Large solutions for Yamabe and similar problems on domains in Riemannian manifolds

Martin Dindos Cornell University

We are going to present new results on the question of existence and uniqueness of positive solutions of the equation

$$\Delta u + hu - k\psi(u) = -f$$
 in Ω , $u(x) \to \infty$ as $\delta(x) = \operatorname{dist}(x, \partial\Omega) \to 0$

on domains Ω with nonempty nonsmooth boundary in Riemannian manifolds M of dimension $n = \dim M \ge 2$. Here Δ is the Laplace-Beltrami operator given by the Riemannian metric on M. The function ψ is assumed to be well defined on all nonnegative numbers, vanishing at zero, increasing, convex and growing sufficiently fast as $u \to \infty$. As a typical example we can take $\psi(u) = u^{\alpha}$ for some $\alpha > 0$.

This equation with $\psi(u) = u^{(n+2)/(n-2)}$ arises in the problem of conformal change of metric in dimensions 3 and more and is known as the Yamabe problem. Let g, g' be two conformally related Riemannian metric. The conformal relationship will be written as $g' = u^{4/(n-2)}g$. Denote by R', Rtheir scalar curvature functions. These are related by the equation

$$\Delta u - \frac{n-2}{4(n-1)}Ru + \frac{n-2}{4(n-1)}R'u^{(n+2)/(n-2)} = 0.$$

Here Δ is the Laplace-Beltrami operator in the metric g. Clearly this equation is a special case of the general problem, provided and R' < 0. In this light the Yamabe equation with boundary data $u(x) \to \infty$ as $x \to \partial \Omega$ can be seen as a problem of finding *complete* metric g' in Ω with given nonnegative scalar curvature R' such that g' is conformally related to the background metric g in M. The most typical example we want to consider is when R' is constant and negative. The meaning of the words *complete metric* is that all geodesics of g' in Ω never intersect the boundary $\partial \Omega$ of Ω , i.e., (Ω, g') is geodesically complete.

We present answers to both existence and uniqueness on a very general class of domains such as domain with fractal boundaries etc.