
Math. 1130 Fall 2007. Midterm 1, take home part solutions.

1. Prove that for the ball Ba,r = {x ∈ X : ρ(a, x) < r}, r > 0 in a metric space X

clos Ba,r ⊂ {x ∈ X : ρ(a, x) ≤ r}.

Give an example, showing that the inclusion can be proper (i.e. not equality).

Proof. Map f : X → R, f(x) = ρ(x, a) is continuous (see Problem 3). Therefore the sety

{x ∈ X : ρ(x, a) ≤ r} = f−1([0, 1])

is closed as an inverse image of a closed set. Thus clos Ba,r ⊂ {x ∈ X : ρ(x, a) ≤ r} because
clos A is the intersection of all closed sets containing A.

To see that the inclusion is proper, consider X = R \ (0, 1) (with metric inherited from
R, ρ(x, y) = |x− y|.

Then B0,1 = (−10],
{x ∈ X : ρ(x, a) ≤ 1} = [−1, 0] ∪ {1}

and clos B0,1 = [−1, 0]

2. Prove that the sphere S = {x ∈ R3 : |x| = 1} is not homeomorphic to the circle
T = {x ∈ R2 : |x| = 1}

Proof. Let a = (0, 0, 1) ∈ S, b = (0, 0,−1) ∈ S (south and north pole). If f : S → T is a
homeomorphism, then f : S \ {a} \ {b} → T \ {f(a)} \ {f(b)} is also a homeomorphism.

Notice, that T \ {f(a)} \ {f(b)} is disconnected (because is is union of 2 disjoint open
arcs, and an open arc is open in T ans so in T \ {f(a)} \ {f(b)}).

On the other hand the set S \ {a} \ {b} is path connected, and so connected. Indeed,
for 2 points x, y ∈ S \ {a} \ {b} we can construct a path connecting x and y by moving
x along the “parallel” x is on (i.e. along the circle ϕ = const in the spherical coordinates
z = cos ϕ, x = sin ϕ cos θ, y = sin ϕ sin θ) until it has the same “longitude” as y, and them
moving it to y along the meridian (i.e. along the line θ = const).

Since a continuous image of a connected set is connected, we got a contradiction.

3. Let X be a metric space and a ∈ X. Show that the function f : X → R, f(x) = ρ(x, a)
is continuous. Hint: use triangle inequality.

Proof. By triangle inequality for all x, y ∈ X

ρ(x, a) ≤ ρ(y, a) + rho(x, y)

so
ρ(x, a)− ρ(y, a) ≤ rho(x, y).
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Interchanging y and x we get

ρ(y, a)− ρ(x, a) ≤ rho(x, y),

so combining the above 2 inequalities yield

|ρ(x, a)− ρ(y, a)| ≤ rho(x, y).

Thus, for every ε > 0 the inequality ρ(x, y) < ε implies

|ρ(y, a)− ρ(x, a)| ≤ rho(x, y) < ε.

so f is even uniformly continuous.

4. For a non-empty subset A of a metric space define the distance d(x, A) from a point x to
the set A as d(x, A) := inf{ρ(x, y) : y ∈ A}.

Show that the function x 7→ d(x, A) is a continuous function on X.

Proof. Take arbitrary ε > 0. Let x, y ∈ X, ρ(x, y) < ε/2.
Since d(x, A) := inf{ρ(x, y) : y ∈ A}, there exists a ∈ A such that

ρ(x, a) < d(x, A) + ε/2

(d(x, A) + ε/2 is not a lower bound for the st {ρ(x, y) : y ∈ A}).
Therefore, since d(y, A) ≤ ρ(y, a),

d(y, A) ≤ ρ(y, a) ≤ ρ(x, a) + ρ(x, y) < d(x, A) + ε/2 + ε/2 = d(x, A) + ε.

Repeating the same reasoning with x and y interchanged (there will be different a), we get

d(x, A) < d(y, A) + ε.

Therefore, for all ε > 0 and for all x, y ∈ X such that ρ(x, y) < ε/2

|d(x, A)− d(y, A)| < ε,

so the function x 7→ d(x, A) is uniformly continuous (and so continuous).

5. For an infinite (may be uncountable) family of non-negative numbers xα, α ∈ A one can
define its sum

∑
α∈A xα by considering all finite sums and taking their supremum.

Show, that if
∑

α∈A xα < ∞, then only countably many xα are non-zero.
This shows that it does not make much sense to consider sums of uncountably many

terms.
Hint: If the sum is finite, say S, how many terms can be greater than 1? Greater than

1/2?...
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Proof. For n ∈ N define
An := {α ∈ A : xα ≥ n}.

If ∑
α∈A

xα = S < ∞,

then clearly card(An) ≤ nS. Since

{α ∈ A : xα > 0} =
⋃
n∈N

An,

the set {α ∈ A : xα > 0} is countable as a countable union of countable (finite in our case)
sets.

6. Prove the graph of the function y = sin(1/x), x ∈ R\{0} in R2 together with the interval
x = 0, −1 ≤ y ≤ 1 in R2 is connected but not path connected.

To show that the set is connected, one can notice that the set is a union of 3 obviously
connected sets (which sets, and why are they connected?).

Proof. The whole set (cal it S) can be represented as a union of 3 disjoint sets,

S1 = {(x, y) ∈ R2 : y = sin
1

x
, x ∈ (−∞, 0)} (1)

S2 = {(0, y) ∈ R2 : y ∈ [−1, 1])} (2)

S3 = {(x, y) ∈ R2 : y = sin
1

x
, x ∈ (0,∞)} (3)

Let us show that S is connected.
The set S2 is an interval, so it is connected. The sets S1, S3 are images of intervals

(−∞, 0) and (0,∞) under the continuous map FR \ {0} → R2, F (x) = (x, sin(1/x), so they
are connected as well.

Let A be a non-trivial open and closed subset of S, and let B = S \ A.
Notice, that A ∩ S1 is open and closed in S1, so, since S1 is connected, there are only 2

possibilities: either A ∩ S1 = ∅ or A ∩ S1 = S1.
Similar reasoning applies for S2 and S3, so, foe each Sk, k = 1, 2, 3 there are only 2

possibilities: either A ∩ Sk = ∅ or A ∩ Sk = S1.
So A can be either one of the sets Sk or a union of 2 of them (there are 6 possibilities all

together).
It is easy to see that the sets S2, S1 ∪ S2 and S3 ∪ S2 are not open in S. Therefore, the

sets S1 ∪ S3, S3, S1 are not closed in S.
These 6 sets cover all possible choices for a non-trivial A, and each of the sets is either

not closed, or not open. So a non-trivial open and closed A ⊂ S does not exist.
Another way to prove that S is connected is to use theorems from the textbook. Namely,

clos S1 = S1∩S2, so S2∩S2 is connected as a closure of a connected set. Similarly, clos S3 =
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S3 ∩S2, so S3 ∩S2 is connected. Therefore S = (S1 ∪S2)∪ (S3 ∪S2) is connected as a union
of connected sets with non-empty intersection.

Let us now prove that S is not path connected. Suppose there exists a path (function) f :
[0, 1] → S connecting points (0, 0) and (1/π, 0), i.e. such that f(0) = (0, 0), f(1) = (1/π.0).

Let f1 f2 be the coordinate functions of f , so f = (f1, f2). The functions f1, f2 are clearly
continuous.

Since f1(1) = 1/π By Intermediate Value Theorem there exists t1, 0 < t1 < t0 such that
f1(t1) = 1/(π/2 + π), so f(t1) = (1/(π/2 + π),−1).

Applying the Intermediate Value Theorem again we find t2 ∈ (0, t1) such that f1(t2) =
1/(π/2+2π). Repeating this process, we construct inductively a strictly decreasing sequence
{tn}∞1 , tn ∈ (0, 1/π), tn+1 < tn, such that

f1(tn) =
1

π/2 + nπ

so f2(tn) = (−1)n.
Since {tn}∞1 is a bounded monotone sequence, there exist limn→∞ tn =: t0 ∈ [0, 1].
By the continuity of f2

lim
n→∞

f2(tn) = f2(t0).

But on the other hand, since f2(tn) = (−1)n, the limit does not exist, so we got a contradic-
tion.
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