Math. 1130 Fall 2007. Midterm 1, take home part solutions.

1. Prove that for the ball B,, = {z € X : p(a,z) <r}, 7 > 0 in a metric space X
clos B, C{z € X : p(a,z) <r}.

Give an example, showing that the inclusion can be proper (i.e. not equality).

Proof. Map f: X — R, f(z) = p(x,a) is continuous (see Problem 3). Therefore the sety
{reX:p(x,a) <r}=f([0,1])

is closed as an inverse image of a closed set. Thus clos B,, C {z € X : p(x,a) < r} because
clos A is the intersection of all closed sets containing A.
To see that the inclusion is proper, consider X = R\ (0,1) (with metric inherited from
R, p(z,y) = [z —yl.
Then By; = (—10],
{reX:p(x,a) <1} =[-1,00U{1}

and clos By; = [—1,0] O

2. Prove that the sphere S = {x € R® : |x| = 1} is not homeomorphic to the circle
T={xeR?: |x|=1}

Proof. Let a = (0,0,1) € S, b = (0,0,—1) € S (south and north pole). If f : S — T is a
homeomorphism, then f: S\ {a}\ {b} — T\ {f(a)}\ {f(b)} is also a homeomorphism.

Notice, that T \ {f(a)} \ {f(b)} is disconnected (because is is union of 2 disjoint open
arcs, and an open arc is open in T ans so in T\ {f(a)} \ {f(b)}).

On the other hand the set S\ {a} \ {b} is path connected, and so connected. Indeed,
for 2 points z,y € S\ {a} \ {b} we can construct a path connecting  and y by moving
x along the “parallel” x is on (i.e. along the circle ¢ = const in the spherical coordinates
z = cosp,r = sinpcosf,y = sinpsinf) until it has the same “longitude” as y, and them
moving it to y along the meridian (i.e. along the line § = const).

Since a continuous image of a connected set is connected, we got a contradiction. O

3. Let X be a metric space and a € X. Show that the function f: X — R, f(x) = p(z,a)
is continuous. Hint: use triangle inequality:.

Proof. By triangle inequality for all z,y € X

p(r,a) < p(y,a) +rho(z,y)

p(x,a) = p(y,a) < rho(z,y).



Interchanging y and z we get
ply,a) — p(z,a) < rho(z,y),
so combining the above 2 inequalities yield
p(z,a) = ply, a)| < rho(z,y).
Thus, for every € > 0 the inequality p(x,y) < € implies
oy, a) = p(x, a)| < rho(z,y) <e.

so f is even uniformly continuous. m

4. For a non-empty subset A of a metric space define the distance d(z, A) from a point z to
the set A as d(z, A) := inf{p(x,y) : y € A}.
Show that the function x +— d(z, A) is a continuous function on X.

Proof. Take arbitrary ¢ > 0. Let x,y € X, p(z,y) < &/2.
Since d(z, A) :=inf{p(z,y) : y € A}, there exists a € A such that

plx,a) <d(x,A)+¢/2

(d(x, A) +¢/2 is not a lower bound for the st {p(x,y) : y € A}).
Therefore, since d(y, A) < p(y, a),

d(y,A) < p(y,a) < p(z,a) + p(z,y) < d(x,A)+¢/2+e/2=d(z,A) +¢.
Repeating the same reasoning with z and y interchanged (there will be different a), we get
d(z, A) <d(y,A) +e.

Therefore, for all € > 0 and for all z,y € X such that p(x,y) < &/2
jd(z, A) —d(y, A)| <,

so the function x +— d(x, A) is uniformly continuous (and so continuous). O

5. For an infinite (may be uncountable) family of non-negative numbers z,, « € A one can
define its sum ) . .z, by considering all finite sums and taking their supremum.

Show, that if ) _ 4 x4 < 00, then only countably many z, are non-zero.

This shows that it does not make much sense to consider sums of uncountably many
terms.

Hint: If the sum is finite, say S, how many terms can be greater than 17 Greater than
1/27...



Proof. For n € N define
A, ={aeA:x,>n}.

Za:a:5<oo,

acA

It

then clearly card(A,) < nS. Since

{aGA:xa>0}:UAn,

neN

the set {a € A : x, > 0} is countable as a countable union of countable (finite in our case)
sets. [

6. Prove the graph of the function y = sin(1/z), z € R\ {0} in R? together with the interval
=0, -1 <y <1in R?is connected but not path connected.

To show that the set is connected, one can notice that the set is a union of 3 obviously
connected sets (which sets, and why are they connected?).

Proof. The whole set (cal it S) can be represented as a union of 3 disjoint sets,

S = {(z.y) GRQ:y:sini,xE (—00,0)} (1)
Sy ={(0,y) eR?*: y € [-1,1])} (2)
Sy = {(,9) eRzzy—sini,xE (0,00)} (3)

Let us show that S is connected.

The set S, is an interval, so it is connected. The sets Si,S3 are images of intervals
(—00,0) and (0, 00) under the continuous map FR\ {0} — R? F(x) = (z,sin(1/z), so they
are connected as well.

Let A be a non-trivial open and closed subset of S, and let B = S\ A.

Notice, that AN .Sy is open and closed in Sy, so, since Sy is connected, there are only 2
possibilities: either ANS; = @ or ANS; = 5].

Similar reasoning applies for S, and S3, so, foe each Si, kK = 1,2,3 there are only 2
possibilities: either AN S, = or ANS, = 5.

So A can be either one of the sets Sy or a union of 2 of them (there are 6 possibilities all
together).

It is easy to see that the sets Sy, S; U Sy and S3 U Sy are not open in S. Therefore, the
sets S7 U S3, S3, S7 are not closed in S.

These 6 sets cover all possible choices for a non-trivial A, and each of the sets is either
not closed, or not open. So a non-trivial open and closed A C S does not exist.

Another way to prove that S is connected is to use theorems from the textbook. Namely,
clos 57 = S1 NSy, so S5 NSy is connected as a closure of a connected set. Similarly, clos S3 =



S3M Sy, 80 S3M Sy is connected. Therefore S = (S U Sy) U (S3U.Ss) is connected as a union
of connected sets with non-empty intersection.

Let us now prove that .S is not path connected. Suppose there exists a path (function) f :
[0,1] — S connecting points (0,0) and (1/7,0), i.e. such that f(0) = (0,0), f(1) = (1/7.0).

Let f1 f2 be the coordinate functions of f, so f = (fi, f2). The functions f;, f; are clearly
continuous.

Since fi(1) = 1/7 By Intermediate Value Theorem there exists ¢;, 0 < t; < to such that
falty) = 1/(x/2 + 7). 50 f(t) = (1 (x/2 + 7), 1),

Applying the Intermediate Value Theorem again we find to € (0,¢;) such that fi(ty) =
1/(m/2+2m). Repeating this process, we construct inductively a strictly decreasing sequence
{t.}°, tn € (0,1/7), t,q1 < t,, such that

1

W) = o

so fa(t,) = (—=1)™
Since {t,}° is a bounded monotone sequence, there exist lim,, .. ¢, =: ty € [0, 1].
By the continuity of f5

T folt) = falto).

But on the other hand, since f5(t,) = (—1)", the limit does not exist, so we got a contradic-
tion. O



