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We are going to present new results on the question of existence and
uniqueness of positive solutions of the equation

∆u+ hu− kψ(u) = −f in Ω, u(x)→∞ as δ(x) = dist(x, ∂Ω)→ 0

on domains Ω with nonempty nonsmooth boundary in Riemannian manifolds
M of dimension n = dim M ≥ 2. Here ∆ is the Laplace-Beltrami operator
given by the Riemannian metric on M . The function ψ is assumed to be well
defined on all nonnegative numbers, vanishing at zero, increasing, convex
and growing sufficiently fast as u → ∞. As a typical example we can take
ψ(u) = uα for some α > 0.

This equation with ψ(u) = u(n+2)/(n−2) arises in the problem of conformal
change of metric in dimensions 3 and more and is known as the Yamabe
problem. Let g, g′ be two conformally related Riemannian metric. The
conformal relationship will be written as g′ = u4/(n−2)g. Denote by R′, R
their scalar curvature functions. These are related by the equation

∆u− n− 2
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R′u(n+2)/(n−2) = 0.

Here ∆ is the Laplace-Beltrami operator in the metric g. Clearly this
equation is a special case of the general problem, provided and R′ < 0. In
this light the Yamabe equation with boundary data u(x) → ∞ as x → ∂Ω
can be seen as a problem of finding complete metric g′ in Ω with given
nonnegative scalar curvature R′ such that g′ is conformally related to the
background metric g in M . The most typical example we want to consider
is when R′ is constant and negative. The meaning of the words complete
metric is that all geodesics of g′ in Ω never intersect the boundary ∂Ω of Ω,
i.e., (Ω, g′) is geodesically complete.

We present answers to both existence and uniqueness on a very general
class of domains such as domain with fractal boundaries etc.


