.

Combining everything we get

h = h1 + h2 + . . .+ hn + hn, hn = PnPn−1 · · ·P1h

which proves the lemma, because the assumption h ∈ H2(Dn;E)⊥ implies that hn =
Pn . . . P2P1h = 0 �

We also are going to need an analogue of Lemma 6.1 dealing with the decomposition of
functions on the holomorphic vector bundle ΠH2, i.e. for the functions of the form ξ = Πh,
h ∈ H2(Dn;E)⊥. To state this lemma we need some auxiliary definitions. Let

(6.3) K(Dn;E) := clos(Π(H2(Dn)⊥)),

and

(6.4) Kj(Dn;E) := clos(Π(H2
j (Dn)⊥)), ∀ j = 1, . . . , n,

Lemma 6.2. Let ξ ∈ K, then ξ =
∑n

j=1 ξj with ξj ∈ Kj for j = 1, . . . , n and

‖ξ‖2
2 =

n∑
j=1

‖ξj‖2
2.

To prove Lemma 6.2 we will need a few other lemmas. The first one is a simple fact
about the geometry of a Hilbert space.

Lemma 6.3. Let X be a subspace of a Hilbert space H, and let Π be some orthogonal
projection in H. Then RanΠ = ΠH is decomposed into the orthogonal sum

ΠH = clos(ΠX)⊕ (X⊥ ∩ΠH).

Proof. The proof is a simple exercise in functional analysis, and we leave it to the reader. �

Define the subspaces

(6.5) Q(Dn;E) := H2 ∩ΠL2, Qj(Dn;E) := H2
j ∩ΠL2.

Applying the above lemma to H = L2 and X = (H2)⊥ or X = (H2
j )⊥ we get the following

result.

Corollary 6.4. The subspace ΠL2 = ΠL2(Dn;E), n = 1, 2, 3, . . . admits the orthogonal
decompositions

ΠL2 = K ⊕Q, ΠL2 = Kj ⊕Qj ,

with the subspaces K := K(Dn;E), Kj := Kj(Dn;E), Q := Q(Dn;E) and Qj := Qj(Dn;E)
defined by (6.3), (6.4) and (6.5) respectively.
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Remark 6.5. Note, that the orthogonal projections P
Kj

and P
Qj

are essentially “one-

variable” operators. Namely, to perform the projection PQj on the function ξ ∈ ΠL2

we simply need to perform for each zj ∈ Tn−1 (recall that z = (zj , zj)) the “one-variable”
projection P

Q(zj)
onto the subspace

Q(zj) := H2(D;E) ∩Π( · , zj)L2(D;E) ⊂ H2 = H2(D;E),

and similarly for the projection PKj .
Indeed, if

ξ1( · , zj) := PQ(zj)ξ( · , zj) for almost all zj ∈ Tn−1,

then clearly

ξ1( · , zj) ∈ H2(D;E) ∩Π( · , zj)L2(T) for almost all zj ∈ Tn−1,

so ξ1 ∈ H2(Dn;E) ∩ΠL2(Dn;E). Moreover, for ξ1 := ξ − ξ1 and any η ∈ H2(Dn;E) ∩ΠL2∫
T

〈
ξ1(zj , zj), η(zj , zj)

〉
dm(zj) = 0 for almost all zj ∈ Tn−1,

and integrating over other variables zk we get that ξ1 ⊥ η.

The following two lemmas says that in many respects the projection P
Qj

behaves like
the projection I − Pj from Lemma 6.1.

Lemma 6.6. Let H2 = H2(D2;E) and let Q and Qj, j = 1, 2, be the subspaces as defined
above in (6.5). Then for the orthogonal projections P

Qj
onto the subspaces Qj we have

PQ1PQ2 = PQ2PQ1 = PQ .

Proof. It follows from the definition of Q and Qj and from the inclusion H2 ⊂ H2
j that

Q = ΠL2 ∩H2 ⊂ ΠL2 ∩H2
j = Qj

we can conclude that for ξ ∈ Q we have P
Qj
ξ = ξ, j = 1, 2.

Since by Corollary 6.4 we have the orthogonal decomposition ΠL2 = K ⊕ Q, to prove
the lemma we need to show that the equalities P

Q2
P

Q1
ξ = 0, P

Q1
P

Q2
ξ = 0 hold for all

ξ ∈ K. Clearly, it is sufficient to prove only one, say the first as the second can be obtained
by interchanging indices.

Consider the orthogonal decomposition of ξ ∈ K,

ξ = P
K1
ξ + P

Q1
ξ =: ξ1 + ξ1.

To prove that PQ2PQ1ξ = 0 we need to show that ξ1 ∈ K2.
By definition ξ1 ⊥ K1 := clos(Π((H2

1 )⊥)), and since Π((H2
1 )⊥) ⊃ (H2

1 )⊥ ∩ ΠL2, we can
conclude that

ξ1 ⊥ (H2
1 )⊥ ∩ΠL2.

We know that ξ, ξ1 ∈ K (ξ1 ∈ K because K1 ⊂ K), so ξ1 ∈ K. By Corollary 6.4,

ξ1 ⊥ Q := H2 ∩ΠL2.

Combining the above two orthogonality relations we get

ξ1 ⊥
(
(H2

1 )⊥ +H2
)
∩ΠL2,

and since in the bidisk H2
2 ⊂ (H2

1 )⊥ +H2, we get that

ξ1 ⊥ ΠL2 ∩H2
2 =: Q2

i.e. that ξ1 ∈ K2. �
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As an important corollary we get the following lemma.

Lemma 6.7. On ΠL2 := ΠL2(Tn;E) we have

PQk
PQj = PQjPQk

= PQk∩Qj = PH2
jk∩ΠL2 ∀1 ≤ k, j ≤ n,

where H2
jk(Dn) := H2

j (Dn) ∩H2
k(Dn). Furthermore, this implies

PQ1 . . . PQn = PQn . . . PQ1 = PH2∩ΠL2 .

One can think of the space H2
jk(Dn) as the space of functions in L2(Tn) which are, upon

fixing the other variables, holomorphic in both the jth and kth variable.

Proof. The first part of the lemma follows immediately from Lemma 6.6, because we can
just “freeze” all variables except zj and zk. Namely, to perform the projection PQj on the
function ξ ∈ ΠL2 we simply need to perform for each zj ∈ Tn−1 (recall that z = (zj , zj))
the “one variable” projection P

Q(zj)
onto the subspace

Q(zj) := H2(D;E) ∩Π( · , zj)L2(D;E) ⊂ H2 = H2(D;E),

see Remark 6.5.
To prove the second statement of the lemma let us notice that a product of commuting

orthogonal projections is an orthogonal projection. Therefore P = PQ1PQ2 . . . PQn is an
orthogonal projection.

Since for ξ ∈ H2(Dn;E) ∩ΠL2 = Q ⊂ Qj

PQjξ = ξ ∀j = 1, 2, . . . , n,

we can conclude that
Q = H2(Dn;E) ∩ΠL2 ⊂ RanP.

On the other hand, since the projections PQj commute and RanPQj = H2
j ∩ΠL2

RanP ⊂ H2
j ∩ΠL2 = Qj ∀j = 1, 2, . . . , n,

so

RanP ⊂
n⋂

j=1

Qj =
n⋂

j=1

H2
j ∩ΠL2 = H2 ∩ΠL2 = Q.

Therefore RanP = Q, i.e. P is the orthogonal projection onto Q. �

We can now move onto proving Lemma 6.2.

Proof of Lemma 6.2. We will follow the argument in Lemma 6.1. For ξ ∈ K consider the
orthogonal decomposition

ξ = PK1ξ + PQ1ξ =: ξ1 + ξ1, ξ1 ∈ K1(Dn;E).

Since ξ1 ⊥ ξ1,
‖ξ‖2

2 = ‖ξ1‖2
2 + ‖ξ1‖2

2.

Decomposing ξ1 as

ξ1 = PK2ξ
1 + PQ2ξ

1 =: ξ2 + ξ2, ‖ξ1‖2
2 = ‖ξ2‖2

2 + ‖ξ2‖2
2

we get the decomposition of ξ

ξ = ξ1 + ξ2 + ξ2, ξj ∈ Kj , ξ2 = PQ2PQ1ξ,

and
‖ξ‖2

2 = ‖ξ1‖2
2 + ‖ξ2‖2

2 + ‖ξ2‖2
2.

Repeating the procedure of decomposing on each step ξk using PKk+1
we finally obtain

ξ = ξ1 + ξ2 + . . .+ ξn + ξn, ξj ∈ Kj , j = 1, 2, . . . , n, ξn = PQn . . . PQ2PQ1ξ,
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and
‖ξ‖2

2 = ‖ξ1‖2
2 + ‖ξ2‖2

2 + . . .+ ‖ξn‖2
2 + ‖ξn‖2

2.

But according Lemma 6.7 ξn = 0, so the lemma is proved. �

6.2. Proof of the H2 corona for the polydisk. The idea of the proof is quite simple,
we want to reduce everything to one-variable estimates. In the one-variable case we defined
the functional L on a dense subset K by

L(ξ) =
∫

D
∂
[
〈∂Φg, ξ〉

]
dµ

where dµ = 2
π log 1

|z|dxdy, see (1.4). We have also proved (see Proposition 1.1) that the
functional L is bounded (in L2 norm on K).

For the polydisk, define (conjugate linear) functionals Lj on Kj by

Lj(ξ) :=
∫

Tn−1

Lg( · ,zj)(ξ( · , zj))dmn−1(zj).

Since ξ( · , zj) ∈ K for almost all zj ∈ Tn−1 if ξ ∈ Kj (see Remark 6.5) the functionals Lj

are well defined and bounded, ‖Lj‖ = ‖L‖. Note also, that on a dense set of ξ of the form
ξ = Πh, h ∈ (H2

j )⊥ we can represent

Lj(ξ) =
∫

Tn−1

∫
D
∂j

[
〈∂jΦg, ξ〉

]
dµ(zj) dmn−1(zj).

Define a conjugate linear functional L on K by decomposing ξ ∈ K as

(6.6) ξ = ξ1 + ξ2 + . . .+ ξn, ξj ∈ Kj , j = 1, 2, . . . , n

and putting

L(ξ) :=
n∑

j=1

Lj(ξj).

We will show later that the functional L is well defined, i.e. that it does not depend on
the choice of decomposition of ξ (note that by Lemma 6.2 one can always find at least one
such decomposition).

Assuming for now that L is well defined, let us prove Theorem 0.2 for p = 2. First of all,
by Lemma 6.2 any function ξ ∈ K can be decomposed as

ξ =
n∑

j=1

ξj , where ξj ∈ Kj , and
n∑

j=1

‖ξj‖2 = ‖ξ‖2.

Therefore, using the fact that ‖Lj‖ = ‖L‖ we get for ξ ∈ K

|L(ξ)| ≤
n∑

j=1

‖Lj‖ · ‖ξj‖ = ‖L‖
n∑

j=1

‖ξj‖ ≤ ‖L‖
√
n

(
n∑

k=1

‖ξj‖2

)1/2

=
√
n ‖L‖ · ‖ξ‖,

so

‖L‖ ≤
√
n ‖L‖ ≤

√
nC

δr+1
log

1
δ2r

where C =
√

1 + e2 +
√
e+

√
2e ≈ 8.38934 is the constant from Theorem 0.1.

Take h ∈ (H2)⊥, and decompose it according to Lemma 6.1 as

h =
n∑

j=1

hj , hj ∈ (H2
j )⊥.

Denote
ξ := Πh, ξj = Πhj .
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Repeating the reasoning with the Green’s Formula from the one-variable case we can easily
show that∫

Tn

〈Φg, hj〉 dmn(z) =
∫

Tn−1

∫
D
∂j

[
〈∂jΦg, ξj〉

]
dµ(zj) dmn−1(zj) = Lj(ξj),

so ∫
Tn

〈Φg, h〉 dmn(z) = L(Πh) = L(ξ).

By the Hilbert space version of the Hahn–Banach Theorem the linear functional L can
be extended to a bounded functional on all of L2, i.e. we can find v ∈ L2 = L2(Tn;E) such
that

L(ξ) =
∫

Tn

〈v, ξ〉dmn(z) ∀ξ ∈ K.

Replacing v by Πv if necessary, one can assume without loss of generality that v(z) ∈
RanΠ(z) = kerF (z) a.e. on Tn, so Fv ≡ 0 on Tn. Since by the construction∫

Tn

〈v, h〉 dmn(z) =
∫

Tn

〈v,Πh〉 dmn(z) = L(Πh) =
∫

Tn

〈Φg, h〉 dmn(z) ∀h ∈ H2(Dn;E)⊥,

the function f := f0 − v := Φg − v is analytic. Since Fv = 0, it satisfies Ff = Ff0 = g, so
f is the analytic solution we want to find. �

6.3. Why the functional L is well defined. Let us consider first the case of the bidisk
D2. To show that L is well defined in this case, it is sufficient to show that if

0 = ξ1 + ξ2, ξj ∈ Kj

then L1(ξ1)+L2(ξ2) = 0 (take difference of two representations of the same function in K).
This holds if and only if

L1(ξ) = L2(ξ) ∀ξ ∈ K1 ∩K2.

Thus, the following lemma shows that L is well defined in the case of bidisk D2.

Lemma 6.8. Let ξ ∈ K1 ∩K2 ⊂ ΠL2(T2;E). Then

L1(ξ) = L2(ξ)

Proof. The proof of this lemma is really nothing more than repeated applications of Green’s
Formula, and using that K1 ∩K2 = clos(ΠH2) where H2 are the functions which are anti-
holomorphic in both variables. To see that K1 ∩K2 = clos(ΠH2) we use Lemma 6.3. Since
(K1 ∩K2)⊥ = Q1 +Q2 = K⊥

1 +K⊥
2 = (H2

1 +H2
2 ) ∩ ΠL2, then by Lemma 6.3 we have the

result.
By density we can work with ξ of the form ξ = Πh with h anti-holomorphic in both

variables. So applying Green’s Formula twice gives

L1(ξ) =
∫

T

∫
D
∂1〈∂̄1Φg, ξ〉dµ(z1)dm(z2)

=
∫

T

∫
T
〈Φg, h〉dm(z1)dm(z2)

=
∫

T

∫
D
∂2〈∂̄2Φg, ξ〉dµ(z2)dm(z1)

= L2(ξ).

Since this result holds on a dense set of ξ, and the functionals L1 and L2 are continuous we
have the result for all ξ ∈ K1 ∩K2. �

For the polydisk the lemma has the following important corollary
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Corollary 6.9. Let ξ ∈ Kj ∩Kk ⊂ L2(Tn;E). Then

Lj(ξ) = Lk(ξ).

Proof. To prove the corollary one needs to apply Lemma 6.8 to the bidisk in variables zj and
zk and then integrate the obtained equality over Tn−2 (with respect to Lebesgue measure
in all other variables). �

Now we are ready to prove that L is well defined. To prove this it is sufficient to show
for any representation of 0

(6.7) 0 =
n∑

j=1

ξj , ξj ∈ Kj

the equality
n∑

j=1

Lj(ξj) = 0

holds.
We will use induction in n. The case n = 2 is already settled, so let us assume the

functional L is well defined for the polydisk Dn−1. It follows from (6.7) that

ξn ∈ Kn ∩ (K1 +K2 + . . .+Kn−1) = (K1 ∩Kn) + (K2 ∩Kn) + . . .+ (Kn−1 ∩Kn),

so ξn can be represented as

ξn =
n−1∑
j=1

ηj , ηj ∈ Kj ∩Kn, j = 1, 2, . . . , n− 1.

On the other hand we know that ξn = −
∑n−1

j=1 ξj . Using the induction hypothesis and
integrating it over T with respect to dm(zn) we obtain that

n−1∑
j=1

Lj(ηj) = −
n−1∑
j=1

Lj(ξj).

Since ηj ∈ Kj ∩Kn, Corollary 6.9 implies that Lj(ηj) = Ln(ηj). Therefore

Ln(ξn) =
n−1∑
j=1

Ln(ηj) =
n−1∑
j=1

Lj(ηj) = −
n−1∑
j=1

Lj(ξj),

and so
∑n

j=1 Lj(ξj) = 0. �

7. The Hp Corona Problem in the Polydisk

A simple idea of proving the Hp corona problem in the polydisk is to try to mimic the
proof of the H2 case. However, there is a much easier way: just use objects which are
already defined, and modify the crucial estimates.

First of all notice, that replacing the Corona data F and g by F (rz) and g(rz), r < 1 and
using the standard normal families argument one can assume without loss of generality (as
long as we are getting the same uniform estimates on the norm of the solution) that both
F and G are holomorphic in a slightly bigger polydisk. So we can always assume that, for
example, the right hand side g is not only in Hp, but is also bounded, smooth, etc.

As in the H2 case we first construct a smooth solution f0 := Φg, where Φ := F ∗(FF ∗)−1,
of the equation Ff = g and then correct it to be analytic. To do that it is sufficient to show
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that the conjugate linear functional L introduced in the previous section is Lq bounded,
1/p+ 1/q = 1, i.e. that

|L(ξ)| ≤ C‖ξ‖p

for all ξ of form ξ = Πh, where h is a trigonometric polynomial in H2(Dn;E)⊥.
If this estimate is proved, the linear functional L can be extended by the Hahn–Banach

Theorem to a linear functional on Lq, so there will exist a function v ∈ Lp(Tn;E), ‖v‖p =
‖L‖p such that

L(ξ) =
∫

Tn

〈v, ξ〉 dmn(z) ∀ξ = Πh, h ∈ H2(Dn;E)⊥ ∩ Pol .

Again, replacing v by Πv we can always assume without loss of generality that v(z) ∈
RanΠ(z) = kerF (z) a.e. on Tn. As in the previous section, decomposing h as

h =
n∑

j=1

ξj , ξj ∈ H2
j

(h is a trigonometric polynomial, so we can use Lemma 6.1 here), we can show that∫
Tn〈Φg, h〉 dmn(z) = L(Πh) = L(ξ) so∫
Tn

〈v, h〉 dmn(z) =
∫

Tn

〈v,Πh〉 dmn(z) = L(Πh) =
∫

Tn

〈Φg, h〉 dmn(z) ∀h ∈ H2(Dn;E)⊥∩Pol .

Therefore, the function f = f0 − v = Φg − v is analytic, and it clearly solves the equation
Ff = g (on Tn, and therefore on Dn).

7.1. Main estimates. Let us introduce some notation. Denote

Kq := clos(Π((Hp)⊥)) ⊂ ΠLq, Qq := Hq ∩ΠLq,

so for K and Q introduced in the previous section K = K2 and Q = Q2. Let also

Hq
j = Hq

j (Dn;E) := {f ∈ Lq(Tn;E) : f( · , zj) ∈ Hq(D;E)}
be the spaces of functions analytic in variable zj , and let

Kq
j := clos(Π(Hp(Dn;E)⊥)) ⊂ ΠLq(Tn;E), Qq

j := Hq(Dn;E) ∩ΠLq(Tn;E).

To estimate the functional L we need the following analogue of Lemma 6.2

Lemma 7.1. Any function ξ ∈ Kq can be decomposed as

ξ =
n∑

j=1

ξj , ξj ∈ Kq
j , ‖ξj‖q ≤ C(q)j ,

where C(q) = 1/ sin(π/q) is the norm of the scalar Riesz Projection P+ from Lq(T) onto
Hq(D) (note that C(p) = C(q) for 1/p+ 1/q = 1).

Let us show how this lemma implies the estimate for L. In Section 5 we have proved the
Lp bound for the functional L (in the one-variable case),

|L(ξ)| ≤ C(r, δ)‖ξ‖p, C(r, δ) = C
1

δr+1
log

1
δ2r

,

where C =
√

1 + e2 +
√
e+

√
2e. That would imply the same estimates for the functionals

Lj on Lq(Tn;E), so applying Lemma 7.1 we get

|L(ξ)| ≤ C(r, δ)
n∑

j=1

‖ξj‖q ≤ C(r, δ)‖ξ‖q

n∑
j=1

C(q)j ≤ C(r, δ)nC(q)n‖ξ‖q

Recalling that C(p) = C(q) we get the desired estimate of the solution.
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There is a little detail here as the functional L was defined initially only on K2. So
formally, if q < 2 (i.e. if p > 2) the functional is not defined on Kq. However this is not a
big problem and the simplest way of dealing with it is to use the standard approximation
arguments. Since the polynomials in (H2

j )⊥ ∩Pol are dense in (Hp
j )⊥, the functions of form

Πh, h ∈ H2
j ∩ Pol are dense in Kq

j . So, approximating functions ξj from Lemma 7.1 by
functions of this form, we will get the desired estimate. Note, that we are estimating L(ξ)
on a dense set of functions ξ = Πh, h ∈ (H2)⊥ ∩ Pol, so we do not need it be formally
defined on Kq.

The main step in proving Lemma 7.1 is the following result that states that in the one-
variable case the norm of the orthogonal projections PK and PQ in Lq is the same as the
norm of the Riesz projection P+ in Lq.

Lemma 7.2. Let H2 = H2(D;E) and let K,Q ⊂ H2 be the subspaces defined above in
(6.3) and (6.5). Then for 1 < q <∞

‖PKξ‖q ≤ C(q)‖ξ‖q, ‖PQξ‖q ≤ C(q)‖ξ‖q ∀ξ ∈ ΠL2 ∩ΠLq

where C(q) = 1/ sin(π/q) is the norm of the Riesz Projection P+ in Lq (or in Lp, 1/p+1/q =
1).

Note that since ΠL2∩ΠLq is dense in ΠLq, the projections PK and PQ extend to bounded
operators on ΠLq.

Proof of Lemma 7.2. Take ξ ∈ ΠL2 ∩ΠLq and decompose it as

ξ = PKξ + PQξ =: ξ
K

+ ξ
Q
.

Since Q is a z-invariant subspace of H2(D, E), by the Beurling–Lax theorem, see [9] it can
be represented as Q = ΘH2(D;E∗), where Θ ∈ H∞(E∗→E) is an inner function (i.e. Θ(z)
is an isometry a.e. on T) and E∗ is an auxiliary Hilbert space. So ξ

Q
can be represented as

ξ
Q

= Θη, η ∈ H2(E∗) ∩Hq(E∗).

By duality

‖ξ
Q
‖q = ‖η‖q = sup

h∈Lp∩L2:
‖h‖q=1

∣∣∣∣∫
T
〈η, h〉 dm

∣∣∣∣ .
Let h+ = P+h. Since η ∈ H2∫

T
〈η, h〉 dm =

∫
T
〈η, h+〉 dm =

∫
T
〈Θη,Θh+〉 dm =

∫
T
〈ξ

Q
,Θh+〉 dm =

∫
T
〈ξ,Θh+〉 dm;

the second equality holds because Θ is an isometry a.e. on T, and the last one holds because
ξK ∈ K ⊥ Θh+. Therefore, since ‖h+‖p ≤ C(p)‖h‖p, we can conclude∣∣∣∣∫

T
〈η, h〉 dm

∣∣∣∣ ≤ ∣∣∣∣∫
T
〈ξ,Θh+〉 dm

∣∣∣∣ ≤ ‖ξ‖q‖h+‖p ≤ C(p)‖ξ‖q‖h‖p

so ‖ξ
Q
‖q ≤ C(p)‖ξ‖q. Thus we get the desired estimate for the norm of PQ.

Since PK +PQ = I we can estimate the norm of PK by C(p)+1 for free. Note, that unlike
the case of Hilbert spaces, complementary projections in Banach spaces do not necessarily
have equal norms. So, to get rid of the 1 some extra work is needed.

It is easy to see that ∩n>0zK = {0}, so the decomposition ΠL2 = K ⊕ Q implies that
the set ⋃

n>0

znQ =
⋃
n>0

znΘH2(E∗)
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is dense in ΠL2. Thus ΠL2 = ΘL2, and since Θ is an isometry a.e. on T we can conclude
that K = Θ(H2(E)⊥). Therefore we can represent ξ

K
as

ξ
K

= Θη, η ∈ H2(E∗)⊥ ∩ Lq(E∗).

Performing the same calculations as in the case of ξ
Q

, only using h− = P−h, P− = I − P+

instead of h+ we get the estimate ‖PK‖Lq ≤ ‖P−‖Lq . But the isometry τ ,

τ(zk) = z−k−1, k ∈ Z
interchanges H2 and (H2)⊥, and since τ is an isometry in all Lp, we conclude the ‖P−‖Lq =
‖P+‖Lq . �

Corollary 7.3. Let H2 = H2(Dn;E) and let Kj , Qj ⊂ H2 be the subspaces defined in (6.4)
and (6.5). Then for 1 < q <∞ and 1 ≤ j ≤ n we have

‖PKjξ‖q ≤ C(q)‖ξ‖q, ‖PQjξ‖q ≤ C(q)‖ξ‖q ∀ξ ∈ ΠL2 ∩ΠLq

where C(q) = 1/ sin(π/q) is the norm of the (one-dimensional) Riesz Projection P+ in Lq

(or in Lp, 1/p+ 1/q = 1).

Proof. This corollary follows directly from Lemma 7.2. Since by Remark 6.5 we can view
PKj and PQj as “one-variable” operators. Then we “freeze” all variables except the zj
variable and apply Lemma 7.2 and then integrate in the “frozen” variables. �

It only remains to prove Lemma 7.1.

Proof of Lemma 7.1. The proof is almost the same as the proof of Lemma 6.2, only here
we cannot use the fact that the Pkj

are orthogonal projections. However, according to
Corollary 7.3 the projections PKj are bounded, and this allows the proof to go through.

Take ξ ∈ Kq. Repeating the proof of Lemma 6.2 we can write

ξ = PK1ξ + PQ1ξ =: ξ1 + ξ1.

By Corollary 7.3 we have that ξ1 ∈ Kq
1 with ‖ξ1‖q ≤ C(q)‖ξ‖q and ‖ξ1‖q ≤ C(q)‖ξ‖q.

Decomposing ξ1 in the same manner we have

ξ1 = PK2ξ
1 + PQ2ξ

1 =: ξ2 + ξ2,

so
ξ = ξ1 + ξ2 + ξ2, ξj ∈ Kq

j , ξ2 = PQ2PQ1ξ.

Corollary 7.3 applied twice gives ‖ξ2‖q ≤ C(q)‖ξ1‖q ≤ C(q)2‖ξ‖q, and thus ‖ξj‖q ≤
C(q)j‖ξ‖q. Continuing this decomposition at each step we find

ξ = ξ1 + ξ2 + . . .+ ξn + ξn, ξj ∈ Kq
j , ξn = PQn . . . PQ2PQ1ξ,

and ‖ξj‖q ≤ C(q)j‖ξ‖q by applying Corollary 7.3 j times. Finally, by Lemma 6.7 PQn · · ·PQ1 =
0 on the dense set Kq ∩K2. �
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