Homework assignment, Oct. 31, 2007.

1. Find the formula for the inverse of the block matrix

$$\left(\begin{array}{cc}I&0\\B&C\end{array}\right),$$

where I is the identity matrix (of size, say $n \times n$) and C is an invertible matrix $(m \times m)$.

2. Prove that the set SL(n) of all $n \times n$ matrices with determinant 1 is a manifold in the space $M_{n \times n}$ of all $n \times n$ matrices. What is its dimension.

Hint: you only need to show that equation det X = 1 does not degenerate at X = 1, because multiplication by a matrix A^{-1} , det A = 1 moves the point $A \in SL(n)$ to I, and the multiplication by A^{-1} maps bijectively SL(n) onto itself.

3. Prove that the set O(n) of orthogonal matrices (i.e. the set of real $n \times n$ matrices A satisfying $A^T A = I$ is a manifold. Find its dimension.

Hint: From the first glance it looks like the dimension should be zero, because in the equation $X^T X = I$ we have n^2 variables (entries of X) and n^2 equations. However some of these equations are duplicating each other.

Probably the easiest way to treat the duplication is to notice that the matrix $A^T A$ is always symmetric. So we can treat the function $f(X) = X^T X - I$ as a function acting from the space of $n \times n$ matrices to the space of $n \times n$ symmetric matrices (the latter space has the dimension smaller than n^2).

You should show that df_X has full rank. Again, it is enough to show only that df_I has full rank, see the hint to the previous problem.