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Preface

The title of the book sounds a bit misterious. Why should anyone read this
book if it presents the subject wrong way? What particularliy done “wrong’
in the book.

Before answering these questions, let me first describe the target audi-
ence of this text. This book appeared as lecture notes for the course “Honors
Linear Algebra”. It supposed to be a first linear algebra course for mathe-
maticaly advanced students. It is intended for a student who, while not yet
very well familiar with abstract reasonings, is willing to study more rigorous
mathematics that is presented in “cookbook style” calculus type courses.
Besides being a first course in linear algebra it is also supposed to be a first
course introducing a student to rigorous proof, formal definitions—in short,
to the style of modern theoretical (abstract) mathematics.

The target audience explains very specific blend of elementary ideas
and concrete examples which are usually presented introductionary linear
algebra texts with more abstrac definitions and constructions typical for
advanced books.

Another specifics of the book is that it is not written by or for an alge-
braist. So, I tried to emphasise the topics that are important for analysis,
geometry, probability, etc, and did not include some traditional topics. For
example, I am only considering vector spaces over the fields of real or com-
plex numbers. Linear spaces over other fields are not considered at all, since
I feel time required to introduce and explain absract fields would be better
spent on some more classical topics, required in other disciplines. And later,
when the students study general fields in the abstract algebra course they
will understand that a many constructions studied in this book will also
work for general fields.

iii



iv Preface

Also, I do treat only finitedimensional spaces in this book and a ba-
sis always means a finite basis. The reason is that it is impossible to say
something non-trivial about infinitedimensional spaces without introducing
convergence, norms, completeness etc, i.e. the basics of functional analysis.
And this is definitely a subject for a separate course (text). So, I do not con-
sider infinite Hamel bases here: they are not needed in most applications to
analysis and geometry, and I feel they belong in the abstract algebra course.
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Chapter 1

Basic Notions

1. Vector spaces

A vector space V is a collection of objects, called vectors (denoted by lower-
case bold letters like v here), along with two operations, addition of vectors
and multiplication by a number (scalar) 1 , such that the following 8 prop-
erties (the so-called axioms of a vector space) hold:

The first 4 properties deal with the addition:

1. Commutativity: v + w = w + v for all v,w ∈ V ; A question arises,
“How one can mem-
orize the above prop-
erties?” And the an-
swer is that one does
not need to, see be-
low!

2. Associativity: (u + v) + w = u + (v + w) for all u,v,w ∈ V ;
3. Zero vector: there exists a special vector, denoted by 0 such that

v + 0 = v for all v ∈ V ;
4. Additive inverse: For every vector v ∈ V there exists a vector w ∈ V

such that v + w = 0. Such additive inverse is usually denoted as
−v;

The next two properties concern multiplication:
5. Multiplicative identity: 1v = v for all v ∈ V ;
6. Multiplicative associativity: (αβ)v = α(βv) for all v ∈ V and all

scalars α, β;
And finally, two distributive properties, which connect multipli-

cation and addition:
1We need some visual distinction between vectors and other objects, so in this book we use

bold lowercase letters for vectors and regular lowercase letters for numbers (scalars). In some (more
advanced) books lattin letters are reserved for vectors, while greek letters are used for scalars; in
even more advanced texts any letter can be used for anything and the reader must understand

from the context what each symbol means. I think it is helpful, especially for a beginner to have
some visual distinction between different objects, so a bold lowercase letters will always denote a
vector. And on a blackboard an arrow (like in ~v) is used to identify a vector

1



2 1. Basic Notions

7. α(u + v) = αu + αv for all u,v ∈ V and all scalars α;
8. (α + β)v = αv + βv for all v ∈ V and all scalars α, β.

Remark. The above properties seem hard to memorize, but it is not nec-
essary. They are simply the familiar rules of algebraic manipulations with
numbers, that you know from high school. The only new twist here is that
you have to understand what operations you can apply to what objects. You
can add vectors, and you can multiply vector by a number (scalar). And of
course, you can do all possible manipulations with numbers that you have
learned before. But you cannot multiply two vectors, or add a number to a
vector.

Remark. It is not hard to show that zero vector 0 is unique. It is also easy
to show that given v ∈ V the inverse vector −v is unique.

In fact, properties 2 and 3 can be deduced from the properties 5 and 8:
they imply that 0 = 0v for any v ∈ V , and that −v = (−1)v.

If scalars are usual real numbers, we call the space V a real vector space.
If scalars are complex numbers, i.e. if we can multiply by complex numbers,
we call the space V a complex vector space.

Note, that any complex vector space is a real vector space as well (if we
can multiply by complex numbers, we can multiply by real numbers), but
not the other way around.

It is also possible to consider a situation when the scalars are elements
of an arbitrary field F. In this case we say that V is a vector space over the
field F. Although many of the constructions in the book work for general
fields, in this text we consider only real and complex vector spaces, i.e. F is
always either R or C.

1.1. Examples.

Example. The space Rn consists of all columns of size n,

v =


v1

v2
...

vn


whose entries are real numbers. Addition and multiplication are defined
entrywise, i.e.

α


v1

v2
...

vn

 =


αv1

αv2
...

αvn

 ,


v1

v2
...

vn

+


w1

w2
...

wn

 =


v1 + w1

v2 + w2
...

vn + wn


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Example. The space Cn also consists of columns of size n, only the entries
now are complex numbers. Addition and multiplication are defined exactly
as in the case of Rn, the only difference is that we can now multiply vectors
by complex numbers, i.e. Cn is a complex vector space.

Example. The space Mm×n (also denoted as Mm,n) of m × n matrices:
the multiplication and addition are defined entrywise. If we allow only real
entries (and so only multiplication only by reals), then we have a real vector
space; if we allow complex entries and multiplication by complex numbers,
we deal with a complex space.

Example. The space Pn of polynomials of degree at most n, consists of all
polynomials p of form

p(t) = a0 + a1t + a2t
2 + . . . + antn,

where t is the independent variable. Note, that here some or even all coef-
ficients ak can be 0.

In the case or real coefficients ak we have a real space, complex coefficient
give us a complex space.

Question: What are zero vectors in each of the above examples?

1.2. Matrix notation. An m × n matrix is a rectangular array with m
rows and n columns. Elements of the array are called entries of the matrix.

It is very often convenient to denote matrix entries by indexed letters:
the first index denotes the number of the row, where the entry is, and the
second one is the number of the column. For example

(1.1) A = (aj,k)
m,
j=1,

n
k=1 =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n


is a general way to write an m× n matrix.

Very often for a matrix A the entry in row #j and column number k
is denoted by Aj,k or (A)j,k, and sometimes as in (1.1) above example the
same letter but in lowercase is used for the matrix entries.

Given a matrix A, its transpose (or transposed matrix) AT is defined by
transforming the rows of A into the columns. For example(

1 2 3
4 5 6

)T

=

 1 4
2 5
3 6

 .

So, the columns of AT are the rows of A and vise versa, the rows of AT are
the columns of A.



4 1. Basic Notions

The formal definition is as follows: (AT )j,k = (A)k,j meaning that the
entry of AT in the row number j and column number k equals the entry of
A in the row number k and row number j.

The transpose of a matrix has a very nice interpretation in terms of
linear transformations, namely it gives the so-called adjoint transformation.
We will study this in detail later, but for now transposition will be just a
useful formal operation.

One of the first uses of the transpose is that we can write a column
vector x ∈ Rn as x = (x1, x2, . . . , xn)T . If we put the column vertically, it
will use significantly more space.

Exercises.

1.1. Let x = (1, 2, 3)T , y = (y1, y2, y3)T , z = (4, 2, 1)T . Compute 2x, 3y, x + 2y−
3z.

1.2. Which of the following sets (with natural addition and multiplication by a
scalar) are vector spaces. Justify your answer.

a) The set of all continuous functions on the interval [0, 1];
b) The set of all non-negative functions on the interval [0, 1];
c) The set of all polynomials of degree exactly n;
d) The set of all symmetric n × n matrices, i.e. the set of matrices A =

{aj,k}n
j,k=1 such that aj,k = ak,j .

1.3. True or false:

a) Every vector space contains a zero vector;
b) A vector space can have more than one zero vector;
c) An m× n matrix has m rows and n columns;
d) If f and g are polynomials of degree n, then f + g is also a polynomial of

degree n;
e) If f and g are polynomials of degree at most n, then f + g is also a

polynomial of degree at most n

1.4. Prove that a zero vector 0 of a vector space V is unique.

1.5. What matrix is the zero vector of the space M2×3?
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2. Linear combinations, bases.

Let V be a vector space, and let v1,v2, . . .vp ∈ V be a collection of vectors.
A linear combination of vectors v1,v2, . . .vp is a sum of form

α1v1 + α2v2 + . . . + αpvp =
p∑

k=1

αkvk.

Definition 2.1. A system of vectors v1,v2, . . .vn ∈ V is called a basis (for
the vector space V ) if any vector v ∈ V admits a unique representation as
a linear combination

v = α1v1 + α2v2 + . . . + αnvn =
n∑

k=1

αkvk.

The coefficients α1, α2, . . . , αn are called coordinates of the vector v (in the
basis, or with respect to the basis v1,v2, . . . ,vn).

Another way to say that v1,v2, . . . ,vn is a basis is to say that the
equation x1v1 + x2v2 + . . . + xmvn = v (with unknowns xk) has a unique
solution for arbitrary right side v.

Before discussing any properties of bases2, let us give few examples,
showing that such objects exist, and it makes sense to study them.

Example 2.2. In the first example the space V is Rn. Consider vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , e3 =


0
0
1
...
0

 , . . . , en =


0
0
0
...
1

 ,

(the vector ek has all entries 0 except the entry number k, which is 1). The
system of vectors e1, e2, . . . , en is a basis in Rn. Indeed, any vector

v =


x1

x2
...

xn

 ∈ Rn

can be represented as the linear combination

v = x1e1 + x2e2 + . . . xnen =
n∑

k=1

xkek

and this representation is unique. The system e1, e2, . . . , en ∈ Rn is called
the standard basis in Rn

2the plural for the “basis” is bases, the same as the plural for “base”
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Example 2.3. In this example the space is the space Pn of the polynomials
of degree at most n. Consider vectors (polynomials) e0, e1, e2, . . . , en ∈ Pn

defined by

e0 := 1, e1 := t, e2 := t2, e3 := t3, . . . , en := tn.

Clearly, any polynomial p, p(t) = a0 + a1t + a2t
2 + . . . + antn admits unique

representation
p = a0e0 + a1e1 + . . . + anen.

So the system e0, e1, e2, . . . , en ∈ Pn is a basis in Pn. We will call it the
standard basis in Pn.

Remark 2.4. If a vector space V has a basis v1,v2, . . . ,vn, then any vector
v is uniquely defined by its coefficients in the decomposition v =

∑n
k=1 αkvk.

So, if we stack the coefficients αk in a column, we can operate with them as
with column vectors, i.e. as with elements of Rn.

Namely, if v =
∑n

k=1 αkvk and w =
∑n

k=1 βkvk, then

v + w =
n∑

k=1

αkvk +
n∑

k=1

βkvk =
n∑

k=1

(αk + βk)vk,

i.e. to get the column of coordinates of the sum one just need to add the
columns of coordinates of the summands.

The definition of a basis says that any vector admits a unique represen-
tation as a linear combination. This statement is in fact two statements,
namely that the representation exists and that it is unique. Let us analyze
these two statements separately.

If we only take existence we get the following notion

Definition 2.5. A system of vectors v1,v2, . . . ,vp ∈ V is called a generating
system (also a spanning system, and also a complete system) in V any vector
v ∈ V admits representation as a linear combination

v = α1v1 + α2v2 + . . . + αpvp =
p∑

k=1

αkvk.

The only difference with the definition of a basis is that we do not assume
that the representation above is unique.

The words generating, spanning and complete here are synonyms. I per-
sonally prefer the term complete, because of my operator theory background.
Generating and spanning are more often used in linear algebra textbooks.

Clearly, any basis is a generating (complete) system. Also, if we have a
basis, say v1,v2, . . . ,vn, and we add to it several vectors, say vn+1, . . . ,vp,
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then the new system will be a generating (complete) system. Indeed, we can
represent any vector as a linear combination of the vectors v1,v2, . . . ,vn,
and just ignore the new ones (by putting corresponding coefficients αk = 0).

Now, let us turn our attention to the uniqueness.

Definition. A linear combination α1v1 + α2v2 + . . . + αpvp is called trivial
if αk = 0 ∀k.

A trivial linear combination is always (for all choices of vectors
v1,v2, . . . ,vp) equal 0, and that is probably the reason for the name.

Definition. A system of vectors v1,v2, . . . ,vp ∈ V is called linearly inde-
pendent if only the trivial linear combination (

∑p
k=1 αkvk with αk = 0 ∀k)

of vectors v1,v2, . . . ,vp equals 0.
In other words, the system v1,v2, . . . ,vp is linearly independent iff the

equation x1v1 + x2v2 + . . . + xpvp = 0 (with unknowns xk) has only trivial
solution x1 = x2 = . . . = xp = 0.

If a system is not linearly independent, it is called linearly dependent.
By negating the definition of linear independence, we get the following

Definition. A system of vectors v1,v2, . . . ,vp is called linearly dependent
if 0 can be represented as a nontrivial linear combination, 0 =

∑p
k=1 αkvk.

Non-trivial here means that at least one of the coefficient αk is non-zero.
This can be (and usually is) written as

∑p
k=1 |αk| 6= 0.

So, restating the definition we can say, that a system is linearly depen-
dent if and only of there exist scalars α1, α2, . . . , αp,

∑p
k=1 |αk| 6= 0 such

that
p∑

k=1

αkvk = 0.

An alternative definition (in terms of equations) is that a system v1,
v2, . . . ,vp is linearly dependent iff the equation

x1v1 + x2v2 + . . . + xpvp = 0

(with unknowns xk) has a non-trivial solution. Non-trivial here again means
that at least one of xk is different from 0, and it can be written as

∑p
k=1 |xk| 6=

0.

The following proposition gives an alternative description of linearly de-
pendent systems.

Proposition 2.6. A system of vectors v1,v2, . . . ,vp ∈ V is linearly de-
pendent if and only if one of the vectors vk can be represented as a linear
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combination of the other vectors,

(2.1) vk =
p∑

j=1
j 6=k

βjvj .

Proof. Suppose the system v1,v2, . . . ,vp is linearly dependent. Then there
exist scalars αk,

∑p
k=1 |αk| 6= 0 such that

α1v1 + α2v2 + . . . + αpvp = 0.

Let k be the index such that αk 6= 0. Then, moving all terms except αkvk

to the right side we get

αkvk = −
p∑

j=1
j 6=k

αjvj .

Dividing both sides by αk we get (2.1) with βj = −αj/αk.
On the other hand, if (2.1) holds, 0 can be represented as a non-trivial

linear combination

vk −
p∑

j=1
j 6=k

βjvj = 0.

�

Obviously, any basis is a linearly independent system. Indeed, if a system
v1,v2, . . . ,vn is a basis, 0 admits a unique representation

0 = α1v1 + α2v2 + . . . + αnvn =
n∑

k=1

αkvk.

Since the trivial linear combination always gives 0, the trivial linear combi-
nation must be the only one giving 0.

So, as we already discussed, if a system is a basis it is a complete (gen-
erating) and linearly independent system. The following proposition shows
that the converse implication is also true.

Proposition 2.7. A system of vectors v1,v2, . . . ,vn ∈ V is a basis if andIn many textbooks
a basis is defined
as a complete and
linearly independent
system. By Propo-
sition 2.7 this defini-
tion is equivalent to
ours

only if it is linearly independent and complete (generating).

Proof. We already know that a basis is always linearly independent and
complete, so in one direction the proposition is already proved.

Let us prove the other direction. Suppose a system v1,v2, . . . ,vn is lin-
early independent and complete. Take an arbitrary vector v ∈ V . Since the
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system v1,v2, . . . ,vn is linearly complete (generating), v can be represented
as

v = α1v1 + α2v2 + . . . + αnvn =
n∑

k=1

αkvk.

We only need to show that this representation is unique.
Suppose v admits another representation

v =
n∑

k=1

α̃kvk.

Then
n∑

k=1

(αk − α̃k)vk =
n∑

k=1

αkvk −
n∑

k=1

α̃kvk = v − v = 0.

Since the system is linearly independent, αk − α̃k = 0 ∀k, and thus the
representation v = α1v1 + α2v2 + . . . + αnvn is unique. �

Remark. In many textbooks a basis is defined as a complete and linearly
independent system (by Proposition 2.7 this definition is equivalent to ours).
Although this definition is more common, than one presented in this text,
I prefer the later. It emphasizes the main property of a basis, namely that
any vector admits a unique representation as a linear combination.

Proposition 2.8. Any (finite) generating system contains a basis.

Proof. Suppose v1,v2, . . . ,vp ∈ V is a generating (complete) set. If it is
linearly independent, it is a basis, and we are done.

Suppose it is not linearly independent, i.e. it is linearly dependent. Then
there exists a vector vk which can be represented as a linear combination of
the vectors vj , j 6= k.

Since vk can be represented as a linear combination of vectors vj , j 6= k,
any linear combination of vectors v1,v2, . . . ,vp can be represented as a linear
combination of the same vectors without vk (i.e. the vectors vj , 1 ≤ j ≤ p,
j 6= k). So, if we delete the vector vk, the new system will still be a complete
one.

If the new system is linearly independent, we are done. If not, we repeat
the procedure.

Repeating this procedure finitely many times we arrive to a linearly
independent and complete system, because otherwise we delete all vectors
and end up with and empty set.

So, any finite complete (generating) set contains a complete linearly
independent subset, i.e. a basis. �
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Exercises.

2.1. Find a basis in the space of 3× 2 matrices M3×2.

2.2. True or false:

a) Any set containing a zero vector is linearly dependent
b) A basis must contain 0;
c) subsets of linearly dependent sets are linearly dependent;
d) subsets of linearly independent sets are linearly independent;
e) If α1v1 + α2v2 + . . . + αnvn = 0 then all scalars αk are zero;

2.3. Recall, that a matrix is called symmetric if AT = A. Write down a basis in the
space of symmetric 2 × 2 matrices (there are many possible answers). How many
elements are in the basis?

2.4. Write down a basis for the space of

a) 3× 3 symmetric matrices;
b) n× n symmetric matrices;
c) n× n antisymmetric (AT = −A) matrices;

2.5. Let a system vectors v1,v2, . . . ,vr be linearly independent but not gen-
erating. Show that it is possible to find a vector vr+1 such that the system
v1,v2, . . . ,vr,vr+1 is linearly independent. Hint: Take for vr+1 any vector that
connot be represented as a linear combination

∑r
k=1 αkvk and show that the system

v1,v2, . . . ,vr,vr+1 is linearly independent.

2.6. Is it possible that vectors v1,v2,v3 are linearly dependent, but the vectors
w1 = v1 + v2, w2 = v2 + v3 and w3 = v3 + v1 are linearly independent?
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3. Linear Transformations. Matrix–vector multiplication

A transformation T from a set X to a set Y is a rule that for each argument The words “trans-
formation”, “trans-
form”, “mapping”,
“map”, “operator”,
“function” all denote
the same object.

(input) x ∈ X assigns a value (output) y = T (x) ∈ Y .
The set X is called domain of T , and the set Y is called the target space

or codomain of T .
We write T : X → Y to say that T is a transformation with the domain

X and the target space Y .

Definition. Let V , W be vector spaces. A transformation T : V → W is
called linear if

1. T (u + v) = T (u) + T (v) ∀u,v ∈ V ;

2. T (αv) = αT (v) for all v ∈ V and for all scalars α.

Properties 1 and 2 together are equivalent to the following one:

T (αu+ βv) = αT (u) + βT (v) for all u,v ∈ V and for all scalars α, β.

3.1. Examples. You dealt with linear transformation before, may be with-
out even suspecting it, as the example below shows.

Example. Differentiation: Let V = Pn (the set of polynomials of degree at
most n), W = Pn−1, and let T : Pn → Pn−1 be the differentiation operator,

T (p) := p′ ∀p ∈ Pn.

Since (f + g)′ = f ′ + g′ and (αf)′ = αf ′, this is a linear transformation.

Example. Rotation: in this example V = W = R2 (the usual coordinate
plane), and a transformation Tγ : R2 → R2 takes a vector in R2 and rotates
it counterclockwise by γ radians. Since Tγ rotates the plane as a whole,
it rotates as a whole the parallelogram used to define a sum of two vectors
(parallelogram law). Therefore the property 1 of linear transformation holds.
It is also easy to see that the property 2 is also true.

Example. Reflection: in this example again V = W = R2, and the trans-
formation T : R2 → R2 is the reflection in the firs coordinate axis, see the
fig. It can also be shown geometrically, that this transformation is linear,
but we will use another way to show that.

Namely, it is easy to write a formula for T ,

T
(( x1

x2

))
=
(

x1

−x2

)
and from this formula it is easy to check that the transformation is linear.
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Figure 1. Rotation

Example. Let us investigate transformations T : R → R. Any such trans-
formation is given by the formula

T (x) = ax where a = T (1).

Indeed,

T (x) = T (x× 1) = xT (1) = xa = ax.

So, any linear transformation of R is just a multiplication by a constant.

3.2. Linear transformations Rn → Rm. Matrix–column multiplica-
tion. It turns out that a linear transformation T : Rn → Rm also can be
represented as a multiplication, but not by a number, but by a matrix.

Let us see how. Let T : Rn → Rm be a linear transformation. What
information do we need to compute T (x) for all vectors x ∈ Rn? My claim
is that it is sufficient how T acts on the standard basis e1, e2, . . . , en of Rn.
Namely, it is sufficient to know n vectors in Rm (i.e. the vectors of size m),

a1 = T (e1), a2 := T (e2), . . . , an := T (en).



3. Linear Transformations. Matrix–vector multiplication 13

Indeed, let

x =


x1

x2
...

xn

 .

Then x = x1e1 + x2e2 + . . . + xnen =
∑n

k=1 xkek

T (x) = T (
n∑

k=1

xkek) =
n∑

k=1

T (xkek) =
n∑

k=1

xkT (ek) =
n∑

k=1

xkak.

So, if we join the vectors (columns) a1,a2, . . . ,an together in a matrix
A = [a1,a2, . . . ,an] (ak being the kth column of A k = 1, 2, . . . , n), this
matrix contains all the information about T .

Let us show how one should define the product of a matrix and a vector
(column) to represent the transformation T as a product, T (x) = Ax. Let

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n


Recall, that the column number k of A is the vector ak, i.e.

ak =


a1,k

a2,k
...

am,k


Then if we want Ax = T (x) we get

Ax =
n∑

k=1

xkak = x1


a1,1

a2,1
...

am,1

+ x2


a1,2

a2,2
...

am,2

+ . . . + xn


a1,n

a2,n
...

am,n


So, the matrix–vector multiplication should be performed by the follow-

ing column by coordinate rule:

multiply each column of the matrix by the corresponding coordi-
nate of the vector.

Example.(
1 2 3
3 2 1

) 1
2
3

 = 1
(

1
3

)
+ 2

(
2
2

)
+ 3

(
3
1

)
=
(

15
10

)
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The “column by coordinate” rule is very well adapted for parallel com-
puting. It will be also very important in different theoretical constructions
later.

However, when doing computations manually, it is more convenient to
compute the result one entry at a time. This can be expressed as the fol-
lowing row by column rule

To get the entry number k of the result, one need to multiply row
number k of the matrix by the vector, that is, if Ax = y, then
yk =

∑n
j=1 ak,jxj , k = 1, 2, . . . m;

here xj and yk are coordinates of the vectors x and y respectively, and aj,k

are the entries of the matrix A.

Example.(
1 2 3
4 5 6

) 1
2
3

 =
(

1 · 1 + 2 · 2 + 3 · 3
4 · 1 + 5 · 2 + 6 · 3

)
=
(

15
32

)

3.3. Linear transformations and generating sets. As we discussed
above, linear transformation T (acting from Rn to Rm) is completely defined
by its values on the standard basis in Rn.

The fact that we consider the standard basis is not essential, one can
consider any basis, even any generating (spanning) set. Namely,

A linear transformation T : V → W is completely defined by its
values on a generated set (in particular by its values on a basis).

In particular, if v1,v2, . . . ,vn is a generating set (in particular, if it is a
basis) in V , and T and T1 are linear transformations T, T1 : V → W such
that

Tvk = T1vk, k = 1, 2, . . . , n

then T = T1.

3.4. Conclusions.

• To get the matrix of a linear transformation T : Rn → Rm one needs
to join the vectors ak = Tek (where e1, e2, . . . , en is the standard
basis in Rn) into a matrix: kth column of the matrix is ak, k =
1, 2, . . . , n.

• If the matrix A of the linear transformation T is known, then T (x)
can be found by the matrix–vector multiplication, T (x) = Ax. To
perform matrix–vector multiplication one can use either “column by
coordinate” or “row by column” rule.
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The latter seems more appropriate for manual computations.
The former is well adapted for parallel computers, and will be used
in different theoretical constructions.

For a linear transformation T : Rn → Rm, its matrix is usually denoted
as [T ]. However, very often people do not distinguish between a linear
transformation and its matrix, and use the same symbol for both. When
it does not lead to a confusion, we will also use the same symbol for a
transformation and its matrix.

Since a linear transformation is essentially a multiplication, the notation The notation Tv is
often used instead of
T (v).

Tv is often used instead of T (v). We will also use this notation. Note that
usual order of algebraic operations apply, i.e. Tv + u means T (v) + u, not
T (v + u).

Remark. In the matrix–vector multiplication Ax the number of columns In the matrix vector
multiplication using
the “row by column”
rule be sure that you
have the same num-
ber of entries in the
row and in the col-
umn. The entries
in the row and in
the column should
end simultaneously:
if not, the multipli-
cation is not defined.

of the matrix A matrix must coincide with the size of the vector x, i.e. a
vector in Rn can only be multiplied by an m× n matrix.

It makes sense, since an m × n matrix defines a linear transformation
Rn → Rm, so vector x must belong to Rn.

The easiest way to remember this is to remember that if performing
multiplication you tun out of some elements faster, then the multiplication
is not defined. For example, if using the “row by column” rule you run
out of row entries, but still have some unused entries in the vector, the
multiplication is not defined. It is also not defined if you run out of vector’s
entries, but still have unused entries in the column.

Exercises.

3.1. Multiply:

a)
(

1 2 3
4 5 6

) 1
3
2

;

b)

 1 2
0 1
2 0

( 1
3

)
;

c)


1 2 0 0
0 1 2 0
0 0 1 2
0 0 0 1




1
2
3
4

;

d)


1 2 0
0 1 2
0 0 1
0 0 0




1
2
3
4

;
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3.2. Let a linear transformation in R2 be the reflection in the line x1 = x2. Find
its matrix

3.3. For each linear transformation below find it matrix

a) T : R2 → R3 defined by T (x, y)T = (x + 2y, 2x− 5y, 7y)T ;

b) T : R4 → R3 defined by T (x1, x2, x3, x4)T = (x1+x2+x3+x4, x2−x4, x1+
3x2 + 6x4)T ;

c) T : Pn → Pn, Tf(t) = f ′(t) (find the matrix with respect to the standard
basis 1, t, t2, . . . , tn);

d) T : Pn → Pn, Tf(t) = 2f(t) + 3f ′(t) − 4f ′′(t) (again with respect to the
standard basis 1, t, t2, . . . , tn).

3.4. Find 3× 3 matrices representing the transformations of R3 which:

a) project every vector onto x-y plane;

b) reflect every vector through x-y plane;

c) rotate the x-y plane through 30◦, leaving z-axis alone.

3.5. Let A be a linear transformation. If z is the center of the straight interval
[x, y], show that Az is the center of the interval [Ax, Ay]. Hint: What does it mean
that z is the center of the interval [x, y]?

4. Composition of linear transformations and matrix
multiplication.

4.1. Definition of the matrix multiplication. Knowing matrix–vector
multiplication, one can easily guess what is the natural way to define the
product AB of two matrices: Let us multiply by A each column of A (matrix-
vector multiplication) and join the resulting column-vectors into a matrix.
Formally,

if b1,b2, . . . ,br are the columns of B, then Ab1, Ab2, . . . , Abr are
the columns of the matrix AB.

Recalling the row by column rule for the matrix–vector multiplication we
get the following row by column rule for the matrices

the entry (AB)j,k (the entry in the row j and column k) of the
product AB is defined by

(AB)j,k = (row #j of A) · (column #k of B)

Formally it can be rewritten as

(AB)j,k =
∑

l

aj,lbl,k,

if aj,k and bj,k are entries of the matrices A and B respectively.
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I intentionally did not speak about sizes of the matrices A and B, but
if we recall the row by column rule for the matrix–vector multiplication, we
can see that in order for the multiplication to be defined, the size of a row
of A should be equal to the size of a column of B.

In other words the product AB is defined if and only if A is an m × n
and B is n× r matrix.

4.2. Motivation: composition of linear transformations. One can
ask yourself here: Why are we using such complicated rule of multiplication?
Why don’t we just multiply matrices entrywise?

And the answer is, that the multiplication, as it is defined above, arises
naturally from the composition of linear transformations.

Suppose we have two linear transformations, T1 : Rn → Rm and T2 :
Rr → Rn. Define the composition T = T1 ◦ T2 of the transformations T1, T2

as
T (x) = T1(T2(x)) ∀x ∈ Rr.

Note that T1(x) ∈ Rn. Since T1 : Rn → Rm the expression T1(T2(x)) is well
defined and the result belongs to Rm. So, T : Rr → Rm.

It is easy to show that T is a linear transformation (exercise), so it is
defined by an m×r matrix. How one can find this matrix, knowing matrices
of T1 and T2?

Let A be the matrix of T1 and B be the matrix of T2. As we discussed in We will usually
identify a linear
transformation and
its matrix, but in
the next few
paragraphs we will
distinguish them

the previous section, the columns of T are vectors T (e1), T (e2), . . . , T (er),
where e1, e2, . . . , er is the standard basis in Rr. For k = 1, 2, . . . , r we have

T (ek) = T1(T2(ek)) = T1(Bek) = T1(bk) = Abk

(operators T2 and T1 are simply the multiplication by B and A respectively).
So, the columns of the matrix of T are Ab1, Ab2, . . . , Abr, and that is

exactly how the matrix AB was defined!
Let us return to identifying again a linear transformation with its matrix.

Since the matrix multiplication agrees with the composition, we can (and
will) write T1T2 instead of T1 ◦ T2 ad T1T2x instead of T1(T2(x)).

Note that in the composition T1T2 the transformation T2 is applied first! Note: order of
transformations!The way to remember this is to see that in T1T2x the transformation T2

meets x fist.

Remark. There is another way of checking the dimensions of matrices in a
product, different form the row by column rule: for a composition T1T2 to
be defined it is necessary that T2x belongs to the domain of T1. If T2 acts
from some space, say Rr to Rn, then T1 must act from Rn to some space,
say Rm. So, in order for T1T2 to be defined the matrices of T1 and T2 should
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be of sizes m × n and n × r respectively—the same condition as obtained
from the row by column rule.

Example. Let T : R2 → R2 be the reflection in the line x1 = 3x2. It is
a linear transformation, so let us find its matrix. To find the matrix, we
need to compute Te1 and Te2. However, the direct computation of Te1 and
Te2 involves significantly more trigonometry than a sane person is willing
to remember.

An easier way to find the matrix of T is to represent it a a composition
of simple linear transformation. Namely, let γ be the angle between the
x1 axis and the line x1 = 3x2, and let T0 be the reflection in the x1-axis.
Then to get the reflection T we can first rotate the plane by the angle −γ,
moving the line x1 = 3x2 to the x1-axis, then reflect everything in the x1

axis, and then rotate the plane by γ, taking everything back. Formally it
can be written as

T = RγT0R−γ

(note the order of terms!), where Rγ is the rotation by γ. The matrix of T0

is easy to compute,

T0 =
(

1 0
0 −1

)
,

the rotation matrices are known

Rγ =
(

cos γ − sin γ
sin γ cos γ,

)
,

R−γ =
(

cos(−γ) − sin(−γ)
sin(−γ) cos(−γ),

)
=
(

cos γ sin γ
− sin γ cos γ,

)
To compute sin γ and cos γ take a vector in the line x1 = 3x2, say a vector
(3, 1)T . Then

cos γ =
first coordinate

length
=

3√
32 + 12

=
3√
10

and similarly

sin γ =
second coordinate

length
=

1√
32 + 12

=
1√
10

Gathering everything together we get

T = RγT0R−γ =
1√
10

(
3 −1
1 3

)(
1 0
0 −1

)
1√
10

(
3 1
−1 3

)
=

1
10

(
3 −1
1 3

)(
1 0
0 −1

)(
3 1
−1 3

)
It remains only to perform matrix multiplication here to get the final result.

�
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4.3. Properties of matrix multiplication. The matrix multiplication
enjoys a lot of properties, familiar to us from the high school algebra:

1. Associativity: A(BC) = (AB)C, provided that either left or right
side is well defined;

2. Distributivity: A(B + C) = AB + AC, (A + B)C = AC + BC,
provided either left or right side of each equation is well defined;

3. One can take scalar multiplies out: A(αB) = αAB.

This properties are easy to prove. One should prove the corresponding prop-
erties for linear transformations, and they almost trivially follow from the
definitions. And the properties of linear transformations imply the proper-
ties for the matrix multiplication.

The new twist here is that the commutativity fails:

matrix multiplication is non-commutative, i.e. generally for
matrices AB 6= BA.

One can see easily it would be unreasonable to expect the commutativity of
matrix multiplication. Indeed, let A and B be matrices of sizes m× n and
n× r respectively. Then the product AB is well defined, but if m 6= r, BA
is not defined.

Even when both products are well defined, for example, when A and B
are n×n (square) matrices, the multiplication is still non-commutative. If we
just pick the matrices A and B at random, the chances are that AB 6= BA:
we have to be very lucky to get AB = BA.

4.4. Transposed matrices and multiplication. Given a matrix A, its
transpose (or transposed matrix) AT is defined by transforming the rows of
A into the columns. For example(

1 2 3
4 5 6

)T

=

 1 4
2 5
3 6

 .

So, the columns of AT are the rows of A and vise versa, the rows of AT are
the columns of A.

The formal definition is as follows: (AT )j,k = (A)k,j meaning that the
entry of AT in the row number j and column number k equals the entry of
A in the row number k and row number j.

The transpose of a matrix has a very nice interpretation in terms of
linear transformations, namely it gives the so-called adjoint transformation.
We will study this in detail later, but for now transposition will be just a
useful formal operation.
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One of the first uses of the transpose is that we can write a column
vector x ∈ Rn as x = (x1, x2, . . . , xn)T . If we put the column vertically, it
will use significantly more space.

A simple analysis of the row by columns rule shows that

(AB)T = BT AT ,

i.e. when you take the transpose of the product, you change the order of the
terms.

4.5. Trace and matrix multiplication. For a square (n × n) matrix
A = (aj,k) its trace (denoted by trace A) is the sum of the diagonal entries

trace A =
n∑

k=1

ak,k.

Theorem 4.1. Let A and B be matrices of size m×n and n×m respectively
(so the both products AB and BA are well defined). Then

trace(AB) = trace(BA)

We leave the proof of this theorem as an exercise, see Problem 4.6 below.
There are essentially two ways of proving this theorem. One is to compute
the diagonal entries of AB and of BA and compare their sums. This method
requires some proefficiency in manipulating sums in

∑
notation.

If you are not comfortable with algebraic manipulations, there is another
way. We can consider two linear transformations, T and T1, acting from
Mn×m to R = R1 defined by

T (X) = trace(AX), T1(X) = trace(XA)

To prove the theorem it is sufficient to show that T = T1; the equality for
X = A gives the theorem.

Since a linear transformation is completely defined by its values on a
generating system, we need just to check the equality on some simple ma-
trices, for example on matrices Xj,k, which has all entries 0 except the entry
1 in the intersection of jth column and kth row.

Exercises.

4.1. Let

A =
(

1 2
3 1

)
, B =

(
1 0 2
3 1 −2

)
, C =

(
1 −2 3
−2 1 −1

)
, D =

 −2
2
1


a) Mark all the products that are defined, and give the dimensions of the

result: AB, BA, ABC, ABD, BC, BCT , BT C, DC, DT CT .
b) Compute AB, A(3B + C), BT A, A(BD), (AB)D.
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4.2. Let Tγ be the matrix of rotation by γ in R2. Check by matrix multiplication
that TγT−γ = T−γTγ = I

4.3. Multiply two rotation matrices Tα and Tβ (it is a rare case when the multi-
plication is commutative, i.e. TαTβ = TβTα, so the order is not essential). Deduce
formulas for sin(α + β) and cos(α + β) from here.

4.4. Find the matrix of the orthogonal projection in R2 onto the line x1 = −2x2.
Hint: What is the matrix of the projection onto the coordinate axis x1?

You can leave the answer in the form of the matrix product, you do not need
to perform the multiplication.

4.5. Find linear transformations A,B : R2 → R2 such that AB = 0 but BA 6= 0.

4.6. Prove Theorem 4.1, i.e. prove that trace(AB) = trace(BA).

4.7. Construct a non-zero matrix A such that A2 = 0.

5. Invertible transformations and matrices. Isomorphisms

5.1. Identity transformation and identity matrix. Among all linear
transformations, there is a special one, the identity transformation (opera-
tor) I, Ix = x, ∀x.

To be precise, there are infinitely many identity transformations: for
any vector space V , there is the identity transformation I = I

V
: V → V ,

I
V
x = x, ∀x ∈ V . However, when it is does not lead to the confusion

we will use the same symbol I for all identity operators (transformations).
We will use the notation I

V
only we want to emphasize in what space the

transformation is acting.
Clearly, if I : Rn → Rn is the identity transformation in Rn, its matrix Often, the symbol E

is used in Linear Al-
gebra textbooks for
the identity matrix.
I prefer I, since it is
used in the operator
theory

is an n× n matrix

I = In =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


(1 on the main diagonal and 0 everywhere else). When we want to emphasize
the size of the matrix, we use the notation In; otherwise we just use I.

Clearly, for an arbitrary linear transformation A, the equalities

AI = A, IA = A

hold (whenever the product is defined).

5.2. Invertible transformations.
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Definition. Let A : V → W be a linear transformation. We say that the
transformation A is left invertible if there exist a transformation B : W → V
such that

BA = I (I = I
V

here).

The transformation A is called right invertible if there exists a linear trans-
formation C : W → V such that

AC = I (here I = I
W

).

The transformations B and C are called left and right inverses of A. Note,
that we did not assume the uniqueness of B or C here, and generally left
and right inverses are not unique.

Definition. A linear transformation A : V → W is called invertible if it is
both right and left invertible.

Theorem 5.1. If a linear transformation A : V → W is invertible, then its
left and right inverses B and C are unique and coincide.

Corollary. A transformation A : V → W is invertible if and only if therevery often this
property is used as
the definition of an
invertible
transformation

exists a unique linear transformation (denoted A−1), A−1 : W → V such
that

A−1A = I
V

, AA−1 = I
W

.

The transformation A−1 is called the inverse of A.

Proof of Theorem 5.1. Let BA = I and AC = I. Then

BAC = B(AC) = BI = B.

On the other hand

BAC = (BA)C = IC = C,

and therefore B = C.
Suppose for some transformation B1 we have B1A = I. Repeating the

above reasoning with B1 instead of B we get B1 = C. Therefore the left
inverse B is unique. The uniqueness of C is proved similarly. �

Definition. A matrix is called invertible (resp. left invertible, right invert-
ible) if the corresponding linear transformation is invertible (resp. left in-
vertible, right invertible).

Theorem 5.1 asserts that a matrix A is invertible if there exists a unique
matrix A−1 such that A−1A = I, AA−1 = I. The matrix A−1 is called
(surprise) the inverse of A.
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Examples.

1. The identity transformation (matrix) is invertible, I−1 = I;
2. The rotation Rγ

Rγ =
(

cos γ − sin γ
sin γ cos γ

)
is invertible, and the inverse is given by (Rγ)−1 = R−γ . This equality
is clear from the geometric description of Rγ , and it also can be
checked by the matrix multiplication;

3. The column (1, 1)T is left invertible but not right invertible. One of
the possible left inverses in the row (1/2, 1/2).

To show that this matrix is not right invertible, we just notice
that there are more than one left inverse. Exercise: describe all
left inverses of this matrix.

4. The row (1, 1) is right invertible, but not left invertible. The column
(1/2, 1/2)T is a possible right inverse.

Remark 5.2. An invertible matrix must be square (n × n). Moreover,if
a square matrix A has either left of right inverse, it is invertible. So it is An invertible matrix

must be square. (To
be proved later)

sufficient to check only one of the identities AA−1 = I, A−1A = I.
This fact will be proved later. Until we prove this fact, we will not use

it. I presented it here only to stop trying wrong directions.

5.2.1. Properties of the inverse transformation.

Theorem 5.3 (Inverse of the product). If linear transformations A and B
are invertible (and such that the product AB is defined), then the product Inverse of a product:

(AB)−1 = B−1A−1.
Note the change of
order

AB is invertible and
(AB)−1 = B−1A−1

(note the change of the order!)

Proof. Direct computation shows:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

�

Remark 5.4. The invertibility of the product AB does not imply the in-
vertibility of the factors A and B (can you think of an example?). However,
if one of the factors (either A or B) and the product AB are invertible, then
the second factor is also invertible.

We leave the proof of this fact as an exercise.
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Theorem 5.5 (Inverse of AT ). If a matrix A is invertible, then AT is also
invertible and

(AT )−1 = (A−1)T

Proof. Using (AB)T = BT AT we get

(A−1)T AT = (AA−1)T = IT = I,

and similarly
AT (A−1)T = (A−1A)T = IT = I.

�

And finally, if A is invertible, then A−1 is also invertible, (A−1)−1 = A.
So, let us summarize main properties of the inverse:

1. If A is invertible, then A−1 is also invertible, (A−1)−1 = A;

2. If A and B are invertible and the product AB is defined, then AB
is invertible and (AB)−1 = B−1A−1.

3. If A is invertible, then AT is also invertible and (AT )−1 = (A−1)T .

5.3. Isomorphism. Isomorphic spaces. An invertible linear transfor-
mation A : V → W is called an isomorphism. We did not introduce any-
thing new here, it is just another shorter name for the object we already
studied.

Two vector spaces V and W are called isomorphic (denoted V ∼= W ) if
there is an isomorphism A : V → W .

Isomorphic spaces can be considered as different representation of the
same space, meaning that all properties, constructions involving vector space
operations are preserved under isomorphism.

The theorem below illustrates this statement.

Theorem 5.6. Let A : V → W be an isomorphism, and let v1,v2, . . . ,vn

be a basis in V . Then the system Av1, Av2, . . . , Avn is a basis in W .

We leave the proof of the theorem as an exercise.

Remark. In the above theorem one can replace “basis” by “linearly inde-
pendent”, or “generating”, or “linearly dependent”—all these properties are
preserved under isomorphisms.

Remark. If A is an isomorphism, then so is A−1. Therefore in the above
theorem we can state that v1,v2, . . . ,vn is a basis if and only if Av1, Av2,
. . . , Avn is a basis.

The inverse to the Theorem 5.6 is also true
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Theorem 5.7. Let A : V → W be a linear map,and let v1,v2, . . . ,vn and
w1,w2, . . . ,wn are bases in V and W respectively. If Avk = wk, k =
1, 2, . . . , n, then A is an isomorphism.

Proof. Define the inverse transformation A−1 by A−1wk = vk, k = 1,
2, . . . , n (as we know, a linear transformation is defined by its values on a
basis). �

Examples.

1. Let A : Rn+1 → Pn (Pn is the set of polynomials
∑n

k=0 akt
k of degree

at most n) is defined by

Ae1 = 1, Ae2 = t, . . . , Aen = tn−1, Aen+1 = tn

By Theorem 5.7 A is an isomorphism, so Pn
∼= Rn+1.

2. Let V be a (real) vector space with a basis v1,v2, . . . ,vn. Define
transformation A : Rn → V by Any real vector

space with a basis is
isomorphic to RnAek = vk, k = 1, 2, . . . , n,

where e1, e2, . . . , en is the standard basis in Rn. Again by Theorem
5.7 A is an isomorphism, so V ∼= Rn.

3. M2×3
∼= R6;

4. More generally, Mm×n
∼= Rm·n

5.4. Invertibility and equations.

Theorem 5.8. Let A : V → W be a linear transformation. Then A is Doesn’t this remind
you of a basis?invertible if and only if for any right side b ∈ W the equation

Ax = b

has a unique solution x ∈ V .

Proof. Suppose A is invertible. Then x = A−1b solves the equation Ax =
b. To show that the solution is unique, suppose that for some other vector
x1 ∈ V

Ax1 = b
Multiplying this identity by A−1 from the left we get

A−1Ax = A−1b,

and therefore x1 = A−1b = x. Note, that both identities, AA−1 = I and
A−1A = I were used here.

Let us now suppose that the equation Ax = b has a unique solution x
for any b ∈ W . Let us use symbol y instead of b. We know that given
y ∈ W the equation

Ax = y
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has a unique solution x ∈ V . Let us call this solution B(y).
Let us check that B is a linear transformation. We need to show that

B(αy1+βy2) = αB(y1)+βB(y2). Let xk := B(yk), k = 1, 2, i.e. Axk = yk,
k = 1, 2. Then

A(αx1 + βx2) = αAx1 + βAx2 = αy2 + βy2,

which means
B(αy1 + βy2) = αB(y1) + βB(y2).

�

Recalling the definition of a basis we get the following corollary of The-
orem 5.7.

Corollary 5.9. An m × n matrix is invertible if and only if its columns
form a basis in Rm.

Exercises.

5.1. Prove, that if A : V → W is an isomorphism (i.e. an invertible linear trans-
formation) and v1,v2, . . . ,vn is a basis in V , then Av1, Av2, . . . , Avn is a basis in
W .

5.2. Find all right inverses to the 1 × 2 matrix (row) A = (1, 1). Conclude from
here that the row A is not left invertible.

5.3. Find all left inverses of the column (1, 2, 3)T

5.4. Is the column (1, 2, 3)T right invertible? Justify

5.5. Find two matrices A and B that AB is invertible, but A and B are not. Hint:
square matrices A and B would not work. Remark: It is easy to construct such
A and B in the case when AB is a 1× 1 matrix (a scalar). But can you get 2× 2
matrix AB? 3× 3? n× n?

5.6. Suppose the product AB is invertible. Show that A is right invertible and B
is left invertible. Hint: you can just write formulas for right and left inverses.

5.7. Let A be n× n matrix. Prove that if A2 = 0 then A is not invertible

5.8. Suppose AB = 0 for some non-zero matrix B. Can A be invertible? Justify.

5.9. Write matrices of the linear transformations T1 and T2 in R5, defined as follows:
T1 interchanges the coordinates x2 and x4 of the vector x, and T2 just adds to the
coordinate x2 a times the coordinate x4, and does not change other coordinates,
i.e.

T1


x1

x2

x3

x4

x5

 =


x1

x4

x3

x2

x5

 , T2


x1

x2

x3

x4

x5

 =


x1

x2 + ax4

x3

x4

x5

 ;

here a is some fixed number.
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Show that T1 and T2 are invertible transformations, and write the matrices of
the inverses. Hint: it may be simpler, if you first describe the inverse transforma-
tion, and then find its matrix, rather than trying to guess (or compute) the inverses
of the matrices T1, T2.

5.10. Find the matrix of the rotation in R3 by the angle α around the vector
(1, 2, 3)T . We assume that rotation is counterclockwise if we sit at the tip of the
vector and looking at the origin.

You can present the answer as a product of several matrices: you don’t have
to perform the multiplication.

5.11. Give examples of matrices (say 2× 2) such that:

a) A + B is not invertible although both A and B are invertible;
b) A + B is invertible although both A and B are not invertible;
c) All of A, B and A + B are invertible

5.12. Let A be an invertible symmetric (AT = A) matrix. Is the inverse of A
symmetric? Justify.

6. Subspaces.

A subspace of a vector space V is a subset V0 ⊂ V of V which is closed under
the vector addition and multiplication by scalars, i.e.

1. If v ∈ V0 then αv ∈ V0 for all scalars α;
2. For any u,v ∈ V0 the sum u + v ∈ V0;

Again, the conditions 1 and 2 can be replaced by the following one:

αu + βv ∈ V0 for all u,v ∈ V0, and for all scalars α, β.

Note, that a subspace V0 ⊂ V with the operations (vector addition and
multiplication by scalars) inherited from V is a vector space. Indeed, because
all operations are inherited from the vector space V they must satisfy all
eight axioms of the vector space. The only thing that could possibly go
wrong, is that the result of some operation does not belong to V0. But the
definition of subspace prohibit this!

Now let us consider some examples:

1. Trivial subspaces of a space V , namely V itself and {0} (the subspace
consisting only of zero vector). Note, that the empty set ∅ is not a
vector space, since it does not contain a zero vector, so it is not a
subspace.

With each linear transformation A : V → W we can associate the following
two subspaces:

2. The null space, or kernel of A, which is denoted as Null A or Ker A
and consists of all vectors v ∈ V such that Av = 0
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3. The range Ran A is defined as the set of all vectors w ∈ W which
can be represented as w = Av for some v ∈ V .

If A is a matrix, i.e. A : Rm → Rn, then recalling column by coordinate rule
of the matrix–vector multiplication, we can see that any vector w ∈ RanA
can be represented as a linear combination of columns of the matrix A. That
explains why the term column space (and notation Col A) is often used for
the range of the matrix. So, for a matrix A, the notation Col A is often used
instead of RanA.

And now the last example.

4. Given a system of vectors v1,v2, . . . ,vr ∈ V its linear span (some-
times called simply span) L{v1,v2, . . . ,vr} is the collection of all
vectors v ∈ V that can be represented as a linear combination
v = α1v1 + α2v2 + . . . + αrvr of vectors v1,v2, . . . ,vr. The no-
tation span{v1,v2, . . . ,vr} is also used instead of L{v1,v2, . . . ,vr}

It is easy to check that in all of these examples we indeed have subspaces.
We leave this an an exercise for the reader. Some of the statements will be
proved later in the text.

Exercises.

6.1. What is the smallest subspace of the space of 4 × 4 matrices which contains
all upper triangular matrices (aj,k = 0 for all j > k), and all symmetric matrices
(A = AT )? What is the largest subspace contained in both of those subspaces?

7. Application to computer graphics.

In this section we give some ideas of how linear algebra is used in computer
graphics. We will not go into the details, but just explain some ideas.
In particular we explain why manipulation with 3 dimensional images are
reduced to multiplications of 4× 4 matrices.

7.1. 2-dimensional manipulation. The x-y plane (more precisely, a rec-
tangle there) is a good model of a computer monitor. Any object on a
monitor is represented as a collection of pixels, each pixel is assigned a spe-
cific color. Position of each pixel is determined by the column and row,
which play role of x and y coordinates on the plane. So a rectangle on a
plane with x-y coordinates is a good model for a computer screen: and a
graphical object is just a collection of points.

Remark. There are two types of graphical objects: bitmap objects, where
every pixel of an object is described, and vector object, where we describe
only critical points, and graphic engine connects them to reconstruct the
object. A (digital) photo is a good example of a bitmap object: every pixel
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of it is described. Bitmap object can contain a lot of points, so manipulations
with bitmaps require a lot of computing power. Anybody who edited digital
photos in a bitmap manipulation program like Photoshop knows that one
needs quite powerful computer, and even with moder powerful computers
manipulations can take some time.

That is the reason that most of the objects, appearing on a computer
screen are vector ones: computer needs to memorize only critical points. For
example, to describe a polygon, one needs only to give the coordinates of its
vertices, and which vertex is connected with which. Of course, not all objects
on a computer screen can be represented as polygons: some, like letters,
have curved smooth boundaries. But there are standard methods allowing
to draw smooth curves through a collection of points, for example Bezier
splines, used in PostScript and Adobe PDF (and in many other formats).

Anyhow, this is a object of a completely different book, and we will
not discuss it here. For us a graphical object will be a collection of point
(either wireframe model, or bitmap) and we would like to show how one can
perform some manipulations with such objects.

The simplest transformation is the translation (shift), where each point
(vector) v is translated by a, i.e. the vector v is replaced by v+a (notation
v 7→ v + a is used for this). A vector addition is very well adapted to the
computers, so the translation is easy to implement.

Note, that the translation is not a linear transformation (if a 6= 0): while
it preserves the straight lines, it does not preserve 0.

All other transformation used in computer graphics are linear. The first
one that comes to mind is rotation. The rotation by γ around the origin 0
is given by the multiplication by the rotation matrix Rγ we discussed above,

Rγ =
(

cos γ − sin γ
sin γ cos γ

)
If we want to rotate around a point a, we first need to translate the picture
by −a, moving the point a to 0, then rotate around 0 (multiply by Rγ) and
then translate everything back by a.

Another very useful transformation is scaling given by a matrix(
a 0
0 b

)
,

a, b ≥ 0. If a = b it is uniform scaling which enlarges (reduces) an object,
preserving its shape. If a 6= b then x and y coordinates scale differently; the
object becomes “taller” or “wider”.
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Another often used transformation is reflection: for example the matrix(
1 0
0 −1

)
,

defines the reflection through x-axis.
We will show later in the book, that any linear transformation in R2 can

be represented either as a composition of scaling rotations and reflections.
However it is sometimes convenient to consider some different transforma-
tions, like the shear transformation, given by the matrix(

1 cos ϕ
0 1

)
.

This transformation makes all objects slanted: the horizontal lines remain
horizontal, but vertical lines go to the slanted lines at the angle ϕ to the
horizontal ones.

7.2. 3-dimensional graphics. Three-dimensional graphics is more com-
plicated. First we need to be able to manipulate 3-dimensional objects, and
then we need to represent it on 2-dimensional plane (monitor).

The manipulations with 3-dimensional objects is pretty straightforward:
we have the same basic transformations: translation, reflection through a
plane, scaling, rotation. Matrices of these transformations are very similar
to the matrices of their 2× 2 counterparts. For example the matrices 1 0 0

0 1 0
0 0 −1

 ,

 a 0 0
0 b 0
0 0 c

 ,

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1


represent respectively reflection through x-y plane, scaling, and rotation
around z-axis.

Note, that the above rotation is essentially 2-dimensional transforma-
tion, it does not change z coordinate. Similarly one can write matrices for
the other 2 elementary rotations around x and around y axes. It will be
shown later that a rotation around an arbitrary axis can be represented as
a composition of elementary rotations.

So, we know how to manipulate 3-dimensional objects. Let us now
discuss how to represent such object on a 2-dimensional plane. The simplest
way is to project it to a plane, say to the x-y plane. To perform such
projection one just needs to replace z coordinate by 0: the matrix of this
projection is  1 0 0

0 1 0
0 0 0

 .
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x

y

z

F

Figure 2. Perspective projection onto x-y plane: F is the center (focal
point) of the projection

Such method is often used in technical illustrations. Rotating an object
and projecting it is equivalent to looking at it from different points. However,
this method does not give a very realistic picture, because it does not take
into account the perspective, the fact that the objects that are further away
look smaller.

To get more realistic picture one needs to use the so-called perspective
projection. To define a perspective projection one needs to pick a point (the
center of projection or the focal point) and a plane to project onto. Then
each point in R3 is projected into a point on the plane such that the point,
its image and the center of the projection lie on the same line, see Fig. 2.

This is exactly how a photo camera works, and it is a reasonable first
approximation of how our eyes work.

Let us get a formula for the projection. Assume that the focal point is
(0, 0, d)T and that we are projecting onto x-y plane, see Fig. 3 a). Consider
a point v = (x, y, z)T , and let v∗ = (x∗, y∗, 0)T be its projection. Analyzing
similar triangles see Fig. 3 b), we get that

x∗

d
=

x

d− z
,

so

x∗ =
xd

d− z
=

x

1− z/d
,

and similarly

y∗ =
y

1− z/d
.
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x

x∗

z

d−z

(x, y, z)

(x∗, y∗, 0)

x

z

y

(0, 0, d) a) b)

Figure 1. Projection

1

Figure 3. Finding coordinates x∗, y∗ of the perspective projection of
the point (x, y, z)T .

Note, that this formula also works if z > d and if z < 0: you can draw the
corresponding similar triangles to check it.

Thus the perspective projection maps a point (x, y, z)T to the point(
x

1−z/d , y
1−z/d , 0

)T
.

This transformation is definitely not linear (because of z in the denomi-
nator). However it is still possible to represent it as a linear transformation.
To do this let us introduce the so-called homogeneous coordinates.

In the homogeneous coordinates, every point in R3 is represented by 4
coordinates, the last, 4th coordinate playing role of the scaling coefficient.
Thus, to get usual 3-dimensional coordinates of the vector v = (x, y, z)T

from its homogeneous coordinates (x1, x2, x3, x4)T one needs to divide all
entries by the last coordinate x4 and take the first 3 coordinates 3 (if x4 = 0
this recipe does not work, so we assume that the case x4 = 0 corresponds
to the point at infinity).

Thus in homogeneous coordinates the vector v∗ can be represented as
(x, y, 0, 1−z/d)T , so in homogeneous coordinates the perspective projection

3If we multiply homogeneous coordinates of a point in R2 by a non-zero scalar, we do not

change the point. In other words, in homogeneous coordinates a point in R3 is represented by a
line through 0 in R4.
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is a linear transformation:
x
y
0

1− z/d

 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 −1/d 1




x
y
z
1

 .

Note that in the homogeneous coordinates the translation is also a linear
transformation: 

x + a1

y + a2

z + a3

1

 =


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1




x
y
z
1

 .

But what happen if the center of projection is not a point (0, 0, d)T

but some arbitrary point (d1, d2, d3)T . Then we first need to apply the
translation by −(d1, d2, 0)T to move the center to (0, 0, d3)T while preserving
x-y plane, apply the projection, and then move everything back translating
it by (d1, d2, 0)T . Similarly, if the plane we project to is not x-y plane, we
move it to the x-y plane by using rotations and translations, and so on.

And all these operations are just multiplications by 4×4 matrices. That
explain why modern graphic cards have 4× 4 matrix operations embedded
in the processor.

Of course, here we only touched the mathematics behind 3-dimensional
graphics, there is much more. For example, how to determine which parts of
the object are visible and which are hidden, how to make realistic lighting,
shades, etc.

Exercises.

7.1. What vector in R3 has homogeneous coordinates (10, 20, 30, 5)?

7.2. Show that a rotation through γ can be represented as a composition of two
shear-and-scale transformations

T1 =
(

1 0
sin γ cos γ

)
, T2 =

(
sec γ − tan γ

0 1

)
.

In what order the transformations should be taken?

7.3. Multiplication of a 2-vector by an arbitrary 2 × 2 matrix usually requires 4
multiplications.

Suppose a 2× 1000 matrix D contains coordinates of 1000 points in R2. How
many multiplications is required to transform these points using 2 arbitrary 2 × 2
matrices A and B. Compare 2 possibilities, A(BD) and (AB)D.
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7.4. Write 4×4 matrix performing perspective projection to x-y plane with center
(d1, d2, d3)T .

7.5. A transformation T in R3 is a rotation about the line y = x + 3 in x-y plane
through an angle γ. Write 4× 4 matrix corresponding to this transformation.

You can leave the result as a product of matrices.



Chapter 2

Systems of linear
equations

1. Different faces of linear systems.

There exist several points of view on what a system of linear equations, or in
short a linear system is. The first, näıve one is, that it is simply a collection
of m linear equations with n unknowns x1, x2, . . . , xn,

a1,1x1 + a1,2x2 + . . . + a1,nxn = b1

a2,1x1 + a2,2x2 + . . . + a2,nxn = b2

. . .
am,1x1 + am,2x2 + . . . + am,nxn = bm

To solve the system is to find all n-tuples of numbers x1, x2, . . . , xn which
satisfy all m equations simultaneously.

If we denote x := (x1, x2, . . . , xn)T ∈ Rn, b = (b1, b2, . . . , bm)T ∈ Rm,
and

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
...

am,1 am,2 . . . am,n

 ,

then the above linear system can be written in the matrix form (as a matrix-
vector equation)

Ax = b.

To solve the above equation is to find all vectors x ∈ Rn satisfying Ax = b.

35
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And finally, recalling the “column by coordinate” rule of the matrix-
vector multiplication, we can write the system as a vector equation

x1a1 + x2a2 + . . . + xnan = b,

where ak is the kth column of the matrix A, ak = (a1,k, a2,k, . . . , am,k)T ,
k = 1, 2, . . . , n.

Note, that these three examples are essentially just different representa-
tions of the same mathematical object.

Before explaining how to solve a linear system, let us notice that it does
not matter how we call the unknowns, xk, yk or something else. So, all
the information necessary to solve the system is contained in the matrix A,
which is called the coefficient matrix of the system and in the vector (right
side) b. Hence, the all information we need is contained in the following
matrix 

a1,1 a1,2 . . . a1,n b1

a2,1 a2,2 . . . a2,n b2
...

...
...

...
am,1 am,2 . . . am,n bm


which is obtained by attaching the column b to the matrix A. This matrix is
called the augmented matrix of the system. We will usually put the vertical
line separating A and b to distinguish between the augmented matrix and
the coefficient matrix.

2. Solution of a linear system. Echelon and reduced echelon
forms

Linear system are solved by the Gauss–Jordan elimination (which is some-
times called em row reduction). By performing operations on rows of the
augmented matrix of the system (i.e. on the equations), we reduce it to a
simple form, the so-called echelon form. And when the system is in the
echelon form, one can easily write the solution.

2.1. Row operations. There are three types of row operations we use:

1. Row exchange: interchange two rows of the matrix;

2. Scaling: multiply a row by a non-zero scalar a;

3. Row replacement: replace a row # k by its sum with a constant
multiple of a row # j; all other rows remain intact;

It is clear that the operations 1 and 2 do not change the set of solutions
of the system; they essentially do not change the system.
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As for the operation 3, one can easily see that it does not lose solutions.
Namely, let a “new” system be obtained from an “old” one by a row oper-
ation of type 3. Then any solution of the “old” system is a solution of the
“new” one.

To see that we do not gain anything extra, i.e. that any solution of the
“new” system is also a solution of the “old” one, we just notice that row
operation of type 3 are reversible, i.e. the “old’ system also can be obtained
from the “new” one by applying a row operation of type 3 (can you say
which one?)
2.1.1. Row operations and multiplication by elementary matrices. There is
another, more “advanced” explanation why the above row operations are
legal. Namely, every row operation is equivalent to the multiplication of the
matrix from the left by one of the special elementary matrices.

Namely, the multiplication by the matrix

j k

j

k



1
...

...
. . .

...
... 0

1
...

...
. . . . . . . . . 0 . . . . . . . . . 1

... 1
...

...
. . .

...
... 1

...
. . . . . . . . . 1 . . . . . . . . . 0

1
0 . . .

1


just interchanges the rows number j and number k. Multiplication by the
matrix

k



1
...

. . .
... 0

1 0
. . . . . . 0 a 0

0 1
0 . . . 0

0 1


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multiplies the row number k by a. And finally, the multiplication by the
matrix

j

k



1
...

...
. . .

...
... 0

. . . . . . 1 . . . 0
...

. . .
...

. . . . . . a . . . 1
. . .0

1


adds to the row #k row #j multiplied by a, and leaves all other rows intact.A way to describe

(or to remember)
these elementary
matrices: they are
obtained from I by
applying the
corresponding row
operation to it

To see, that the multiplication by these matrices works as advertised,
one can just see how the multiplications act on vectors (columns).

Note that all these matrices are invertible (compare with reversibility of
row operations). The inverse of the first matrix is the matrix itself. To get
the inverse of the second one, one just replaces a by 1/a. And finally, the
inverse of the third matrix is obtained by replacing a by −a. To see that
the inverses are indeed obtained this way, one again can simply check how
they act on columns.

So, performing a row operation on the augmented matrix of the system
Ax = b is equivalent to the multiplication of the system (from the left) by
a special invertible matrix E. Clearly, any solution of the equation

Ax = b

is also a solution of
EAx = Eb.

Multiplying this equation (from the left) by E−1 we get that any its solution
is the solution of the equation

E−1EAx = E−1Eb,

which is the original equation Ax = b. So, a row operation does not change
the solution set of a system.

2.2. Row reduction. And now how the row reduction is carried out. The
main step consists of 3 substeps:

1. Find the leftmost non-zero column of the matrix;

2. Make sure, by applying row operations of type 2, if necessary, that
the first (the upper) entry of this column is non-zero.

This entry will be called the pivot entry or simply the pivot;
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3. “Kill” (i.e. make them 0) all non-zero entries below the pivot by
adding (subtracting) an appropriate multiple of the first row from
the rows number 2, 3, . . . ,m.

We apply the main step to a matrix, then we leave the first row alone and
apply the main step to rows 2, . . . ,m, then to rows 3, . . . ,m, etc.

The point to remember is that after we subtract a multiple of a row from
all rows below it (step 3), we leave it alone and do not change it in any way,
not even interchange it with another row.

After applying the main step finitely many times (at most m), we get
what is called the echelon form of the matrix.
2.2.1. An example of row reduction. Let us consider the following linear
system: 

x1 + 2x2 + 3x3 = 1
3x1 + 2x2 + x3 = 7
2x1 + x2 + 2x3 = 1

The augmented matrix of the system is 1 2 3 1
3 2 1 7
2 1 2 1


Subtracting 3·Row#1 from the second row, and subtracting 2·Row#1 from
the third one we get: 1 2 3 1

3 2 1 7
2 1 2 1

 −3R1

−2R1

∼

 1 2 3 1
0 −4 −8 4
0 −3 −4 −1


Multiplying the second row by −1/4 we get 1 2 3 1

0 1 2 −1
0 −3 −4 −1


Adding 3·Row#2 to the third row we obtain 1 2 3 1

0 1 2 −1
0 −3 −4 −1

−3R2 ∼

 1 2 3 1
0 1 2 −1
0 0 2 −4


Now we can use the so called back substitution to solve the system. Namely,
from the last row (equation) we get x3 = −2. Then form the second equation
we get

x2 = −1− 2x3 = −1− 2(−2) = 3,

and finally, from the first row (equation)

x1 = 1− 2x2 − 3x3 = 1− 6 + 6 = 1.
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So, the solution is 
x1 = 1
x2 = 3,
x3 = −2,

or in the vector form

x =

 1
3

−2


or x = (1, 3,−2)T . We can check the solution by multiplying Ax, where A
is the coefficient matrix.

Instead of using back substitution, we can do row reduction from down
to top, killing all the entries above the main diagonal of the coefficient
matrix: we start by multiplying the last row by 1/2, and the rest is pretty
self-explanatory: 1 2 3 1

0 1 2 −1
0 0 1 −2

−3R3

−2R3 ∼

 1 2 0 7
0 1 0 3
0 0 1 −2

−2R2

∼

 1 0 0 1
0 1 0 3
0 0 1 −2


and we just read the solution x = (1, 3,−2)T off the augmented matrix.

We leave it as an exercise to the reader to formulate the algorithm for
the backward phase of the row reduction.

2.3. Echelon form. A matrix is in echelon form if it satisfies the following
two conditions:

1. All zero rows (i.e. the rows with all entries equal 0), if any, are below
all non-zero entries.

For a non-zero row, let us call the leftmost non-zero entry the leading entry.
Then the second property of the echelon form can be formulated as follows:

2. For any non-zero row its leading entry is strictly to the right of the
leading entry in the previous row.

The leading entry in each row in echelon form is also called pivot entry,Pivots: leading
(rightmost non-zero
entries) in a row

or simply pivot, because these entries are exactly the pivots we used in the
row reduction.

A particular case of the echelon form is the so-called triangular form.
We got this form in our example above. In this form the coefficient matrix is
square (n×n), all its entries on the main diagonal are non-zero, and all the
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entries below the main diagonal are zero. The right side, i.e. the rightmost
column of the augmented matrix can be arbitrary.

After the backward phase of the row reduction, we get what the so-
called reduced echelon form of the matrix: coefficient matrix equal I, as in
the above example, is a particular case of the reduced echelon form.

The general definition is as follows: we say that a matrix is in the reduced
echelon form, if it is in the echelon form and

3. All pivot entries are equal 1;

4. All entries above the pivots are 0. Note, that all entries below the
pivots are also 0 because of the echelon form.

To get reduced echelon form from echelon form, we work from the bottom
to the top and from the right to the left, using row replacement to kill all
entries above the pivots.

An example of the reduced echelon form is the system with the coefficient
matrix equal I. In this case, one just reads the solution from the reduced
echelon form. In general case, one can also easily read the solution from
the reduced echelon form. For example, let the reduced echelon form of the
system (augmented matrix) be 1 2 0 0 0 1

0 0 1 5 0 2
0 0 0 0 1 3

 ;

here we boxed the pivots. The idea is to move the variables, corresponding
to the columns without pivot (the so-called free variables) to the right side.
Then we can just write the solution.

x1 = 1− 2x2

x2 is free
x3 = 2− 5x2

x4 is free
x5 = 3

or in the vector form

x =


1− 2x2

x2

1− 5x4

x4

3

 =


1
0
1
0
3

+ x2


−2
1
0
0
0

+ x4


0
0
−5
1
0


One can also find the solution from the echelon form by using back sub-

stitution: the idea is to work from bottom to top, moving all free variables
to the right side.
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Exercises.

2.1. Solve the following systems of equations

a)

 x1 + 2x2 − x3 = −1
2x1 + 2x2 + x3 = 1
3x1 + 5x2 − 2x3 = −1

b)


x1 − 2x2 − x3 = 1

2x1 − 3x2 + x3 = 6
3x1 − 5x2 = 7
x1 + 5x3 = 9

c)


x1 + 2x2 + 2x4 = 6

3x1 + 5x2 − x3 + 6x4 = 17
2x1 + 4x2 + x3 + 2x4 = 12
2x1 − 7x3 + 11x4 = 7

d)

 x1 − 4x2 − x3 + x4 = 3
2x1 − 8x2 + x3 − 4x4 = 9
−x1 + 4x2 − 2x3 + 5x4 = −6

e)

 x1 + 2x2 − x3 + 3x4 = 2
2x1 + 4x2 − x3 + 6x4 = 5

x2 + 2x4 = 3

f)

 2x1 − 2x2 − x3 + 6x4 −2x5 = 1
x1 − x2 + x3 + 2x4 −x5 = 2

4x1 − 4x2 + 5x3 + 7x4 −x5 = 6

g)


3x1 − x2 + x3 − x4 + 2x5 = 5
x1 − x2 − x3 − 2x4 − x5 = 2

5x1 − 2x2 + x3 − 3x4 + 3x5 = 10
2x1 − x2 − 2x4 + x5 = 5

3. Analyzing the pivots.

All questions about existence of a solution and it uniqueness can be answered
by analyzing pivots in the echelon (reduced echelon) form of the augmented
matrix of the system. First of all, let us ask yourself a question: when the
equation Ax = b is inconsistent, i.e. when it does not have a solution? The
answer follows immediately, if one just thinks about it:

a system is inconsistent (does not have a solution) if and only if
there is a pivot in the last row of an echelon form of the augmented
matrix, i.e. iff an echelon form of the augmented matrix has a row(

0 0 . . . 0 b
)
, b 6= 0 in it.

Indeed, such a row correspond to the equation 0x1 +0x2 + . . .+0xn = b 6= 0
that does not have a solution. And if we don’t have such a row, we just
make the reduced echelon form and then read the solution off it.
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Now, three more statements. Note, that they both deal with coefficient
matrix, not with the augmented matrix of the system.

1. A solution (if it exists) is unique iff there are no free variables, that
is if and only if the echelon form of the coefficient matrix has a pivot
in every column;

2. Equation Ax = b is consistent for all right sides b if and only if the
echelon form of the coefficient matrix has a pivot in every row.

3. Equation Ax = b has a unique solution for any right side b if and
only if echelon form of the coefficient matrix A has a pivot in every
column and every row.

The first statement is trivial, because free variables are responsible for
all non-uniqueness. I should only emphasize that this statement does not
tell anything about the existence.

The second statement is a tiny bit more complicated. If we have a pivot
in every row of the coefficient matrix, we cannot have the pivot in the last
column of the augmented matrix, so the system is always consistent, no
matter what the right side b is.

Let us show that if we have a zero row in the echelon form of the coeffi-
cient matrix A, then we can pick a right side b such that the system Ax = b
is not consistent. Let Ae echelon form of the coefficient matrix A. Then

Ae = EA,

where E is the product of elementary matrices, corresponding to the row
operations, E = EN , . . . , E2, E1. If Ae has a zero row, then the last row is
also zero. Therefore, if we put be = (0, . . . , 0, 1)T (all entries are 0, except
the last one), then the equation

Aex = be

does not have a solution. Multiplying this equation by E−1 from the left,
an recalling that E−1Ae = A, we get that the equation

Ax = E−1be

does not have a solution.
Finally, statement 3 immediately follows from statements 1 and 2. �

From the above analysis of pivots we get several very important corol-
laries. The main observation we use is

In echelon form, any row and any column have no more than 1
pivot in it (it can have 0 pivots)



44 2. Systems of linear equations

3.1. Corollaries about linear independence and bases. Dimension.
Questions as to when a system of vectors in Rn is a basis, a linearly inde-
pendent or a spanning system, can be easily answered by the row reduction.

Proposition 3.1. Let we have a system of vectors v1,v2, . . . ,vm ∈ Rn, and
let A = [v1,v2, . . . ,vm] be an n × m matrix with columns v1,v2, . . . ,vm.
Then

1. The system v1,v2, . . . ,vm is linearly independent iff echelon form of
A has a pivot in every column;

2. The system v1,v2, . . . ,vm is complete in Rn (spanning, generating)
iff echelon form of A has a pivot in every row;

3. The system v1,v2, . . . ,vm is a basis in Rn iff echelon form of A has
a pivot in every column and in every row.

Proof. The system v1,v2, . . . ,vm ∈ Rm is linearly independent if and only
if the equation

x1v1 + x2v2 + . . . + xmvm = 0
has the unique (trivial) solution x1 = x2 = . . . = xm = 0, or equivalently,
the equation Ax = 0 has unique solution x = 0. By statement 1 above, it
happens if and only if there is a pivot in every column of the matrix.

Similarly, the system v1,v2, . . . ,vm ∈ Rm is complete in Rn if and only
if the equation

x1v1 + x2v2 + . . . + xmvm = b
has a solution for any right side b ∈ Rn. By statement 2 above, it happens
if and only if there is a pivot in every column in echelon form of the matrix.

And finally, the system v1,v2, . . . ,vm ∈ Rm is a basis in Rn if and only
if the equation

x1v1 + x2v2 + . . . + xmvm = b
has unique solution for any right side b ∈ Rn. By statement 3 this happens
if and only if there is a pivot in every column and in every row of echelon
form of A. �

Proposition 3.2. Any linearly independent system of vectors in Rn cannot
have more than n vectors in it.

Proof. Let a system v1,v2, . . . ,vm ∈ Rn be linearly independent, and let
A = [v1,v2, . . . ,vm] be the n×m matrix with columns v1,v2, . . . ,vm. By
Proposition 3.1 echelon form of A must have a pivot in every column, which
is impossible if m > n (number of pivots cannot be more than number of
rows). �

Proposition 3.3. Any two bases in a vector space V have the same number
of vectors in them.
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Proof. Let v1,v2, . . . ,vn and w1,w2, . . . ,wm be two different bases in V .
Without loss of generality we can assume that n ≤ m. Consider an isomor-
phism A : Rn → V defined by

Aek = vk, k = 1, 2, . . . n,

where e1, e2, . . . , en is the standard basis in Rn.
Since A−1 is also an isomorphism, the system

A−1w1, A
−1w2, . . . , A

−1wm

is a basis (see Theorem 5.6 in Chapter 1). So it is linearly independent,
and by Proposition 3.2, m ≤ n. Together with the assumption n ≤ m this
implies that m = n. �

The statement below is a particular case o the above proposition.

Proposition 3.4. Any basis in Rn must have exactly n vectors in it.

Proof. This fact follows immediately from the previous proposition, but
there is also a direct proof. Let v1,v2, . . . ,vm be a basis in Rn and let A be
the n×m matrix with columns v1,v2, . . . ,vm. The fact that the system is
a basis, means that the equation

Ax = b

has a unique solution for any (all possible) right side b. The existence means
that there is a pivot in every row (of a reduced echelon form of the matrix),
hence the number of pivots is exactly n. The uniqueness mean that there is
pivot in every column of the coefficient matrix (its echelon form), so

m = number of columns = number of pivots = n

�

Proposition 3.5. Any spanning (generating) set in Rn must have at least
n vectors.

Proof. Let v1,v2, . . . ,vm be a complete system in Rn, and let A be n×m
matrix with columns v1,v2, . . . ,vm. Statement 2 of Proposition 3.1 implies
that echelon form of A has a pivot in every row. Since number of pivots
cannot exceed the number of rows, n ≤ m. �

3.2. Corollaries about invertible matrices.

Proposition 3.6. A matrix A is invertible if and only if its echelon form
has pivot in every column and every row.
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Proof. As it was discussed in the beginning of the section, the equation
Ax = b has a unique solution for any right side b if and only if the echelon
form of A has pivot in every row and every column. But we know, see
Theorem 5.8 in Chapter 1, that the matrix (linear transformation) A is
invertible if and only if the equation Ax = b has a unique solution for any
possible right side b.

There is also an alternative proof. We know that a matrix is invertible
if and only if its columns form a basis in (see Corollary 5.9 in Section 5.4,
Chapter 1). Proposition 3.4 above states that it happens if and only if there
is a pivot in every row and every column. �

The above proposition immediately implies the following

Corollary 3.7. An invertible matrix must be square (n× n).

Proposition 3.8. If a square (n × n) matrix is left invertible, or if it is
right right invertible, then it is invertible. In other words, to check the
invertibility of a square matrix A it is sufficient to check only one of the
conditions AA−1 = 1, A−1A = I.

Note, that this proposition apply only to square matrices!

Proof. We know that matrix A is invertible if and only if the equation
Ax = b has a unique solution for any right side b. This happens if and only
if echelon form of the matrix A has pivots in every row and in every column.

If a matrix A is left invertible, the equation Ax = 0 has unique solution
x = 0. Indeed, if B is a left inverse of A (i.e. BA = I), and x satisfies

Ax = 0,

then multiplying this identity by B from the left we get x = 0, so the
solution is unique. Therefore, echelon form of A has pivots in every row. If
the matrix A is square (n × n), the echelon form also has pivots in every
column, so the matrix is invertible.

If a matrix A is right invertible, and C is its right inverse (AC = I),
then for x = Cb, b ∈ Rn

Ax = ACb = Ib = b.

Therefore, for any right side b the equation Ax = b has a solution x = Cb.
Thus, echelon form of A has pivots in every row. If A is square, it also has
a pivot in every column, so A is invertible. �

Exercises.
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3.1. For what value of b the system 1 2 2
2 4 6
1 2 3

x =

 1
4
b


has a solution. Find the general solution of the system for this value of b.

3.2. Determine, if the vectors
1
1
0
0

 ,


1
0
1
0

 ,


0
0
1
1

 ,


0
1
0
1


are linearly independent or not.

Do these four vectors span R4? (In other words, is it a generating system?)

3.3. Determine, which of the following systems of vectors are bases in R3:

a) (1, 2,−1)T , (1, 0, 2)T , (2, 1, 1)T ;
b) (−1, 3, 2)T , (−3, 1, 3)T , (2, 10, 2)T ;
c) (67, 13,−47)T , (π,−7.84, 0)T , (3, 0, 0)T .

3.4. Do the polynomials x3 + 2x, x2 + x + 1, x3 + 5 generate (span) P3? Justify
your answer

3.5. Can 5 vectors in R4 be linearly independent? Justify your answer.

3.6. Prove or disprove: If the columns of a square (n × n) matrix A are linearly
independent, so are the columns of A2 = AA.

3.7. Prove or disprove: If the columns of a square (n × n) matrix A are linearly
independent, so are the rows of A3 = AAA.

3.8. Show, that if the equation Ax = 0 has unique solution (i.e. if echelon form of
A has pivot in every column) then A is left invertible. Hint: elementary matrices
may help.
Note: It was shown in the text, that if A is left invertible, then the equation
Ax = 0 has unique solution. But here you are asked to prove the converse of this
statement, which was not proved.
Remark: This can be a very hard problem, for it require deep understanding of the
subject. However, when you understand what to do, the problem becomes almost
trivial.

4. Finding A−1 by row reduction.

As it was discussed above, an invertible matrix must be square, and its eche-
lon form must have pivots in every row and every column. Therefore reduced
echelon form of an invertible matrix is the identity matrix I. Therefore,

Any invertible matrix is row equivalent (i.e. can be reduced by row
operations) to the identity matrix.
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Now let us state a simple algorithm of finding the inverse of an n × n
matrix:

1. Form an augmented n×2n matrix (A | I) by writing the n×n identity
matrix right of A;

2. Performing row operations on the augmented matrix transform A to
the identity matrix I;

3. The matrix I that we added will be automatically transformed to
A−1;

4. If it is impossible to transform A to identity by row operation, A is
not invertible

There are several possible explanations of the above algorithm. The
first, a näıve one is as follows: we know that (for an invertible A) vector
A−1b is the solution of the equation Ax = b. So to find column number k
of A−1 we need to find the solution of Ax = ek, where e1, e2, . . . , en is the
standard basis in Rn. And the above algorithm just solves the equations

Ax = ek, k = 1, 2, . . . , n

simultaneously!
Let us also present another, more “advanced” explanation. As we dis-

cussed above, every row operation can be realized as a left multiplication
by an elementary matrix. Let E1, E2, . . . , EN be the elementary matrices
corresponding to the row operation we performed, and let E = EN · · ·E2E1

be their product.1 We know that the row operations transform A to iden-
tity, i.e. EA = I, so E = A−1. But the same row operations transform the
augmented matrix (A | I) to (EA |E) = (I |A−1). �

This “advanced” explanation using elementary matrices implies an im-
portant proposition that will be often used later.

Theorem 4.1. Any invertible matrix can be represented as a product of
elementary matrices.

Proof. As we discussed in the previous paragraph, A−1 = EN · · ·E2E1, so

A = (A−1)−1 = E−1
1 E−1

2 · · ·E−1
N .

�

1Although it does not matter here, but please notice, that if the row operation E1 was
performed first, E1 must be the rightmost term in the product
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An Example. Suppose we want to find the inverse of the matrix 1 4 2
−2 −7 7

3 11 −6


Augmenting the identity matrix to it and performing row reduction we get 1 4 −2 1 0 0
−2 −7 7 0 1 0

3 11 −6 0 0 1

+2R1

−3R1

∼

 1 4 −2 1 0 0
0 1 3 2 1 0
0 −1 0 −3 0 1


+R2

∼

 1 4 −2 1 0 0
0 1 3 2 1 0
0 0 3 −1 1 1

×3
∼

 3 12 −6 3 0 0
0 1 3 2 1 0
0 0 3 −1 1 1

+2R3

−R3 ∼

Here in the last row operation we multiplied the firs row by 3 to avoid
fractions in the backward phase of row reduction. Continuing with the row
reduction we get 3 12 0 1 2 2

0 1 0 3 0 −1
0 0 3 −1 1 1

−12R2

∼

 3 0 0 −35 2 14
0 1 0 3 0 −1
0 0 3 −1 1 1


Dividing the first and the last row by 3 we get the inverse matrix −35/3 2/3 14/3

3 0 −1
−1/3 1/3 1/3


Exercises.

4.1. Find the inverse of the matrix. 1 2 1
3 7 3
2 3 4


Show all steps

5. Dimension. Finite-dimensional spaces.

Definition. The dimension dim V of a vector space V is the number of
vectors in a basis.

For a vector space consisting only of zero vector 0 we put dim V = 0. If
V does not have a (finite) basis, we put dim V = ∞.

If dim V is finite, we call the space V finite-dimensional; otherwise we
call it infinite-dimensional
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Proposition 3.3 asserts that the dimension is well defined, i.e. that it
does not depend on the choice of a basis.

Proposition 2.8 from Chapter 1 states that any finite spanning system
in a vector space V contains a basis. This immediately implies the following

Proposition 5.1. A vector space V is finite-dimensional if and only if it
has a finite spanning system.

Suppose, that we have a system of vectors in a finite-dimensional vector
space, and we want to check if it is a basis (or if it is linearly independent,
or if it is complete)? Probably the simplest way is to use an isomorphism
A : V → Rn, n = dim E to move the problem to Rn, where all such questions
can be answered by row reduction (studying pivots).

Note, that if dim V = n, then there always exists an isomorphism A :
V → Rn. Indeed, if dim V = n then there exists a basis v1,v2, . . . ,vn ∈ V ,
and one can define an isomorphism A : V → Rn by

Avk = ek, k = 1, 2, . . . , n.

As an example, let us give the following two corollaries of the above
Propositions 3.2, 3.5:

Proposition 5.2. Any linearly independent system in a finite-dimensional
vector space V cannot have more than dim V vectors in it.

Proof. Let v1,v2, . . . ,vm ∈ V be a linearly independent system, and let
A : V → Rn be an isomorphism. Then Av1, Av2, . . . , Avm is a linearly
independent system in Rn, and by Proposition 3.2 m ≤ n. �

Proposition 5.3. Any generating system in a finite-dimensional vector
space V must have at least dim V vectors in it.

Proof. Let v1,v2, . . . ,vm ∈ V be a complete system in V , and let A : V →
Rn be an isomorphism. Then Av1, Av2, . . . , Avm is a complete system in
Rn, and by Proposition 3.5 m ≥ n. �

The following statement will play an important role later.

Proposition 5.4. Any linearly independent system of vectors in a finite-
dimensional space can be extended to a basis, i.e. if v1,v2, . . . ,vr are linearly
independent vectors in a finite-dimensional vector space V then one can find
vectors vr+1,vr+2 . . . ,vn such that the system of vectors v1,v2, . . . ,vn is a
basis in V .

Proof. Let n = dim V and let r < n (if r = n then the system v1,v2, . . . ,vr

is already a bsis, and the case r > n is impossible). Take any vector not
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belonging to span{v1,v2, . . . ,vr} and call it vr+1 (one can always do that
because the system v1,v2, . . . ,vr is not generating). By Exersize 2.5 from
Chapter 1 the system v1,v2, . . . ,vr,vr+1 is linearly independent. Repeat
the procedure with the new system to get vector vr+2, and so on.

We will stop the process when we get a generating system. Note, that
the process cannot continue infinitely, bacause a linearly independent system
of vectors in V cannot have more than n = dim V vectors. �

Exercises.

5.1. True or false:

a) Every vector space that is generated by a finite set has a basis;

b) Every vector space has a (finite) basis;

c) A vector space cannot have more than one basis.

d) If a vector space has a finite basis, then the number of vectors in every
basis is the same.

e) The dimension of Pn is n;

f) The dimension on Mm×n is m + n;

g) If vectors v1,v2, . . . ,vn generate (span) the vector space V , then every
vector in V can be written as a linear combination of vector v1,v2, . . . ,vn

in only one way.

h) Every subspace of a finite-dimensional space is finite-dimensional.

i) If V is a vector space having dimension n, then V has exactly one subspace
of dimension 0 and exactly one subspace of dimension n.

5.2. Prove that if V is a vector space having dimension n, then a system of vectors
v1,v2, . . . ,vn in V is linearly independent if and only if it spans V .

5.3. Prove that a linearly independent system of vectors v1,v2, . . . ,vn in a vector
space V is a basis if and only if n = dim V .

5.4. (An old problem revisited: now this problem should be easy) Is it possible that
vectors v1,v2,v3 are linearly dependent, but the vectors w1 = v1+v2, w2 = v2+v3

and w3 = v3 + v1 are linearly independent? Hint: What dimension the subspace
span(v1,v2,v3) can have?

5.5. Let vectors u,v,w be a basis in V . Show that u + v + w, v + w, w is also a
basis in V .

6. General solution of a linear system.

In this short section we discuss the structure of the general solution (i.e. of
the solution set) of a linear system.

We call a system Ax = b homogeneous, if the right side, b = 0, i.e. a
homogeneous system is a system of form Ax = 0.
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With each system
Ax = b

we can associate a homogeneous system just by putting b = 0.

Theorem 6.1 (General solution of a linear equation). Let a vector x1 satisfy
the equation Ax = b, and let H be the set of all solutions of the associated
homogeneous system

Ax = 0.

Then the set
{x = x1 + xh : xh ∈ H}

is the set of all solutions of the equation Ax = b.

In other words, this theorem can be stated as

General solution
of Ax = b

= A particular solu-
tion of Ax = b

+ General solution
of Ax = 0

.

Proof. Fix a vector x1 satisfying Ax1 = b. Let a vector xh satisfy Ax
h

= 0.
Then for x = x1 + xh we have

Ax = A(x1 + xh) = Ax1 + Axh = b + 0 = b,

so any x of form
x = x1 + xh, xh ∈ H

is a solution of Ax = b.
let now x be satisfy Ax = b. Then for xh := x− x1 we get

Axh = A(x− x1) = Ax−Ax1 = b− b = 0
¯
,

so xh ∈ H. Therefore any solution x of Ax = b can be represented as
x = x1 + xh with some xh ∈ H. �

The power of this theorem is in its generality. It applies to all linear
equations, we do not have to assume here that vector spaces are finite-
dimensional. You will meet this theorem in differential equations, integral
equations, partial differential equations, etc. Besides showing the structure
of the solution set, this theorem allows to separate investigation of unique-
ness from the study of existence. Namely, to study uniqueness, we only need
to analyze uniqueness of the homogeneous equation Ax = 0, which always
have a solution.

There is an immediate application in this course: this theorem allows us
to check a solution of a system Ax = b. For example, consider a system

2 3 1 4 −9
1 1 1 1 −3
1 1 1 2 −5
2 2 2 3 −8

x =


17
6
8
14


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Performing row reduction one can find the solution of this system

(6.1) x =


3
1
0
2
0

+ x3


−2
1
1
0
0

+ x5


2
−1
0
2
1

 , x3, x5 ∈ R

The parameters x3, x5 can be denoted here by any other letters, t and s,
for example; we keeping notation x3 and x5 here only to remind that they
came from the corresponding free variables.

Now, let us suppose, that we are just given this solution, and we want
to check whether it is correct or not. Of course, we can repeat the row
operations, but this is too time consuming. And moreover, if the solution
was obtained by some nonstandard method, it can look differently from
what we get from the row reduction. For example the formula

(6.2) x =


3
1
0
2
0

+ s


−2
1
1
0
0

+ t


0
0
1
2
1

 , s, t ∈ R

gives the same set as (6.1) (can you say why?); here we just replaced the last
vector in (6.1) by its sum with the second one. So, this formula is different
from the solution we got from the row reduction, but it is nevertheless
correct.

The simplest way to check that (6.1) and (6.1) give us correct solutions,
is to check that the first vector (3, 1, 0, 2, 0)T satisfies the equation Ax = b,
and that the other two (the ones with the parameters x3 and x5 or s and t in
front of them) should satisfy the associated homogeneous equation Ax = 0.

If this checks out, we will be assured that any vector x defined by (6.1)
or (6.2) is indeed a solution.

Note, that this method of checking the solution does not guarantee that
(6.1) (or (6.2)) gives us all the solutions. For example, if we just somehow
miss the term with x2, the above method of checking will still work fine.

So, how can we guarantee, that we did not miss any free variable, and
there should not be extra term in (6.1)?

What comes to mind, is to count the pivots again. In this example, if
one does row operations, the number of pivots is 3. So indeed, there should
be 2 free variables, and it looks like we did not miss anything in (6.1).

To be able to prove this, we will need new notions of fundamental sub-
spaces and of rank of a matrix. I should also mention, that in this particular



54 2. Systems of linear equations

example, one even does not have to perform all row operations to check that
there are only 2 free variables, and that formulas (6.1) and (6.2) both give
correct general solution.

Exercises.

6.1. True or false

a) Any system of linear equations has at least one solution.
b) Any system of linear equations has at most one solution.
c) Any homogeneous system of linear equations has at least one solution.
d) Any system of n linear equations in n unknowns has at least one solution.
e) Any system of n linear equations in n unknowns has at most one solution.
f) If the homogeneous system corresponding to a given system of a linear

equations has a solution, then the given system has a solution.
g) If the coefficient matrix of a homogeneous system of n linear equations in

n unknowns is invertible, then the system has no non-zero solution.
h) The solution set of any system of m equations in n unknowns is a subspace

in Rn.
i) The solution set of any homogeneous system of m equations in n unknowns

is a subspace in Rn.

6.2. Find a 2 × 3 system (2 equations with 3 unknowns) such that its general
solution has a form  1

1
0

+ s

 1
2
1

 , s ∈ R.

7. Fundamental subspaces of a matrix. Rank.

As we discussed above in Section 6 of Chapter 1, with any linear transfor-
mation A : V → W we can associate two subspaces, namely, its kernel, or
null space

Ker A = NullA := {v ∈ V : Av = 0} ⊂ V,

and its range

RanA = {w ∈ W : w = Av for some v ∈ V } ⊂ W.

In other words, the kernel Ker A is the solution set of the homogeneous
equation Ax = 0, and the range RanA is exactly the set of all right sides
b ∈ W for which the equation Ax = b has a solution.

If A is an m× n matrix, i.e. a mapping from Rn to Rm, then it follows
from the “column by coordinate” rule of the matrix multiplication that any
vector w ∈ RanA can be represented as a linear combination of columns of
A. This explains the name column space (notation ColA), which is often
used instead of Ran A.
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If A is a matrix, then in addition to RanA and KerA one can also
consider the range and kernel for the transposed matrix AT . Often the term
row space is used for RanAT and the term left null space is used for KerAT

(but usually no special notation is introduced).
The four subspaces Ran A, KerA, RanAT , KerAT are called the funda-

mental subspaces of the matrix A. In this section we will study important
relations between the dimensions of the four fundamental subspaces.

We will need the following definition, which is one of the fundamental
notions of Linear Algebra

Definition. Given a linear transformation (matrix) A its rank rank A is the
dimension of the range of A

rank A := dim RanA.

7.1. Computing fundamental subspaces and rank. To compute fun-
damental subspaces and rank of a matrix, one needs to do echelon reduction.
Namely, let A be the matrix, and Ae be its echelon form

1. The pivot columns of the original matrix A (i.e. the columns where
after row operations we will have pivots in the echelon form) give us
a basis (one of many possible) in RanA.

2. The pivot rows of the echelon from Ae give us a basis in the row
space. Of course, it is possible just to transpose the matrix, and
then do row operations. But if we already got echelon form of A,
say to compute RanA, then we get RanAT for free.

3. To find a basis in the null space Ker A one needs to solve the homo-
geneous equation Ax = 0: the details will be seen from the example
below.

Example. Consider a matrix
1 1 2 2 1
2 2 1 1 1
3 3 3 3 2
1 1 −1 −1 0


Performing row operations we get the echelon form

1 1 2 2 1
0 0 −3 −3 −1
0 0 0 0 0
0 0 0 0 0


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(the pivots are boxed here). So, the columns 1 and 3 of the original matrix,
i.e. the columns 

1
2
3
1

 ,


2
2
3

−1


give us a basis in RanA. We also got a basis in the row space RanAT for
free: the first and second row of the echelon form of A, i.e. the vectors

1
1
2
2
1

 ,


0
0

−3
−3
−1


(we put the vectors vertically here. The question of whether to put vectors
here vertically as columns, or horizontally as rows is is really a matter of
convention. Our reason for putting them vertically is that although we call
RanAT the row space we define it as a column space of AT )

To compute the basis in the null space KerA we need to solve the equa-
tion Ax = 0. Compute the reduced echelon form of A, which in this example
is 

1 1 0 0 1/3
0 0 1 1 1/3
0 0 0 0 0
0 0 0 0 0

 .

Note, that when solving the homogeneous equation Ax = 0, it is not neces-
sary to write the whole augmented matrix, it is sufficient to work with the
coefficient matrix. Indeed, in this case the last column of the augmented
matrix is the column of zeroes, which does not change under row opera-
tions. So, we can just keep this column in mind, without actually writing
it. Keeping this last zero column in mind, we can read the solution off the
reduced echelon form above:

x1 = −x2 − 1
3x5,

x2 is free,
x3 = −x4 − 1

3x5

x4 is free,
x5 is free,
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or, in the vector form

(7.1) x =


−x2 − 1

3x5

x2

−x4 − 1
3x5

x4

x5

 = x2


−1
1
0
0
0

+ x4


0
0
−1
1
0

+ x5


−1/3

0
−1/3

0
1


The vectors at each free variable, i.e. in our case the vectors

−1
1
0
0
0

 ,


0
0
−1
1
0

 ,


−1/3

0
−1/3

0
1


form a basis in KerA.

Unfortunately, there is no shortcut for finding a basis in KerAT : one
just need honestly solve the equation ATx = 0. Knowledge of the echelon
form of A does not help here.

7.2. Explanation of the computing bases in the fundamental sub-
spaces. So, why do the above methods indeed give us bases in the funda-
mental subspaces?
7.2.1. The null space Ker A. The case of the null space KerA is probably
the simplest one: since we solved the equation Ax = 0, i.e. found all the
solutions, then any vector in Ker A is a linear combination of the vectors we
obtained. Thus, the vectors we obtained form a spanning system in KerA.
To see that the system is linearly independent, let us multiply each vector
by the corresponding free variable and add everything, see (7.1). Then for
each free variable xk the entry number k of the resulting vector is exactly
xk, see (7.1) again, so the only way this vector (the linear combination) can
be 0 is when all free variables are 0.
7.2.2. The column space RanA. Let us now explain why the method for
finding a basis in the column space RanA works. First of all notice, that
the pivot columns of the reduced echelon form Are of A form a basis in
RanAre (not in the column space of the original matrix, but of its reduced
echelon form!). Since row operations are just left multiplications by invert-
ible matrices, they do not change linear independence. Therefore, the pivot
columns of the original matrix A are linearly independent.

Let us now show that the pivot columns of A span the column space
of A. Let v1,v2, . . . ,vr be the pivot columns of A, and let v be an arbi-
trary column of A. We want to show that v can be represented as a linear
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combination of the pivot columns v1,v2, . . . ,vr,

v = α1v1 + α2v2 + . . . + αrvr.

the reduced echelon form Are is obtained from A by the left multiplication

Are = EA,

where E is a product of elementary matrices, so E is an invertible matrix.
The vectors Ev1, Ev2, . . . , Evr are the pivot columns of Are, and the column
v of A is transformed to the column Ev of Are. Since the pivot columns
of Are form a basis in RanAre, vector Ev can be represented as a linear
combination

Ev = α1Ev1 + α2Ev2 + . . . + αrEvr.

Multiplying this equality by E−1 from the left we get the representation

v = α1v1 + α2v2 + . . . + αrvr,

so indeed pivot columns of A span RanA.
7.2.3. The row space RanAT . It is easy to see that the pivot rows of the
echelon form Ae of A are linearly independent. Indeed, let w1,w2, . . . ,wr

are the transposed (since we agreed always to put vectors vertically) pivot
rows of Ae. Suppose

α1w1 + α2w2 + . . . + αrwr = 0.

Consider the first non-zero entry of v1. Since for all other vectors
w2,w3, . . . ,wr the corresponding entries equal 0 (by the definition of eche-
lon form), we can conclude that α1 = 0. So we can just ignore the first term
in the sum.

Consider now the first non-zero entry of w2. The corresponding entries
of the vectors w3, . . . ,wr are 0, so α2 = 0. Repeating this procedure, we
get that αk = 0 ∀k = 1, 2, . . . , r.

To see that vectors w1,w2, . . . ,wr span the row space, one can notice
that row operations do not change the row space. This can be obtained
directly from analyzing row operations, but we present here a more formal
way to demonstrate this fact.

For a transformation A and a set X let us denote by A(X) the set of all
elements y which can represented as y = A(x), x ∈ X,

A(X) := {y = A(x) : x ∈ X} .

If A is an m×n matrix, and Ae is its echelon form, Ae is obtained from
A be left multiplication

Ae = EA,
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where E is an m × m invertible matrix (the product of the corresponding
elementary matrices). Then

RanAT
e = Ran(AT ET ) = AT (RanET ) = AT (Rm) = Ran AT ,

so indeed RanAT = RanAT
e .

7.3. The Rank Theorem. Dimensions of fundamental subspaces.
There are some applications, involving finding bases in the column space or
in the null space of a matrix. For example, as it was shown above, solution of
a homogeneous equation amounts to finding a basis in the null space KerA.
Finding a basis in a column space means simply is simply extracting a basis
from a spanning set, by removing unnecessary vectors (columns).

However, the most important application of the above methods of com-
puting bases of fundamental subspaces is the relations between their dimen-
sions.

Theorem 7.1 (The rank Theorem). For a matrix A

rank A = rankAT .

This theorem is often stated as follows:

The column rank of a matrix coincides with its row rank.

The proof o this theorem is trivial, since dimensions of both RanA and
RanAT equal to the number of pivots in the echelon form of A.

The following theorem is gives us important relations between dimen-
sions of the fundamental spaces. It is often also called the Rank Theorem

Theorem 7.2. Let A be an m×n matrix, i.e. a linear transformation from
Rn to Rm. Then

1. dim KerA+dim RanA = dim KerA+rank A = n (dimension of the
domain of A);

2. dim KerAT + dim Ran AT = dim KerAT + rank AT =
dim KerAT + rank A = m (dimension of the target space of A);

Proof. The proof, modulo the above algorithms of finding bases in the
fundamental subspaces, is almost trivial. The first statement is simply the
fact that the number of free variables (dim KerA) plus the number of basic
variables (i.e. the number of pivots, i.e. rankA) adds up to the number of
columns (i.e. to n).

The second statement, if one takes into account that rank A = rankAT

is simply the first statement applied to AT . �
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As one of the application of the above theorem, let us recall the example
from Section 6. There we considered a system

2 3 1 4 −9
1 1 1 1 −3
1 1 1 2 −5
2 2 2 3 −8

x =


17
6
8
14


and we claimed that its general solution given by

x =


3
1
0
2
0

+ x3


−2
1
1
0
0

+ x5


2
−1
0
2
1

 , x3, x5 ∈ R

or by

x =


3
1
0
2
0

+ s


−2
1
1
0
0

+ t


0
0
1
2
1

 , s, t ∈ R

We checked in Section 6 that a vector x given by either formula is indeed a
solution of the equation. But how can we guarantee that any of the formulas
describe all solutions.

First of all we know, that in either formula, the last 2 vectors (the ones
multiplied by the parameters) belong to Ker A. It is easy to see, that in
either case both vectors are linearly independent (two vectors are linearly
dependent if and only if one is a multiple of another).

Now, let us count dimensions: interchanging first and second rows and
performing first round of row reduction

−2R1

−R1

−2R1


1 1 1 1 −3
2 3 1 4 −9
1 1 1 2 −5
2 2 2 3 −8

 ∼


1 1 1 1 −3
0 1 −1 2 −3
0 0 0 1 −2
0 0 0 1 −2


we see that there are three pivots already, so rankA ≥ 3. (Actually, we
already can see that the rank is 3, but it is enough just to have the estimate
here). By Theorem 7.2 rankA + dim KerA = 5, hence dim KerA ≤ 2, and
therefore there cannot be more than 2 linearly independent vectors in KerA.
Therefore, last 2 vectors in either formula form a basis in KerA, so either
formula give all solutions of the equation.

An important corollary of the rank theorem, is the following theorem
connecting existence and uniqueness for linear equations.
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Theorem 7.3. Let A be an m× n matrix. Then the equation

Ax = b

has a solution for every b ∈ Rm if and only if the dual equation

ATx = 0

has unique (only trivial) solution. (Note, that in the second equation we
have AT , not A).

Proof. The proof follows immediately from Theorem 7.2 by counting the
dimensions. We leave details as an exercise to the reader. �

There is a very nice geometric interpretation of the second rank theo-
rem (Theorem 7.2). Namely, the statement 1 of the theorem says, that if
a transformation A : Rn → Rm has trivial kernel (Ker A = {0}), then the
dimensions of the domain Rn and of the range RanA coincide: if the ker-
nel is non-trivial, then the transformation “kills” dim KerA dimensions, so
dim RanA = n− dim KerA.

Exercises.

7.1. True or false:

a) The rank of a matrix equal to the number of its non-zero columns.

b) The m× n zero matrix is the only m× n matrix having rank 0.

c) Elementary row operations preserve rank.

d) Elementary column operations do not necessarily preserve rank.

e) The rank of a matrix is equal to the maximum number of linearly inde-
pendent columns in the matrix.

f) The rank of a matrix is equal to the maximum number of linearly inde-
pendent rows in the matrix.

g) The rank of an n× n matrix is at most n.

h) An n× n matrix having rank n is invertible.

7.2. A 54 × 37 matrix has rank 31. What are dimensions of all 4 fundamental
subspaces?

7.3. Compute rank and find bases of all four fundamental subspaces for the matrices 1 1 0
0 1 1
1 1 0

 ,


1 2 3 1 1
1 4 0 1 2
0 2 −3 0 1
1 0 0 0 0


7.4. Prove that if A : X → Y and V is a subspace of X then dim AV ≤ rank A. (AV
here means the subspace V transformed by the transformation A, i.e. any vector in
AV can be represented as Av, v ∈ V ). Deduce from here that rank(AB) ≤ rank A.
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Remark: Here one can use the fact that if V ⊂ W then dim V ≤ dim W . Do you
understand why is it true?

7.5. Prove that if A : X → Y and V is a subspace of X then dim AV ≤ dim V .
Deduce from here that rank(AB) ≤ rank B.

7.6. Prove that if the product AB of two n×n matrices is invertible, then both A
and B are invertible. Even if you know about determinants, do not use them, we
did not cover them yet. Hint: use previous 2 problems.

7.7. Prove that if Ax = 0 has unique solution, then the equation AT x = b has a
solution for every right side b.
Hint: count pivots

7.8. Write a matrix with the required property, or explain why no such matrix
exist

a) Column space contains (1, 0, 0)T , (0, 0, 1)T , row space contains (1, 1)T ,
(1, 2)T .

b) Column space is spanned by (1, 1, 1)T , nullspace is spanned by (1, 2, 3)T .
c) Column space is R4, row space is R3.

Hint: Check first if the dimensions add up.

7.9. If A has the same four fundamental subspaces as B, does A = B?

8. Representation of a linear transformation in arbitrary
bases. Change of coordinates formula.

The material we have learned about linear transformations and their matri-
ces can be easily extended to transformations in abstract vector spaces with
finite bases. In this section we will distinguish between a linear transforma-
tion T and its matrix, the reason being that we consider different bases, so
one linear transformation can have different matrix representation.

8.1. Coordinate vector. Let V be a vector space with a basis B :=
{b1,b2, . . . ,bn}. Any vector v ∈ V admits a unique representation as a
linear combination

v = x1b1 + x2b2 + . . . + xnbn =
n∑

k=1

xkbk.

Numbers x1, x2, . . . , xn are called coordinates of the vector v in the basis B.
It is convenient to join these coordinates into the so-called coordinate vector
of v relative to the basis B, which is the column vector

[v]B :=


x1

x2
...

xn

 ∈ Rn.
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Note that the mapping
v 7→ [v]B

is an isomorphism between V and Rn. It transforms basis v1,v2, . . . ,vn to
the standard basis e1, e2, . . . , en in Rn.

8.2. Matrix of a linear transformation. Let T : V → W be a linear
transformation, and letA = {a1,a2, . . . ,an}, B := {b1,b2, . . . ,bm} be bases
in V and W respectively.

A matrix of the transformation T in (or with respect to) the bases A
and B is an m × n matrix, denoted by [T ]BA , which relates the coordinate
vectors [Tv]B and [v]A ,

[Tv]B = [T ]BA [v]A ;

notice the balance of symbols A and B here: that is the reason we put the
first basis A into the second position.

The matrix [T ]BA is easy to find: its kth column is just the coordinate
vector [Tak]B (compare with finding the matrix of a linear transformation
from Rn to Rm).

As in the case of standard bases, composition of linear transformations
is equivalent to multiplication of their matrices: one only has to be a bit
more careful about bases. Namely, let T1 : X → Y and T2 : Y → Z be linear
transformation, and let A,B and C are bases in X, Y and Z respectively.
The for the composition T = T2T1,

T : X → Z, Tx := T2(T1(x))

we have

(8.1) [T ]CA = [T2T1]CA = [T2]CB [T1]BA

(notice again the balance of indices here).
The proof here goes exactly as in the case of Rn spaces with standard

bases, so we do not repeat it here. Another possibility is to transfer every-
thing to the spaces Rn via coordinate isomorphisms v 7→ [v]B . And then one
does not need any proof, everything follows from the results about matrix
multiplication.

8.3. Change of coordinate matrix. Let we have two bases A =
{a1,a2, . . . ,an} and B = {b1,b2, . . . ,bn} in a vector space V . Consider
the identity transformation I = IV and its matrix [I]BA in these bases. By
the definition

[v]B = [I]BA [v]A , ∀v ∈ V,
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i.e. for any vector v ∈ V the matrix [I]BA transforms its coordinates in the
basis A into coordinates in the basis B. The matrix [I]BA is often called the
change of coordinates (from the basis A to the basis B) matrix.

The matrix [I]BA is easy to compute: according to the general rule of
finding matrix of a linear transformation, its kth column is the coordinate
representation [ak]B of kth element of the basis A

Note that
[I]AB = ([I]BA)−1,

(follows immediately from the multiplication of matrices rule (8.1)), so any
change of coordinate matrix is always invertible.
8.3.1. An example: change of coordinates from the standard basis. Let our
space V be Rn, and let we have a basis B = {b1,b2, . . . ,bn} there. We
also have the standard basis S = {e1, e2, . . . , en} there. The change of
coordinates matrix [I]SB is easy to compute:

[I]SB = [b1,b2, . . . ,bn] =: B,

i.e. it is just the matrix B whose kth column is the vector (column) vk. And
in the other direction

[I]BS = ([I]SB)−1 = B−1.

For example, consider a basis

B =
{(

1
2

)
,

(
2
1

)}
in R2, and let S denote the standard basis there. Then

[I]SB =
(

1 2
2 1

)
=: B

and

[I]BS = [I]−1
SB = B−1 =

1
3

(
−1 2

2 −1

)
(we know how to compute inverses, and it is also easy to check that the
above matrix is indeed the inverse of B)
8.3.2. An example: going through the standard basis. Let in the space of
polynomials of degree at most 1 we have bases

A = {1, 1 + x}, and B = {1 + 2x, 1− 2x},

and we want to find the change of coordinate matrix [I]BA .
Of course, we can always take vectors from the basis A and try to de-

compose them in the basis B: it involves solving linear systems, and we
know how to do that.
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However, I think the following way is simpler. In P1 we also have the
standard basis S = {1, x}, and for this basis

[I]SA =
(

1 1
0 1

)
=: A, [I]SB =

(
1 1
2 −2

)
=: B,

and taking the inverses

[I]AS = A−1 =
(

1 −1
0 1

)
, [I]BS = B−1 =

1
4

(
2 1
2 −1

)
.

Then

[I]BA = [I]BS [I]SA = B−1A =
1
4

(
2 1
2 −1

)(
1 1
0 1

)
and Notice the balance

of indices here[I]AB = [I]AS [I]SB = A−1B =
(

1 −1
0 1

)(
1 1
2 −2

)
8.4. Matrix of a transformation and change of coordinates. Let
T : V → W be a linear transformation, and let A, Ã be two bases in V and
let B, B̃ be two bases in W . Suppose we know the matrix [T ]BA , and we
would like to find the matrix representation with respect to new bases Ã,
B̃, i.e. the matrix [T ]

B̃Ã
. The rule is very simple:

to get the matrix in the “new” bases one has to surround the
matrix in the “old” bases by change of coordinates matrices.

I did not mention here what change of coordinate matrix should go where,
because we don’t have any choice if we follow the balance of indices rule.
Namely, matrix representation of a linear transformation changes according
to the formula Notice the balance

of indices.[T ]
B̃Ã

= [I]
B̃B

[T ]BA [I]
AÃ

The proof can be done just by analyzing what each of the matrices does.

8.5. Case of one basis: similar matrices. Let V be a vector space and
let A = {a1,a2, . . . ,an} be a basis in V . Consider a linear transformation
T : V → V and let [T ]AA be its matrix in this basis (we use the same basis
for “inputs” and “outputs”)

The case when we use the same basis for “inputs” and “outputs” is
very important (because in this case we can multiply a matrix by itself), so
let us study this case a bit more carefully. Notice, that very often in this [T ]A is often used

instead of [T ]AA . It
is shorter, but two
index notation is
better adapted to
the balance of
indices rule.

case the shorter notation [T ]A is used instead of [T ]AA . However, the two
index notation [T ]AA is better adapted to the balance of indices rule, so I
recommend using it (or at least always keep it in mind) when doing change
of coordinates.



66 2. Systems of linear equations

Let B = {b1,b2, . . . ,bn} be another basis in V . By the change of
coordinate rule above

[T ]BB = [I]BA [T ]AA [I]AB
Recalling that

[I]BA = [I]−1
AB

and denoting Q := [I]AB , we can rewrite the above formula as

[T ]BB = Q−1[T ]AAQ.

This gives a motivation for the following definition

Definition 8.1. We say that a matrix A is similar to a matrix B if there
exists an invertible matrix Q such that A = Q−1BQ.

Since an invertible matrix must be square, it follows from counting di-
mensions, that similar matrices A and B has to be square and of the same
size. If A is similar to B, i.e. if A = Q−1BQ, then

B = QAQ−1 = (Q−1)−1A(Q−1)

(since Q−1 is invertible), therefore B is similar to A. So, we can just say
that A and B are similar.

The above reasoning shows, that it does not matter where to put Q
and where Q−1: one can use the formula A = QBQ−1 in the definition of
similarity.

The above discussion shows, that one can treat similar matrices as dif-
ferent matrix representation of the same linear operator (transformation).

Exercises.

8.1. True or false

a) Every change of coordinate matrix is square.
b) Every change of coordinate matrix is invertible.
c) The matrices A and B are called similar if B = QT AQ for some matrix Q.
d) The matrices A and B are called similar if B = Q−1AQ for some matrix

Q.
e) Similar matrices do not need to be square.

8.2. Consider the system of vectors

(1, 2, 1, 1)T , (0, 1, 3, 1)T , (0, 3, 2, 0)T , (0, 1, 0, 0)T .

a) Prove that it is a basis in R4. Try to do minimal amount of computations.
b) Find the change of coordinate matrix that changes the coordinates in this

basis to the standard coordinates in R4 (i.e. to the coordinates in the
standard basis e1, . . . , e4).
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8.3. Find the change of coordinates matrix that changes the coordinates in the
basis 1, 1 + t in P1 to the coordinates in the basis 1− t, 2t.

8.4. Let T be the linear operator in R2 defined (in the standard coordinates) by

T

(
x
y

)
=
(

3x + y
x− 2y

)
Find the matrix of T in the standard basis and in the basis

(1, 1)T , (1, 2)T .

8.5. Prove, that if A and B are similar matrices then trace A = trace B. Hint:
recall how trace(XY ) and trace(Y X) are related.

8.6. Are the matrices (
1 3
2 2

)
and

(
0 2
4 2

)
similar? Justify.





Chapter 3

Determinants

1. Introduction.

The reader probably already met determinants in calculus or algebra, at
least the determinants of 2× 2 and 3× 3 matrices. For a 2× 2 matrix(

a b
c d

)
the determinant is simply ad− bc; the determinant of a 3× 3 matrix can be
found by the “Star of David” rule.

In this section we would like to introduce determinants for n×n matrices.
I don’t want just to give a formal definition: I want to give some motivation
first, then derive some properties the determinant should have, and then to
show that if we want to have these properties, then we do not any choice,
and arrive to several equivalent definitions of the determinant.

It is more convenient to start not with the determinant of a matrix, but
with determinant of a system of vectors: there is no difference, since we
always can join vectors together (say as columns) to form a matrix.

Let we have n vectors v1,v2, . . . ,vn in Rn (notice that the number of
vectors coincide with dimension), and we want to find the n-dimensional
volume of the parallelepiped determined by these vectors.

The parallelepiped determined by the vectors v1,v2, . . . ,vn can be de-
fined as the collection of all vectors v ∈ Rn that can be represented as

v = t1v1 + t2v2 + . . . + tnvn, 0 ≤ tk ≤ 1 ∀k = 1, 2, . . . , n.

It can be easily visualized when n = 2 (parallelogram) and n = 3 (paral-
lelepiped). So, what is the n-dimensional volume?

69
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If n = 2 it is area; if n = 3 it is indeed the volume. In dimension 1 is it
just the length.

And finally some notation. For a system of vectors (columns)
v1,v2, . . . ,vn we will denote its determinant (that we are going to con-
struct) as D(v1,v2, . . . ,vn). If we join these vectors in a matrix A (column
number k of A is vk), then we will use the notation det A,

det A = D(v1,v2, . . . ,vn)

Also, for a matrix

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n


its determinant is often is denoted by∣∣∣∣∣∣∣∣∣

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
an,1 an,2 . . . an,n

∣∣∣∣∣∣∣∣∣ .
2. What properties determinant should have.

We know, that for dimensions 2 and 3 “volume” of a parallelepiped is de-
termined by the base times height rule: if we pick one vector, then hight
is the distance from this vector to the subspace spanned by the remaining
vectors, and the base is the (n−1)-dimensional volume of the parallelepiped
determined by the remaining vectors.

Now let us generalize this idea to higher dimensions. For a moment we
do not care about how exactly to determine height and base: we will show,
that if we assume that base and height satisfy some natural properties, then
we do not have any choice, and the volume (determinant) is uniquely defined.

2.1. Linearity in each argument. First of all, if we multiply vector v1

by a positive number a, then the height (i.e. the distance to the linear
span L(v2, . . . ,vn)) is multiplied by a. If we admit negative heights (and
negative volumes), then this property holds for all scalars a, and so for the
determinant D(v1,v2, . . . ,vn) of the system v1,v2, . . . ,vn should satisfy

D(αv1,v2, . . . ,vn) = αD(v1,v2, . . . ,vn).

Of, course, there is nothing special about vector v1, so for any index k

(2.1) D(v1, . . . , αvk
k

, . . . ,vn) = αD(v1, . . . ,vk
k

, . . . ,vn)
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To get the next property, let us notice that if we add 2 vectors, then the
“height” of the result should be equal the sum of the “heights” of summands,
i.e. that

(2.2) D(v1, . . . ,uk + vk︸ ︷︷ ︸
k

, . . . ,vn) =

D(v1, . . . ,uk
k

, . . . ,vn) + D(v1, . . . ,vk
k

, . . . ,vn)

In other words, the above two properties say that the determinant of n
vectors is linear in each argument (vector), meaning that if we fix n − 1
vectors and interpret the remaining vector as a variable (argument), we get
a linear function.

Remark. We already know that linearity is a very nice property, that helps
in many situations. So, admitting negative heights (and therefore negative
volumes) is a very small price to pay to get linearity: we can always put
absolute value afterward.

In fact, by admitting negative heights, we did not sacrifice anything!
Contrary, we even gained something, because sign of the determinant con-
tains some information about the system of vectors (orientation).

2.2. Preservation under “column replacement”. The next property
also seems natural. Namely, if we take a vector, and add to it a multiple of
another vector, the “height” does not change, so

(2.3) D(v1, . . . ,vj + αvk︸ ︷︷ ︸
j

, . . . ,vk
k

, . . . ,vn)

= D(v1, . . . ,vj
j

, . . . ,vk
k

, . . . ,vn)

In other words, if we apply the column operation of the third type, the
determinant does not change.

Remark. Although it is not essential here, let us notice that the second
part of linearity (property (2.2)) is not independent: it can be deduced from
properties (2.1) and (2.3).

We leave the proof as an exercise for the reader.

2.3. Antisymmetry. The next property the determinant should have, is Functions of several
variables that
change sign when
one interchanges
any two arguments
are called
antisymmetric.

that if we interchange 2 vectors, the determinant changes sign:

(2.4) D(v1, . . . ,vk
j

, . . . ,vj
k

, . . . ,vn) = −D(v1, . . . ,vj
j

, . . . ,vk
k

, . . . ,vn).

At the first sight this property does not look natural, but it can be
deduced from the previous ones. Namely, applying property (2.3) three
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times, and then using (2.1) we get

D(v1, . . . ,vj
j

, . . . ,vk
k

, . . . ,vn) =

= D(v1, . . . ,vj
j

, . . . ,vk − vj︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vj + (vk − vj)︸ ︷︷ ︸
j

, . . . ,vk − vj︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vk
j

, . . . ,vk − vj︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vk
j

, . . . , (vk − vj)− vk︸ ︷︷ ︸
k

, . . . ,vn)

= D(v1, . . . ,vk
j

, . . . ,−vj
k

, . . . ,vn)

= −D(v1, . . . ,vk
j

, . . . ,vj
k

, . . . ,vn).

2.4. Normalization. And the last property is the easiest one: for the
standard basis e1, e2, . . . , en in Rn the corresponding parallelepiped is the
n-dimensional unit cube, so

(2.5) D(e1, e2, . . . , en) = 1.

In matrix notation this can be written as

det(I) = 1

3. Constructing the determinant.

The plan of the game is now as follows: using the properties that as we
decided in Section 2 the determinant should have, we derive other properties
of the determinant, some of them highly non-trivial. We will show how to
use these properties to compute the determinant using our old friend—row
reduction.

And later, in Section 4 we will show that the determinant, i.e. a function
with the desired properties exists and unique: we have to be sure that the
object we are computing and studying exists.

3.1. Basic properties. We will use the following basic properties of the
determinant:
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1. Determinant is linear in each column, i.e. in vector notation for every
index k

D(v1, . . . , αuk + βvk︸ ︷︷ ︸
k

, . . . ,vn) =

αD(v1, . . . ,uk
k

, . . . ,vn) + βD(v1, . . . ,vk
k

, . . . ,vn)

for all scalars α, β.
2. Determinant is antisymmetric, i.e. if one interchanges two columns,

the determinant changes sign.
3. Normalization property: det I = 1.

All these properties were discussed above in Section 2. The first property
is just the (2.1) and (2.2) combined. The second one is (2.4), and the last one
is the normalization property (2.5). Note, that we did not use property (2.3):
it can be deduced from the above three. These three properties completely
define determinant!

3.2. Properties of determinant deduced from the basic properties.

Proposition 3.1. For a square matrix A the following statements hold:

1. If A has a zero column, then det A = 0.
2. If A has two equal columns, then det A = 0;
3. If one column of A is a multiple of another, then det A = 0;
4. If columns of A are linearly dependent, i.e. if the matrix is not in-

vertible, then det A = 0.

Proof. Statement 1 follows immediately from linearity. If we multiply the
zero column by zero, we do not change the matrix and its determinant. But
by the property 1 above, we should get 0.

The fact that determinant is antisymmetric, implies statement 2. In-
deed, if we interchange two equal columns, we change nothing, so deter-
minant remains the same. On the other hand, interchanging two columns
changes sign of determinant, so

det A = −det A,

which is possible only if det A = 0.
Statement 3 is immediate corollary of statement 2 and linearity.
To prove the last statement, let us first suppose that the first vector v1

is a linear combination of the other vectors,

v1 = α2v2 + α3v3 + . . . + αnvn =
n∑

k=2

αkvk.
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Then by linearity we have (in vector notation)

D(v1,v2, . . . ,vn) = D

(( n∑
k=2

αkvk

)
,v2,v3, . . . ,vn

)

=
n∑

k=2

αkD(vk,v2,v3, . . . ,vn)

and each determinant in the sum is zero because of two equal columns.
Let us now consider general case, i.e. let us assume that the system

v1,v2, . . . ,vn is linearly dependent. Then one of the vectors, say vk can be
represented as a linear combination of the others. Interchanging this vector
with v1 we arrive to the situation we just treated, so

D(v1, . . . ,vk
k

, . . . ,vn) = −D(vk, . . . ,v1
k

, . . . ,vn) = −0 = 0,

so the determinant in this case is also 0. �

The next proposition generalizes property (2.3). As we already have
said above, this property can be deduced from the three “basic” properties
of the determinant, we are using in this section.

Proposition 3.2. The determinant does not change if we add to a col-Note, that adding to
a column a multiple
of itself is prohibited
here. We can only
add multiples of the
other columns.

umn a linear combination of the other columns (leaving the other columns
intact). In particular, the determinant is preserved under “column replace-
ment” (column operation of third type).

Proof. Fix a vector vk, and let u be a linear combination of the other
vectors,

u =
∑
j 6=k

αjvj .

Then by linearity

D(v1, . . . ,vk + u︸ ︷︷ ︸
k

, . . . ,vn) = D(v1, . . . ,vk
k

, . . . ,vn) + D(v1, . . . ,u
k
, . . . ,vn),

and by Proposition 3.2 the last term is zero. �

3.3. Determinants of diagonal and triangular matrices. Now we are
ready to compute determinant for some important special classes of matrices.
The first class is the so-called diagonal matrices. Let us recall that a square
matrix A = {aj,k}n

j,j=1 is called diagonal if all entries off the main diagonal
are zero, i.e. if aj,k = 0 for all j 6= k. We will often use the notation
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diag(a1, a2, . . . , an) for the diagonal matrix
a1 0 . . . 0
0 a2 . . . 0
...

...
. . . 0

0 0 . . . an


Since a diagonal matrix diag(a1, a2, . . . , an can be obtained from the

identity matrix I by multiplying column number k by ak,

Determinant of a diagonal matrix equal the product of the diago-
nal entries,

det(diag(a1, a2, . . . , an)) = a1a2 . . . an.

The next important class is the class of so-called triangular matrices. A
square matrix A = {aj,k}n

j,j=1 is called upper triangular if all entries below
the main diagonal are 0, i.e. if aj,k = 0 for all k < j. A square matrix is
called lower triangular if all entries above the main are 0, i.e if aj,k = 0 for all
j < k. We call a matrix triangular, if it is either lower or upper triangular
matrix.

It is easy to see that

Determinant of a triangular matrix equals to the product of the
diagonal entries,

det A = a1,1a2,2 . . . an,n.

Indeed, if a triangular matrix has zero on the main diagonal, it is not
invertible (can be easily checked by row operation) and therefore both sides
equal zero. If all diagonal entries are non-zero, then using column replace-
ment (column operations of third type) one can transform the matrix into
a diagonal one with the same diagonal entries: For upper triangular ma-
trix one should first subtract appropriate multiples of the first column from
the columns number 2, 3, . . . , n, “killing” all entries in the first row, then
subtract appropriate multiples of the second column from columns number
3, . . . , n, and so on.

To treat the case of lower triangular matrices one has to do “column
reduction” from the left to the right, i.e. first subtract appropriate multiples
of the last column from columns number n− 1, . . . , 2, 1, and so on.

3.4. Computing the determinant. Now we know how to compute de-
terminants, using their properties: one just need to do column reduction
(i.e. row reduction for AT ) keeping track of column operations changing
the determinant. Fortunately, the most often used operation—row replace-
ment, i.e. operation of third type– does not change the determinant. So we
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only need to keep track of interchanging of columns and of multiplication of
column by a scalar.

If echelon form of AT does not have pivots in every column (and row),
then A is not invertible, so det A = 0. If A is invertible, we arrive to
triangular matrix, and det A is the product of diagonal entries times the
correction from column interchanges and multiplications.

The above algorithm implies that det A can be zero only if a matrix A
is not invertible. Combining this with the last statement of Proposition 3.1
we get

Proposition 3.3. det A = 0 if and only if A is invertible. Equivalent
statement: det A 6= 0 if and only if A is invertible.

Note, that although we now know how to compute determinants, the
determinant is still not defined. One can ask: why don’t we define it as
the result we get from the above algorithm? The problem is that formally
this result is not well defined: that means we did not prove that different
sequences of column operations yield same answer.

3.5. Determinants of a transpose and of a product. Determinants
of elementary matrices. In this section we prove two important theorems

Theorem 3.4 (Determinant of a transpose). For a square matrix A,

det A = det(AT ).

This theorem implies that for all statement about columns we discussed
above, the corresponding statements about rows are also true. In particular,
determinants behave under row operations the same way they behave under
column operations. So, we can use row operations to compute determinants.

Theorem 3.5 (Determinant of a product). For n× n matrices A and B

det(AB) = (det A)(detB)

In other words

Determinant of a product equals product of determinants.

To prove both theorem we need the following lemma

Lemma 3.6. For a square matrix A and an elementary matrix E (of the
same size)

det(AE) = (det A)(detE)
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Proof. The proof can be done just by direct checking: determinants of
special matrices are easy to compute; right multiplication by an elemen-
tary matrix is a column operation, and effect of column operations on the
determinant is well known.

This can look like a lucky coincidence, that the determinants of elemen-
tary matrices agree with the corresponding column operations, but it is not
a coincidence at all.

Namely, for a column operation the corresponding elementary matrix
can be obtained from the identity matrix A by this column operation. So, its
determinant is 1 (determinant of I) times the effect of the column operation.

And that is all! It may be hard to realize at first, but above paragraph
is a complete and rigorous proof of the lemma! �

Applying N times Lemma 3.6 we get the following corollary.

Corollary 3.7. For any matrix A and any sequence of elementary matrices
E1, E2, . . . , EN (all matrices are n× n)

det(AE1E2 . . . EN ) = (det A)(detE1)(detE2) . . . (det EN )

Lemma 3.8. Any invertible matrix is a product of elementary matrices.

Proof. We know that any invertible matrix is row equivalent to the identity
matrix, which is its reduced echelon form. So

I = ENEN−1 . . . E2E1A,

and therefore any invertible matrix can be represented as a product of ele-
mentary matrices,

A = E−1
1 E−1

2 . . . E−1
N−1E

−1
N I = E−1

1 E−1
2 . . . E−1

N−1E
−1
N

(inverse of an elementary matrix is an elementary matrix). �

Proof of Theorem 3.4. First of all, it can be easily checked, that for an
elementary matrix E we have det E = det(ET ). Notice, that it is sufficient
to prove theorem only for invertible matrices A, since if A is not invertible
then AT is also not invertible, and both determinants are zero.

By Lemma 3.8 matrix A can be represented as a product of elementary
matrices,

A = E1E2 . . . EN ,

and by Corollary 3.7 the determinant of A is the product of determinants
of the elementary matrices. Since taking the transpose just transposes
each elementary matrix and reverses their order, Corollary 3.7 implies that
det A = detAT . �
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Proof of Theorem 3.5. Let us first suppose that the matrix B is invert-
ible. Then Lemma 3.8 implies that B can be represented as a product of
elementary matrices

B = E1E2 . . . EN ,

and so by Corollary 3.7

det(AB) = (det A)[(detE1)(detE2) . . . (detEN )] = (detA)(detB).

If B is not invertible, then the product AB is also not invertible, and
the theorem just says that 0 = 0.

To check that the product AB = C is not invertible, let us assume that
it is invertible. Then multiplying the identity AB = C by C−1 from the left,
we get C−1AB = I, so C−1A is a left inverse of B. So B is left invertible,
and since it is square, it is invertible. We got a contradiction. �

3.6. Summary of properties of determinant. First of all, let us say
once more, that determinant is defined only for square matrices! Since
we now know that detA = det(AT ), the statements that we knew about
columns, true for rows too.

1. Determinant is linear in each row (column) when the other rows
(columns) are fixed.

2. If one interchanges two rows (columns) of a matrix A, the determi-
nant changes sign.

3. For a triangular (in particular, for a diagonal) matrix its determinant
is the product of the diagonal entries. In particular, det I = 1.

4. If a matrix A has a zero row (or column), detA = 0.

5. If a matrix A has two equal rows (columns), det A = 0.

6. If one of the rows (columns) of A is a linear combination of the other
rows (columns), i.e. if the matrix is not invertible, then det A = 0;

More generally

7. det A = 0 if and only if A is not invertible, or equivalently

8. det A 6= 0 if and only if A is invertible.

9. det A does not change if we add to a row (column) a linear combi-
nation of the other rows (columns). In particular, the determinant
is preserved under the row (column) replacement, i.e. under the row
(column) operation of the third kind.

10. det AT = detA.

11. det(AB) = (det A)(detB).
And finally,

12. If A is an n× n matrix, then det(aA) = an det A.
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The last property follows from the linearity of the determinant, if we
recall that to multiply a matrix A by a we have to multiply by a each row.
And each multiplication multiplies the determinant by a.

Exercises.

3.1. If A is an n×n matrix, how the determinants detA and det(5A) are related?
Remark: det(5A) = 5 detA only in the trivial case of 1× 1 matrices

3.2. How the determinants detA and det B are related if

a)

A =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 , B =

 2a1 3a2 5a3

2b1 3b2 5b3

2c1 3c2 5c3

 .

b)

A =

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 , B =

 3a1 4a2 + 5a1 5a3

3b1 4b2 + 5b1 5b3

3c1 4c2 + 5c1 5c3

 .

3.3. Using column or row operations compute the determinants∣∣∣∣∣∣
0 1 2

−1 0 −3
2 3 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣

1 2 3
4 5 6
7 8 9

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

1 0 −2 3
−3 1 1 2

0 4 −1 1
2 3 0 1

∣∣∣∣∣∣∣∣ ,
∣∣∣∣ 1 x

1 y

∣∣∣∣
3.4. A square (n×n) matrix is called skew-symmetric (or antisymmetric) if AT =
−A. Prove that if A is skew-symmetric and n is odd, then detA = 0. Is this true
for even n?

3.5. A square matrix is called nilpotent if Ak = 0 for some positive integer k. Show
that for a nilpotent matrix A det A = 0.

3.6. Prove that if the matrices A and B are similar, than det A = det B.

3.7. A square matrix Q is called orthogonal if QT Q = I. Prove that if Q is an
orthogonal matrix then detQ = ±1.

3.8. Show that ∣∣∣∣∣∣
1 x x2

1 y y2

1 z z2

∣∣∣∣∣∣ = (z − x)(z − y)(y − x).

This is a particular case of the so-called Vandermonde determinant.

3.9. Let points A, B and C in the plane R2 have coordinates (x1, y1), (x2, y2) and
(x3, y3) respectively. Show that the area of triangle ABC is the absolute value of

1
2

∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣
Hint: use row operations and geometric interpretation of 2×2 determinants (area).
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3.10. Let A be a square matrix. Show that block triangular matrices(
I ∗
0 A

)
,

(
A ∗
0 I

)
,

(
I 0
∗ A

)
,

(
A ∗
0 I

)
all have determinant equal to detA.

The following problems illustrate the power of block matrix notation.

3.11. Use the previous problem to show that if A and C are square matrices, then

det
(

A B
0 C

)
= det A detC.

Hint:
(

A B
0 C

)
=
(

I B
0 C

)(
A 0
0 I

)
.

3.12. Let A be m× n and B be n×m matrices. Prove that

det
(

0 A
−B I

)
= det(AB).

Hint: While it is possible to transform the matrix by row operations to a form
where the determinant is easy to compute, the easiest way is to right multiply the

matrix by
(

I 0
B I

)
.

4. Formal definition. Existence and uniqueness of the
determinant.

In this section we arrive to the formal definition of the determinant. We
show that a function, satisfying the basic properties 1, 2, 3 from Section 3
exists, and moreover, such function is unique, i.e. we do not have any choice
in constructing the determinant.

Consider an n × n matrix A = {aj,k}n
j,k=1, and let v1,v2, . . . ,vn be its

columns, i.e.

vk =


a1,k

a2,k
...

an,k

 = a1,ke1 + a2,ke2 + . . . + an,ken =
n∑

j=1

aj,kej .

Using linearity of the determinant we expand it in the first column v1:

(4.1) D(v1,v2, . . . ,vn) =

D(
n∑

j=1

aj,1ej ,v2, . . . , en) =
n∑

j=1

aj,1D(ej ,v2, . . . ,vn).
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Then we expand it in the second column, then in the third, and so on. We
get

D(v1,v2, . . . ,vn) =
n∑

j1=1

n∑
j2=1

. . .

n∑
jn=1

aj1,1aj2,2 . . . ajn,nD(ej1 .ej2 , . . . ejn).

Notice, that we have to use a different index of summation for each column:
we call them j1, j2, . . . , jn; the index j1 here is the same as the index j in
(4.1).

It is a huge sum, it contains nn terms. Fortunately, some of the terms are
zero. Namely, if any 2 of the indices j1, j2, . . . , jn coincide, the determinant
D(ej1 .ej2 , . . . ejn) is zero, because there are two equal rows here.

So, let us rewrite the sum, omitting all non-zero terms. The most conve-
nient way to do that is using the notion of a permutation. A permutation of
an ordered set {1, 2, . . . , n} is a rearrangement of its elements. A convenient
way to represent a permutation is by using a function

σ : {1, 2, . . . , n} → {1, 2, . . . , n},

where σ(1), σ(2), . . . , σ(n) gives the new order of the set 1, 2, . . . , n. In
other words, the permutation σ rearranges the ordered set 1, 2, . . . , n into
σ(1), σ(2), . . . , σ(n).

Such function σ has to be one-to-one (different values for different argu-
ments) and onto (assumes all possible values from the target space). Such
functions (one-to-one and onto) are called bijections, and they give one-to-
one correspondence between two sets. 1

Although it is not directly relevant here, let us notice, that it is well-
known in combinatorics, that the number of different perturbations of the set
{1, 2, . . . , n} is exactly n!. The set of all permutations of the set {1, 2, . . . , n}
will be denoted Perm(n).

Using the notion of a permutation, we can rewrite the determinant as

D(v1,v2, . . . ,vn) =∑
σ∈Perm(n)

aσ(1),1aσ(2),2 . . . aσ(n),nD(eσ(1), eσ(2), . . . , eσ(n)).

1There is another canonical way to represent permutation by a bijection σ, namely in this

representation σ(k) gives new position of the element number k. In this representation σ rearranges
σ(1), σ(2), . . . , σ(n) into 1, 2, . . . , n.

While in the first representation it is easy to write the function if you know the rearrangement

of the set 1, 2, . . . , n, the second one is more adapted to the composition of permutations: it
coincides with the composition of functions. Namely if we first perform the permutation that

correspond to a function σ and then one that correspond to τ , the resulting permutation will

correspond to τ ◦ σ.
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The matrix with columns eσ(1), eσ(2), . . . , eσ(n) can be obtained from the
identity matrix by finitely many column interchanges, so the determinant

D(eσ(1), eσ(2), . . . , eσ(n))

is 1 or −1 depending on the number of column interchanges.
To formalize that, we define sign (denoted signσ) of a permutation σ

to be 1 if even number of interchanges is necessary to rearrange the n-
tuple 1, 2, . . . , n into σ(1), σ(2), . . . , σ(n), and sign(σ) = −1 if the number
of interchanges is odd.

It is a well-known fact from the combinatorics, that the sign of permuta-
tion is well defined, i.e. that although there are infinitely many ways to get
the n-tuple σ(1), σ(2), . . . , σ(n) from 1, 2, . . . , n, the number of interchanges
is either always odd or always even.

One of the ways to show that is to count the number K of pairs j, k,
j < k such that σ(j) > σ(k), and see if the number is even or odd. We call
the permutation odd if K is odd and even if K is even. Then define signum
of σ to be (−1)K . We want to show that signum and sign coincide, so sign
is well defined.

If σ(k) = k ∀k, then the number of such pairs is 0, so signum of such
identity permutation is 1. Note also, that any elementary transpose, which
interchange two neighbors, changes the signum of a permutation, because it
changes (increases or decreases) the number of the pairs exactly by 1. So,
to get from a permutation to another one always need an even number of
elementary transposes if the permutation have the same signum, and an odd
number if the signums are different.

Finally, any interchange of two entries can be achieved by an odd num-
ber of elementary transposes. This implies that signum changes under an
interchange of two entries. So, to get from 1, 2, . . . , n to an even permuta-
tion (positive signum) one always need even number of interchanges, and
odd number of interchanges is needed to get an odd permutation (negative
signum). That means signum and sign coincide, and so sign is well defined.

So, if we want determinant to satisfy basic properties 1–3 from Section
3, we must define it as

(4.2) detA =
∑

σ∈Perm(n)

aσ(1),1, aσ(2),2, . . . , aσ(n),n sign(σ),

where the sum is taken over all permutations of the set {1, 2, . . . , n}.
If we define the determinant this way, it is easy to check that it satisfies

the basic properties 1–3 from Section 3. Indeed, it is linear in each column,
because for each column every term (product) in the sum contains exactly
one entry from this column.
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Interchanging two columns of A just adds an extra interchange to the
perturbation, so right side in (4.2) changes sign. And finally, for the identity
matrix I, the right side of (4.2) is 1 (it has one non-zero term).

Exercises.

4.1. Suppose the permutation σ takes (1, 2, 3, 4, 5) to (5, 4, 1, 2, 3).

a) Find sign of σ

b) What does σ2 := σ ◦ σ do to (1, 2, 3, 4, 5)?

c) What does the inverse permutation σ−1 do to (1, 2, 3, 4, 5)?

d) What is the sign of σ−1?

4.2. Let P be a permutation matrix, i.e. an n× n matrix consisting of zeroes and
ones and such that there is exactly one 1 in every row and every column.

a) Can you describe the corresponding linear transformation? That will ex-
plain the name.

b) Show that P is invertible. Can you describe P−1?

c) Show that for some N > 0

PN := PP . . . P︸ ︷︷ ︸
N times

= I.

Use the fact that there are only finitely many permutations.

4.3. Why is there an even number of permutations of (1, 2, . . . , 9) and why are
exactly half of them odd permutations? Hint: this problem can be hard to solve
in terms of permutations, but there is a very simple solution using determinants.

4.4. If σ is an odd permutation, explain why σ2 is even but σ−1 is odd.

5. Cofactor expansion.

For an n × n matrix A = {aj,k}n
j,k=1 let Aj,k denotes the (n − 1) × (n − 1)

matrix obtained from A by crossing out row number j and column number
k.

Theorem 5.1 (Cofactor expansion of determinant). Let A be an n × n
matrix. For each j, 1 ≤ j ≤ n, determinant of A can be expanded in the
row number j as

det A =

aj,1(−1)j+1 det Aj,1 + aj,2(−1)j+2 det Aj,2 + . . . + aj,1(−1)j+n det Aj,n

=
n∑

k=1

aj,k(−1)j+k det Aj,k.
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Similarly, for each k, 1 ≤ k ≤ n, the determinant can be expanded in the
column number k,

det A =
n∑

j=1

aj,k(−1)j+k det Aj,k

Proof. Let us first prove formula for the expansion in the row number 1:
the formula for expansion in the row number k then can be obtained from it
by interchanging rows number 1 and k. And since detA = detAT , column
expansion follows automatically.

Let us first consider a special case, when the first row has one non
zero term a1,1. Performing column operations on columns 2, 3, . . . , n we
transform A to the lower triangular form. The determinant of A then can
be computed as

the product of diagonal
entries of the triangular
matrix

× correcting factor from
the column operations

.

But the product of all diagonal entries except the first one (i.e. without
a1,1) times the correcting factor is exactly detA1,1, so in this particular case
det A = a1,1 det A1,1.

Let us now consider the case when all entries in the first row except a1,2

are zeroes. This case can be reduced to the previous one by interchanging
columns number 1 and 2, and therefore in this case det A = (−1) detA1,2.

The case when a1,3 is the only non-zero entry in the first row, can be
reduced to the previous one by interchanging rows 2 and 3, so in this case
det A = a1,3 det A1,3.

Repeating this procedure we get that in the case when a1,k is the only
non-zero entry in the first row detA = (−1)1+ka1,k det A1,k. 2

In the general case, linearity of the determinant implies that

det A = detA(1) + det A(2) + . . . + det A(n) =
n∑

k=1

det A(k)

2In the case when a1,k is the only non-zero entry in the first row it may be tempting to

exchange columns number 1 and number k, to reduce the problem to the case a1,1 6= 0. However,

when we exchange columns 1 and k we change the order of other columns: if we just cross out
column number k, then column number 1 will be the first of the remaining columns. But, if we

exchange columns 1 and k, and then cross out column k (which is now the first one), then the
1st column will be now column number k − 1. To avoid the complications of keeping track of
the order of columns, we can, as we did above, exchange columns number k and k − 1, reducing

everything to the situation we treated on the previous step. Such operation does not change the
order for the rest of the columns.
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where the matrix A(k) is obtained from A by replacing all entries in the first
row except a1,k by 0. As we just discussed above

det A(k) = (−1)1+ka1,k det A1,k,

so

det A =
n∑

k=1

(−1)1+ka1,k det A1,k.

To get the cofactor expansion in the second row, we can interchange first
and second rows and apply the above formula. The row exchange changes
the sign, so we get

det A = −
n∑

k=1

(−1)1+ka2,k det A2,k =
n∑

k=1

(−1)2+ka2,k det A2,k.

Exchanging rows 3 and 2 and expanding in the second row we get formula

det A =
n∑

k=1

(−1)3+ka3,k det A3,k,

and so on.
To expand the determinant det A in a column one need to apply row

expansion formula for AT . �

Definition. The numbers

Cj,k = (−1)j+k det Aj,k

are called cofactors.

Using this notation formula for expansion of the determinant in the row
number j can be rewritten as

det A = aj,1Cj,1 + aj,2Cj,2 + . . . + aj,nCj,n =
n∑

k=1

aj,kCj,k.

Similarly, expansion in the row number k can be written as

det A = a1,kC1,k + a2,kC2,k + . . . + an,kCn,k =
n∑

j=1

aj,kCj,k

Remark. Very often the cofactor expansion formula is used as the definition Very often the
cofactor expansion
formula is used as
the definition of
determinant.

of determinant. It is not difficult to show that the quantity given by this
formula satisfies the basic properties of the determinant: the normalization
property is trivial, the proof of antisymmetry is easy. However, the proof of
linearity is a bit tedious (although not too difficult).
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Remark. Although it looks very nice, the cofactor expansion formula is not
suitable for computing determinant of matrices bigger than 3× 3.

As one can count it requires n! multiplications, and n! grows very rapidly.
For example, cofactor expansion of a 20× 20 matrix require 20! ≈ 2.4 · 1018

multiplications: it would take a computer performing a billion multiplica-
tions per second over 77 years to perform the multiplications.

On the other hand, computing the determinant of an n×n matrix using
row reduction requires (n3 + 2n− 3)/3 multiplications (and about the same
number of additions). It would take a computer performing a million oper-
ations per second (very slow, by today’s standards) a fraction of a second
to compute the determinant of a 100× 100 matrix by row reduction.

It only can be practical to apply the cofactor expansion formula in higher
dimensions if a row (or a column) has a lot of zero entries.

However, the cofactor expansion formula is of great theoretical impor-
tance, as the next section shows.

5.1. Cofactor formula for the inverse matrix. The matrix C =
{Cj,k}n

j,k=1 whose entries are cofactors of a given matrix A is called the
cofactor matrix of A.

Theorem 5.2. Let A be an invertible matrix and let C be its cofactor matrix.
Then

A−1 =
1

det A
CT .

Proof. Let us find the product ACT . The diagonal entry number j is
obtained by multiplying jth row of A by jth column of A (i.e. jth row of
C), so

(ACT )j,j = aj,1Cj,1 + aj,2Cj,2 + . . . + aj,nCj,n = detA,

by the cofactor expansion formula.
To get off diagonal terms we need to multiply jth row of A by kth column

of CT , j 6= k, to get

aj,1Ck,1 + aj,2Ck,2 + . . . + aj,nCk,n.

It follows from the cofactor expansions formula (expanding in kth row) that
this is the determinant of the matrix obtained from A by replacing row
number k by the row number j (and leaving all other rows as they were).
But the rows j and k of this matrix coincide, so the determinant is 0. So, all
off-diagonal entries of ACT are zeroes (and all diagonal ones equal det A),
thus

ACT = (det A) I.
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That means that the matrix 1
det A CT is a right inverse of A, and since A is

square, it is the inverse. �

Recalling that for an invertible matrix A the equation Ax = b has a
unique solution

x = A−1b =
1

det A
CTb,

we get the following corollary of the above theorem.

Corollary 5.3 (Cramer’s rule). For an invertible matrix A the entry number
k of the solution of the equation Ax = b is given by the formula

xk =
det Bk

det A
,

where the matrix Bk is obtained from A by replacing column number k of A
by the vector b.

5.2. Some applications of the cofactor formula for the inverse.

Example (Inverting 2 × 2 matrices). The cofactor formula really shines
when one needs to invert a 2× 2 matrix

A =
(

a b
c d

)
.

The cofactors are just entries (1× 1 matrices), the cofactor matrix is(
d −b
−c a

)
,

so the inverse matrix A−1 is given by the formula

A−1 =
1

det A

(
d −b
−c a

)
.

While the cofactor formula for the inverse does not look practical or
dimensions higher than 3, it has a great theoretical value, as the examples
below illustrate.

Example (Matrix with integer inverse). Suppose that we want to construct
a matrix A with integer entries, such that its inverse also have integer entries
(inverting such matrix would make a nice homework problem: no messing
with fractions). If detA = 1 and its entries are integer, the cofactor formula
for inverses implies that A−1 also have integer entries.

Note, that it is easy to construct an integer matrix A with det A = 1:
one should start with a triangular matrix with 1 on the main diagonal, and
then apply several row or column replacements (operations of the third type)
to make the matrix look generic.
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Example (Inverse of a polynomial matrix). Another example is to consider
a polynomial matrix A(x), ii.e. a matrix whose entries are not numbers but
polynomials aj,k(x) of the variable x. If det A(x) ≡ 1, then the inverse
matrix A−1(x) is also a polynomial matrix.

If detA(x) = p(x) 6≡ 0, it follows from the cofactor expansion that p(x)
is a polynomial, so A−1(x) is a has rational entries: moreover, p(x) is a
multiple of each denominator.

Exercises.

5.1. Evaluate the determinants using any method∣∣∣∣∣∣
0 1 1
1 2 −5
6 −4 3

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

1 −2 3 −12
−5 12 −14 19
−9 22 −20 31
−4 9 −14 15

∣∣∣∣∣∣∣∣
5.2. Use row (column) expansion to evaluate the determinants). Note, that you
don’t need to use the first row (column): picking row (column) with many zeroes
will simplify your calculations.∣∣∣∣∣∣

1 2 0
1 1 5
1 −3 0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣

4 −6 −4 4
2 1 0 0
0 −3 1 3

−2 2 −3 −5

∣∣∣∣∣∣∣∣
5.3. For the n× n matrix

A =



0 0 0 . . . 0 a0

−1 0 0 . . . 0 a1

0 −1 0 . . . 0 a2

...
...

...
. . .

...
...

0 0 0 . . . 0 an−2

0 0 0 . . . −1 an−1


compute det(A + tI), where I is n × n identity matrix. You should get a nice ex-
pression involving a0, a1, . . . , an−1 and t. Row expansion and induction is probably
the best way to go.

5.4. Using cofactor formula compute inverses of the matrices(
1 2
3 4

)
,

(
19 −17
3 −2

)
,

(
1 0
3 5

)
,

 1 1 0
2 1 2
0 1 1


5.5. Let Dn be the determinant of the n× n tridiagonal matrix

1 −1 0
1 1 −1

1
. . . . . .
. . . 1 −1

0 1 1


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Using cofactor expansion show that Dn = Dn−1 + Dn−2. This yields that the
sequence Dn is the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, . . .

5.6. Vandermonde determinant revisited. Our goal is to prove the formula∣∣∣∣∣∣∣∣∣
1 c0 c2

0 . . . cn
0

1 c1 c2
1 . . . cn

1
...

...
...

...
1 cn c2

n . . . cn
n

∣∣∣∣∣∣∣∣∣ =
∏

0≤j<k≤n

(ck − cj)

for the (n + 1)× (n + 1) Vandermonde determinant.
We will apply induction. To do this

a) Check that the formula holds for n = 1, n = 2 (see the previous assign-
ments).

b) Call the variable cn in the last row x, and show that the determinant is a
polynomial of degree n, A0 +A1x+A2x

2 + . . .+Anxn, with the coefficients
Ak depending on c0, c1, . . . , cn−1.

c) Show that the polynomial has zeroes at x = c0, c1, . . . , cn−1, so it can be
represented as An · (x− c0)(x− c1) . . . (x− cn), where An as above.

d) Assuming that the formula for the Vandermonde determinant is true for
n− 1, compute An and prove the formula for n.

6. Minors and rank.

For a matrix A let us consider its k×k submatrix, obtained by taking k rows
and k columns. The determinant of this matrix is called a minor of order k.
Note, that an m × n matrix has

(
m
k

)
·
(
n
k

)
different k × k submatrices, and

so it has
(
m
k

)
·
(
n
k

)
minors of order k.

Theorem 6.1. For a non-zero matrix A its rank equals to the maximal
integer k such that there exists a non-zero minor of order k.

Proof. Let us first show, that if k > rank A then all minors of order k are 0.
Indeed, since the dimension of the column space RanA is rank A < k, any
k columns of A are linearly dependent. Therefore, for any k × k submatrix
of A its column are linearly dependent, and so all minors of order k are 0.

To complete the proof we need to show that there exists a non-zero
minor of order k = rankA. There can be many such minors, but probably
the easiest way to get such a minor is to take pivot rows and pivot column
(i.e. rows and columns of the original matrix, containing a pivot). This
k×k submatrix has the same pivots as the original matrix, so it is invertible
(pivot in every column and every row) and its determinant is non-zero. �

This theorem does not look very useful, because it is much easier to
perform row reduction than to compute all minors. However, it is of great
theoretical importance, as the following corollary shows.
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Corollary 6.2. Let A = A(x) be an m×n polynomial matrix (i.e. a matrix
whose entries are polynomials of x). Then rank A(x) is constant everywhere,
except maybe finitely many points.

Proof. Let r be the largest integer such that rankA(x) = r for some x. To
show that such r exists, we first try r = min{m,n}. If there exists x such
that rank A(x) = r, we found r. If not, we replace r by r− 1 and try again.
After finitely many steps we either stop or hit 0. So, r exists.

Let x0 be a point such that rank A(x0) = r, and let M be a minor of order
k such that M(x0) 6= 0. Since M(x) is the determinant of a k×k polynomial
matrix, M(x) is a polynomial. Since M(x0) 6= 0, it is not identically zero,
so it can be zero only at finitely many points. So, everywhere except maybe
finitely many points rankA(x) ≥ r. But by the definition of r, rank A(x) ≤ r
for all x. �

7. Review exercises for Chapter 3.

7.1. True or false

a) Determinant is only defined for square matrices.

b) If two rows or columns of A are identical, then det A = 0.

c) If B is the matrix obtained from A by interchanging two rows (or columns),
then detB = det A.

d) If B is the matrix obtained from A by multiplying a row (column) of A by
a scalar α, then detB = det A.

e) If B is the matrix obtained from A by adding a multiple of a row to some
other row, then detB = detA.

f) The determinant of a triangular matrix is the product of its diagonal en-
tries.

g) det(AT ) = −det(A).

h) det(AB) = det(A) det(B).

i) A matrix A is invertible if and only if detA 6= 0.

j) If A is an invertible matrix, then det(A−1) = 1/ det(A).

7.2. Let A be an n× n matrix. How are det(3A), det(−A) and det(A2) related to
det A.

7.3. If the entries of both A and A−1 are integers, is it possible that detA = 3?
Hint: what is det(A) det(A−1)?

7.4. Let v1,v2 be vectors in R2 and let A be the 2×2 matrix with columns v1,v2.
Prove that |detA| is the area of the parallelogram with two sides given by the
vectors v1,v2.
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Consider first the case when v1 = (x1, 0)T . To treat general case v1 = (x1, y1)T

left multiply A by a rotation matrix that transforms vector v1 into (x̃1, 0)T . Hint:
what is the determinant of a rotation matrix?

The following problem illustrates relation between sign of determinant and the
so-called orientation of a system of vectors.

7.5. Let v1, v2 be vectors in R2. Show that D(v1,v2) > 0 if and only if there
exists a rotation Tα such that the vector Tαv1 is parallel to e1 (and looking in the
same direction), and Tαv2 is in the upper half-plane x2 > 0 (the same half-plane
as e2).

Hint: what is the determinant of a rotation matrix?





Chapter 4

Introduction to
spectral theory
(eigenvalues and
eigenvectors)

The spectral theory is the main tool that helps us to understand the struc-
ture of a linear operator. In this chapter we consider only operators acting
from a vector space to itself (or, equivalently, n × n matrices). If we have
such a linear transformation A : V → V , we can multiply it to itself, take
any power of it, any polynomial.

The main idea of the spectral theory is to split the operator in the simple
blocks to analyze each block separately.

To explain the main idea, let us consider difference equations. Many
processes can be described by the equations of the following type

xn+1 = Axn, n = 0, 1, 2, . . . ,

where A : V → V is a linear transformation, and xn is the state of the
system at the time n. Given the initial state x0 we would like to to know
the state xn at the time n, analyze the long time behavior of xn, etc. 1

1The difference equations are discrete time analogues of the differential equation x′(t) =
Ax(t). To solve the differential equation, one needs to compute etA :=

∑∞
k=0 tkAn/k!, and

spectral theory also helps in doing this.

93
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At the first look the problem looks trivial: the solution xn is given by
the formula xn = Anx0. But what if n is huge: thousands, millions? Or
what if we want to analyze the behavior of xn as n →∞?

And here the idea of eigenvalues and eigenvectors comes handy: sup-
pose that Ax0 = λx0, where λ is some scalar. Then A2x0 = λ2x0, A2x0 =
λ2x0, . . . , Anx0 = λnx0, so the behavior of the solution is very well under-
stood

In this section we will consider only operators in finitedimensional spaces.
The spectral theory in infinitely many dimensions if significantly more com-
plicated, and most of results presented here fail in infinitedimnsional setting.

1. Main definitions

1.1. Eigenvalues, eigenvectors, spectrum. A scalar λ is called an
eigenvalue of an operator A : V → V if there exists a non-zero vector
v ∈ V such that

Av = λv.

The vector v is called the eigenvector of A (corresponding to the eigenvalue
λ).

If we know that λ is an eigenvalue, the eigenvectors are easy to find: one
just has to solve the equation Ax = λx, or, equivalently

(A− λI)x = 0.

So, finding all eigenvectors, corresponding to an eigenvalue λ is simply find-
ing the nullspace of A − λI. The nullspace Ker(A − λI), i.e. the set of all
eigenvectors and 0 vector, is called the eigenspace.

The set of all eigenvalues of an operator A is called spectrum of A, and
is usually denoted σ(A).

1.2. Finding eigenvalues: characteristic polynomials. A scalar λ is
an eigenvalue if and only if the nullspace Ker(A− λI) is non-trivial (so the
equation (A− λI)x = 0 has a non-trivial solution).

Let A acts on Rn (i.e. A : Rn → Rn). Since the matrix of A is square,
A− λI has a non-trivial nullspace if and only if it is not invertible. And we
know that a square matrix is not invertible if and only if its determinant is
0. Therefore

λ ∈ σ(A), i.e. λ is an eigenvalue of A ⇐⇒ det(A− λI) = 0

If A is an n × n matrix, the determinant det(A − λI) is a polynomial of
degree n of the variable λ. This polynomial is called the characteristic
polynomial of A. So, to find all eigenvalues of A one just needs to compute
the characteristic polynomial and find all its roots.



1. Main definitions 95

This method of finding spectrum of an operator is not very practical
in higher dimensions. Finding roots of a polynomial of high degree can
be a very difficult problem, and it is impossible to solve the equation of
degree higher than 4 in radicals. So, in higher dimensions different numerical
methods of finding eigenvalues and eigenvectors are used.

1.3. Characteristic polynomial of an operator. So we know how to
find spectrum of a matrix. But how to find eigenvalues of an operator acting
in an abstract vector space? The recipe is simple:

Take an arbitrary basis, and compute eigenvalues of the matrix of
the operator in this basis

But how do we know that the result does not depend on a choice of the
basis?

There can be several possible explanations. One is based on the notion
of similar matrices. Let us recall that square matrices A and B are called
similar if there exist an invertible matrix S such that

A = SBS−1.

Note, that determinants of similar matrices coincide. Indeed

det A = det(SBS−1) = det S det B det S−1 = detB

because det S−1 = 1/ det S. Note that if A = SBS−1 then

A− λI = SBS−1 − λSIS−1 = S(BS−1 − λIS−1) = S(B − λI)S−1,

so the matrices A− λI and B − λI are similar. Therefore

det(A− λI) = det(B − λI),

i.e.
characteristic polynomials of similar matrices coincide.

If T : V → V is a linear transformation, and A and B are two bases in
V , then

[T ]AA = [I]AB [T ]BB [I]BA
and since [I]BA = ([I]AB)−1 the matrices [T ]AA and [T ]BB are similar.

In other words, matrices of a linear transformation in different bases are
similar.

Therefore, we can define the characteristic polynomial of an operator as
the characteristic polynomial of its matrix in some basis. As we just have
discussed above, the result does not depend on the choice of the basis, so
characteristic polynomial of an operator is well defined.
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1.4. Multiplicities of eigenvalues. Let us remind the reader, that if p is
a polynomial, and λ is its root (i.e. p(λ) = 0) then z − λ divides p(z), i.e. p
can be represented as p(z) = (z − λ)q(z), where q is some polynomial. If
q(λ) = 0, then q also can be divided by z − λ, so (z − λ)2 divides p and so
on.

The largest positive integer k such that (z − λ)k divides p(z) is called
the multiplicity of the root λ.

If λ is an eigenvalue of an operator (matrix) A, then it is a root of the
characteristic polynomial p(z) = det(A − zI). The multiplicity of this root
is called the (algebraic) multiplicity of the eigenvalue λ.

Any polynomial p(z) =
∑n

k=0 akz
k of degree n has exactly n complex

roots, counting multiplicity. Words counting multiplicities mean that if a
root has multiplicity d we have to count it d times. In other words, p can
be represented as

p(z) = an(z − λ1)(z − λ2) . . . (z − λn).

where λ1, λ2, . . . , λn are its complex roots, counting multiplicities.
There is another notion of multiplicity of an eigenvalue: the dimension of

the eigenspace Ker(A−λI) is called geometric multiplicity of the eigenvalue
λ.

Geometric multiplicity is not as widely used as algebraic multiplicity.
So, when people say simply “multiplicity” they usually mean algebraic mul-
tiplicity.

Let us mention, that algebraic and geometric multiplicities of an eigen-
value can differ.

Proposition 1.1. Geometric multiplicity of an eigenvalue cannot exceed its
algebraic multiplicity.

Proof. See Exercise 1.8 below. �

1.5. Trace and determinant.

Theorem 1.2. Let A be n×n matrix, and let λ1, λ2, . . . , λn be its eigenvalues
(counting multiplicities). Then

1. trace A = λ1 + λ2 + . . . + λn.

2. det A = λ1λ2 . . . λn.

Proof. See Exercises 1.9, 1.10 below. �
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Exercises.

1.1. True or false:

a) Every linear operator in an n-dimensional vector space has n distinct eigen-
values.

b) If a matrix has one eigenvector, it has infinitely many eigenvectors.

c) There exists a square real matrix with no real eigenvalues.

d) There exists a square matrix with no (complex) eigenvectors.

e) Similar matrices always have the same eigenvalues.

f) Similar matrices always have the same eigenvectors.

g) The sum of two eigenvectors of a matrix A is always an eigenvector

h) The sum of two eigenvectors of a matrix A corresponding to the same
eigenvalue λ is always an eigenvector

1.2. Find characteristic polynomials, eigenvalues and eigenvectors of the following
matrices: (

4 −5
2 −3

)
,

(
2 1

−1 4

)
,

 1 3 3
−3 −5 −3

3 3 1

 .

1.3. Compute eigenvalues and eigenvectors of the rotation matrix(
cos α − sinα
sinα cos α

)
.

Note, that the eigenvalues (and eigenvectors) do not need to be real.

1.4. Compute characteristic polynomials and eigenvalues of the following matrices:
1 2 5 67
0 2 3 6
0 0 −2 5
0 0 0 3

 ,


2 1 0 2
0 π 43 2
0 0 16 1
0 0 0 54

 ,


4 0 0 0
1 3 0 0
2 4 e 0
3 3 1 1

 ,


4 0 0 0
1 0 0 0
2 4 0 0
3 3 1 1

 .

Do not expand characteristic polynomials, leave them as products.

1.5. Prove that eigenvalues (counting multiplicities) of a triangular matrix coincide
with its diagonal entries

1.6. Show that characteristic polynomial of a block triangular matrix(
A ∗
0 B

)
,

where A and B are square matrices, coincides with det(A− λI) det(B − λI). (Use
Exercise 3.11 from Chapter 3).
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1.7. Let v1,v2, . . . ,vn be a basis in a vector space V . Assume also that first k
vectors v1,v2, . . . ,vk of the basis are eigenvectors of an operator A, corresponding
to an eigenvalue λ (i.e. that Avj = λvj , j = 1, 2, . . . , k). Show that in this basis
matrix of the operator A has block triangular form(

λIk ∗
0 B

)
,

where Ik is k × k identity matrix and B is some (n− k)× (n− k) matrix.

1.8. Use two previous exercises to prove that geometric multiplicity of an eigenvalue
cannot exceed its algebraic multiplicity.

1.9. Prove that determinant of a matrix A is the product of its eigenvalues (count-
ing multiplicities).

Hint: first show that det(A − λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ), where
λ1, λ2, . . . , λn are eigenvalues (counting multiplicities). Then compare free terms
(terms without λ) or plug λ = 0 to get the conclusion.

1.10. Prove that the trace of a matrix equals the sum of eigenvalues in three steps.
First, compute the coefficient of λn−1 in the right side of the equality

det(A− λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ).

Then show that det(A− λI) can be represented as

det(A− λI) = (a1,1 − λ)(a2,2 − λ) . . . (an,n − λ) + q(λ)

where q(λ) is polynomial of degree at most n − 2. And finally, comparing the
coefficients of λn−1 get the conclusion.

2. Diagonalization.

Suppose an operator (matrix) A has a basis B = v1,v2, . . .vn of eigenvectors,
and let λ1, λ2, . . . , λn be the corresponding eigenvalues. Then the matrix of
A in this basis is the diagonal matrix with λ1, λ2, . . . , λn on the diagonal

[A]BB = diag{λ1, λ2, . . . , λn} =


λ1

λ2
0

. . .
0 λn

 .

Therefore, it is easy to find an Nth power of the operator A. Namely, its
matrix in the basis B is

[AN ]BB = diag{λN
1 , λN

2 , . . . , λN
n } =


λN

1

λN
2

0
. . .

0 λN
n

 .
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Moreover, functions of the operator are also very easy to compute: for ex-

ample the operator (matrix) exponent etA is defined as etA = I+tA+
t2A2

2!
+

t3A3

3!
+ . . . =

∞∑
k=0

tkAk

k!
, and its matrix in the basis B is

[AN ]BB = diag{eλ1t, eλ2t, . . . , eλnt} =


eλ1t

eλ2t 0
. . .

0 eλnt

 .

To find the matrices in the standard basis S, we need to recall that the
change of coordinate matrix [I]SB is the matrix with columns v1,v2, . . . ,vn.
Let us call this matrix S, then

A = [A]SS = S


λ1

λ2
0

. . .
0 λn

S−1 = SDS−1,

where we use D for the diagonal matrix in the middle.
Similarly

AN = SDNS−1 = S


λN

1

λN
2

0
. . .

0 λN
n

S−1

and similarly for etA.
Another way of thinking about powers (or other functions) of diagonaliz-

able operators is to see that if operator A can be represented as A = SDS−1,
then

AN = (SDS−1)(SDS−1) . . . (SDS−1)︸ ︷︷ ︸
N times

= SDNS−1

and it is easy to compute the Nth power of a diagonal matrix.
The following theorem is almost trivial.

Theorem 2.1. A matrix A admits a representation A = SDS−1, where D
is a diagonal matrix if and only if there exists a basis of eigenvectors of A.

Proof. We already discussed above that if there is a basis of eigenvectors,
then the matrix admits the representation A = SDS−1, where S = [I]SB
is the change of coordinate matrix from coordinates in the basis B to the
standard coordinates.
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On the other hand if the matrix admits the representation A = SDS−1

with a diagonal matrix D, then columns of S are eigenvectors of A (column
number k corresponds to the kth diagonal entry of D). Since S is invertible,
its columns form a basis. �

Theorem 2.2. Let λ1, λ2, . . . , λr be distinct eigenvalues of A, and let
v1,v2, . . . ,vr be the corresponding eigenvectors. Then vectors v1,v2, . . . ,vr

are linearly independent.

Proof. We will use induction on r. The case r = 1 is trivial, because by
the definition an eigenvector is non-zero. And a system consisting of one
non-zero vector is linearly independent.

Suppose that the statement of the theorem is true for r − 1. Suppose
there exists a non-trivial linear combination

(2.1) c1v1 + c2v2 + . . . + crvr =
r∑

k=1

ckvk = 0.

Applying A − λrI to (2.1) and using the fact that (A − λrI)vr = 0 we
get

r−1∑
k=1

ck(λk − λr)vk = 0.

By the induction hypothesis vectors v1,v2, . . . ,vr−1 are linearly indepen-
dent, so ck(λk − λr) = 0 for k = 1, 2, . . . , r − 1. Since λk 6= λr we can
conclude that ck = 0 for k < r. Then it follows from (2.1) that cr = 0,
i.e. we have the trivial linear combination. �

Corollary 2.3. If an operator A : V → V has exactly n = dim V distinct
eigenvalues, then it is diagonalizable.

Proof. For each eigenvalue λk let vk be a corresponding eigenvector (just
pick one eigenvector for each eigenvalue). By Theorem 2.2 the system
v1,v2, . . . ,vn is linearly independent,and since it consists of exactly n =
dim V vectors it is a basis. �

2.1. Bases of subspaces (AKA direct sums of subspaces). Let
V1, V2, . . . , Vp be subspaces of a vector space V . We say that the system
of subspaces is a basis in V if any vector v ∈ V admits a unique represen-
tation as a sum

v = v1 + v2 + . . . + vp =
p∑

k=1

vk, vk ∈ Vk.
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We also say, that a system of subspaces V1, V2, . . . , Vp is linearly independent
if the equation

v1 + v2 + . . . + vp = 0, vk ∈ Vk

has only trivial solution (vk = 0 ∀k = 1, 2, . . . , p).
Another way to phrase that is to say that a system of subspaces

V1, V2, . . . , Vp is linearly independent if and only if any system of non-zero
vectors vk, where vk ∈ Vk, is linearly independent.

Remark 2.4. From the above definition one can immediately see that The-
orem 2.1 states in fact that the system of eigenspaces Ek of an operator
A

Ek := Ker(A− λkI), λk ∈ σ(A),

is linearly independent.

There is a simple example of a basis of subspaces. Let V be a vector
space with a basis v1,v2, . . . ,vn. Split the set of indices 1, 2, . . . , n into
p subsets Λ1,Λ2, . . . ,Λp, and define subspaces Vk := span{vj : j ∈ Λk}.
Clearly subspaces Vk form a basis of V .

The following theorem shows that in finite-dimensional case it is essen-
tially the only possible example of a basis of subspaces.

Theorem 2.5. Let V1, V2, . . . , Vp be a basis of subspaces, and let in each
subspace Vk we have a basis (of vectors) Bk

2. Then the union ∪kBk of these
bases is a basis in V .

To prove the theorem we need the following lemma

Lemma 2.6. Let V1, V2, . . . , Vp be a linearly independent family of sub-
spaces, and let in each subspace Vk we have a linearly independent system
Bk of vectors 3 Then the union B := ∪kBk is a linearly independent system.

Proof. The proof of the lemma is almost trivial, if one thinks a bit about
it. The main difficulty in writing the proof is a choice of a appropriate
notation. Instead of using two indices (one for the number k and the other
for the number of a vector in Bk, let us use “flat” notation.

Namely, let n be the number of vectors in B := ∪kBk. Let us order the
set B, for example as follows: first list all vectors from B1, then all vectors
in B2, etc, listing all vectors from Bp last.

2We do not list here vectors in Bk, one just should keep in mind that each Bk consists of
finitely many vectors in Vk

3again here we do not name each vector in Bk individually, we just keep in mind that each
set Bk consists of finitely many vectors.
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This way, we index all vectors in B by integers 1, 2, . . . , n, and the set of
indices {1, 2, . . . , n} splits into the sets Λ1,Λ2, . . . ,Λp such that the set Bk

consists of vectors bj : j ∈ Λk.
Suppose we have a non-trivial linear combination

(2.2) c1b1 + c2b2 + . . . + cnbn =
n∑

j=1

cjbj = 0.

Denote

vk =
∑
j∈Λk

cjbj .

Then (2.2) can be rewritten as

v1 + v2 + . . . + vp = 0.

Since vk ∈ Vk and the system of subspaces Vk is linearly independent, vk = 0
∀k. Than means that for every k∑

j∈Λk

cjbj = 0,

and since the system of vectors bj : j ∈ Λk (i.e. the system Bk) are linearly
independent, we have cj = 0 for all j ∈ Λk. Since it is true for all Λk, we
can conclude that cj = 0 for all j. �

Proof of Theorem 2.5. To prove the theorem we will use the same nota-
tion as in the proof of Lemma 2.6, i.e. the system Bk consists of vectors bj ,
j ∈ Λk.

Lemma 2.6 asserts that the system of vectors bj , j =, 12, . . . , n is linearly
independent, so it only remains to show that the system is complete.

Since the system of subspaces V1, V2, . . . , Vp is a basis, any vector v ∈ V
can be represented as

v = v1p1 + v2p2 + . . . + v=p=

p∑
k=1

vk, vk ∈ Vk.

Since the vectors bj , j ∈ Λk form a basis in Vk, vectors vk can be represented
as

vk =
∑
j∈Λk

cjbj ,

and therefore v =
∑n

j=1 cjbj . �



2. Diagonalization. 103

2.2. Criterion of diagonalizability. First of all let us mention a simple
necessary condition. Since for a diagonal matrix D = diag{λ1, λ2, . . . , λn}

det(D − λI) = (λ1 − λ)(λ2 − λ) . . . (λn − λ),

we can see that if an operator A is diagonalizable, its characteristic polyno-
mial splits into the product of monomials. Note, that any polynomial can be
decomposed into the product of monomials, if we allow complex coefficients
(i.e. complex eigenvalues).

In what follows we always assume that the characteristic polynomial
splits into the product of monomials, either by working in a complex vec-
tor space, or simply assuming that A has exactly n = dim V eigenvalues
(counting multiplicity).

Theorem 2.7. An operator A : V → V is diagonalizable if and only if
for each eigenvalue λ the dimension of the eigenspace Ker(A− λI) (i.e. the
geometric multiplicity) coincides with the algebraic multiplicity of λ.

Proof. First of all let us note, that for a diagonal matrix algebraic and
geometric multiplicities of eigenvalues coincide, and therefore the same holds
for the diagonalizable operators.

Let us now prove the other implication. Let λ1, λ2, . . . , λp be eigenval-
ues of A, and let Ek := Ker(A − λkI) be the corresponding eigenspaces.
According to Remark 2.4, the subspaces Ek, k = 1, 2, . . . , p are linearly
independent.

Let Bk be a basis in Ek. By Lemma 2.6 the system B = ∪kBk is a
linearly independent system of vectors.

We know that each Bk consists of dim Ek(= multiplicity of λk) vectors.
So to th number of vectors in B equal to the sum of multiplicities of eigen-
vectors λk, which is exactly n = dim V . So, we have a linearly independent
system of dim V eigenvectors, which means it is a basis. �

2.3. Some example.

2.3.1. Real eigenvalues. Consider matrix

A =
(

1 2
8 1

)
.

Its characteristic polynomial equals to∣∣∣∣ 1− λ 2
8 1− λ

∣∣∣∣ = (1− λ)2 − 16

and its roots (eigenvalues) are λ = 5 and λ = −3. For the eigenvalue λ = 5

A− 5I =
(

1− 5 2
8 1− 5

)
=
(
−4 2
8 −4

)
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A basis in its nullspace consists of one vector (1, 2)T , so this is the corre-
sponding eigenvector.

Similarly, for λ = −3

A− λI = A + 3I =
(

4 2
8 4

)
and the eigenspace Ker(A + 3I) is spanned by the vector (1,−2)T . The
matrix A can be diagonalized as

A =
(

1 2
8 1

)
=
(

1 1
2 −2

)(
5 0
0 −3

)(
1 1
2 −2

)−1

2.3.2. Complex eigenvalues. Consider matrix

A =
(

1 2
−2 1

)
.

Its characteristic polynomial is∣∣∣∣ 1− λ 2
−2 1− λ

∣∣∣∣ = (1− λ)2 + 22

and the eigenvalues (roots of the characteristic polynomial are λ = 1 ± 2i.
For λ = 1 + 2i

A− λI =
(
−2i 2
−2 −2i

)
This matrix has rank 1, so the eigenspace Ker(A − λT ) is spanned by one
vector, for example by (1, i)T .

Since the matrix A is real, we do not need to compute an eigenvector
for λ = 1− 2i: we can get it for free by taking the complex conjugate of the
above eigenvector, see Exercise 2.2 below. So, for λ = 1−2i a corresponding
eigenvector is (1,−i)T , and so matrix A can be diagonalized as

A =
(

1 1
i −i

)(
1 + 2i 0

0 1− 2i

)(
1 1
i −i

)−1

2.3.3. A non-diagonalizable matrix. Consider matrix

A =
(

1 1
0 1

)
Its characteristic polynomial is∣∣∣∣ 1− λ 1

0 1− λ

∣∣∣∣ = (1− λ)2,

so A has an eigenvalue 1 of multiplicity 2. But it is easy to see that
dim Ker(A−I) = 1 (1 pivot, so 2−1 = 1 free variable). Therefore geometric
multiplicity of the eigenvalue 1 is different from its algebraic multiplicity, so
A is not diagonalizable.
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There is also an explanation which does not use Theorem 2.7. Namely,
we got that the eigenspace Ker(A− 1I) is one dimensional (spanned by the
vector (1, 0)T ). If A were diagonalizable, it would have a diagonal form(

1 0
0 1

)
in some basis,4 and so the dimension of the eigenspace wold be 2.

Therefore A cannot be diagonalized.

Exercises.

2.1. Let A be n× n matrix. True or false:

a) AT has the same eigenvalues as A.
b) AT has the same eigenvectors as A.
c) If A is is diagonalizable, then so is AT .

Justify your conclusions.

2.2. Let A be a square matrix with real entries, and let λ be its complex eigenvalue.
Suppose v = (v1, v2, . . . , vn)T is a corresponding eigenvector, Av = λv. Prove that
the λ is an eigenvalue of A and Av = λv. Here v is the complex conjugate of the
vector v, v := (v1, v2, . . . , vn)T .

2.3. Let

A =
(

4 3
1 2

)
.

Find A2004 by diagonalizing A.

2.4. Construct a matrix A with eigenvalues 1 and 3 and corresponding eigenvectors
(1, 2)T and (1, 1)T . Is such matrix unique?

2.5. Diagonalize the following matrices, if possible:

a)
(

4 −2
1 1

)
.

b)
(
−1 −1

6 4

)
.

c)

 −2 2 6
5 1 −6
−5 2 9

 (λ = 2 is one of the eigenvalues)

2.6. Consider matrix

A =

 2 6 −6
0 5 −2
0 0 4


a) Find its eigenvalues. Is it possible to find eigenvalues without computing?
b) Is this matrix diagonalizable? Find out without computing anything.

4Note, that the only linear transformation having matrix

(
1 0

0 1

)
in some basis is the

identity transformation I. Since A is definitely not the identity, we can immediately conclude

that A cannot be diagonalized, so counting dimension of the eigenspace is not necessary.
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c) If the matrix is diagonalizable, diagonalize it.

2.7. Diagonalize the matrix  2 0 6
0 2 4
0 0 4

 .

2.8. Find all square roots of the matrix

A =
(

5 2
−3 0

)
i.e. find all matrices B such that B2 = A. Hint: Finding a square root of a
diagonal matrix is easy. You can leave your answer as a product.

2.9. Let us recall that the famous Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

is defined as follows: we put ϕ0 = 0, ϕ1 = 1 and define

ϕn+2 = ϕn+1 + ϕn.

We want to find a formula for ϕn. To do this

a) Find a 2× 2 matrix A such that(
ϕn+2

ϕn+1

)
= A

(
ϕn+1

ϕn

)
Hint: Add trivial equation ϕn+1 = ϕn+1 to the Fibonacci relation ϕn+2 =
ϕn+1 + ϕn.

b) Diagonalize A and find a formula for An.

c) Noticing that(
ϕn+1

ϕn

)
= An

(
ϕ1

ϕ0

)
= An

(
1
0

)
find a formula for ϕn. (You will need to compute an inverse and perform
multiplication here).

d) Show that the vector (ϕn+1/ϕn, 1)T converges to an eigenvector of A.
What do you think, is it a coincidence?

2.10. Let A be a 5 × 5 matrix with 3 eigenvalues (not counting multiplicities).
Suppose we know that one eigenspace is three-dimensional. Can you say if A is
diagonalizable?

2.11. Give an example of a 3 × 3 matrix which cannot be diagonalized. After
you constructed the matrix, can you make it “generically looking”, so no special
structure of the matrix could be seen?

2.12. Let a matrix A satisfies A5 = 0. Prove that A cannot be diagonalized. More
generally, any nilpotent matrix, i.e. a matrix satisfying AN = 0 for some N cannot
be diagonalized.

2.13. Eigenvalues of a transposition:
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a) Consider the transformation T in the space M2×2 of 2×2 matrices, T (A) =
AT . Find all its eigenvalues and eigenvectors. Is it possible to diagonalize
this transformation? Hint: While it is possible to write a matrix of this
linear transformation in some basis, compute characteristic polynomial,
and so on..., it is easier to find eigenvalues and eigenvectors directly from
the definition.

b) Can you do the same problem but in the space of n× n matrices?

2.14. Prove that two subspaces V1 and V2 are linearly independent if and only if
V1 ∩ V2 = {0}.





Chapter 5

Inner product spaces

1. Inner product in Rn and Cn. Inner product spaces.

1.1. Inner product and norm in Rn. In dimensions 2 and 3, we defined
the length of a vector x (i.e. the distance from its endpoint to the origin) by
the Pythagorean rule, for example in R2 the length of the vector is defined
as

‖x‖ =
√

x2
1 + x2

2 + x2
3.

It is natural to generalize this formula for all n, to define the norm of the
vector x ∈ Rn as

‖x‖ =
√

x2
1 + x2

2 + . . . + x2
n

The word norm is used as a fancy replacement to the word length.
The dot product in R3 was defined as x · y = x1y2 + x2y2 + x3y3, where

x = (x1, x2, x3)T and y = (y1, y2, y3)T .
Similarly, in Rn one can define the inner product (x,y) of two vectors While the notation

x · y and term “dot
product” is often
used for the inner
product, for the
reasons which will
be clear later, we
prefer the notation
(x,y)

x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T by

(x,y) := x1y1 + x2y2 + . . . + xnyn = yTx,

so ‖x‖ =
√

(x,x).

Note, that yTx = xTy, ad we use the notation yTx only to be consistent.

1.2. Inner product and norm in Cn. Let us now define norm and inner
product for Cn. As we have seen before, the complex space Cn is most
natural space from the point of view of spectral theory: even if one starts
from a matrix with real coefficients (or operator on a real vectors space),
the eigenvalues can be complex, and one needs to work in a complex space.(

2 1
3 1

)
109
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For a complex number z = x+ iy, we have |z|2 = x2 +y2 = zz. If z ∈ Cn

is given by

z =


z1

z2
...

zn

 =


x1 + iy1

x2 + iy2
...

xn + iyn

 ,

it is natural to define its norm ‖z‖ by

‖z‖2 =
n∑

k=1

(x2
k + y2

k) =
n∑

k=1

|zk|2.

Let us try to define an inner product on Cn such that ‖z‖2 = (z, z). One of
the choices is to define (z,w) by

(z,w) = z1w1 + z2w2 + . . . + znwn =
n∑

k=1

zkwk,

and that will be our definition of the inner product in Cn.
To simplify the notation, let us introduce a new notion. For a matrix

A let us define its Hermitian adjoint, or simply adjoint A∗ by A∗ = A
T ,

meaning that we take the transpose of the matrix, and then take the complex
conjugate of each entry. Note, that for a real matrix A, A∗ = AT .

Using the notion of A∗, one can write the inner product in Cn as

(z,w) = w∗z.

Remark. It is easy to see that one can define a different inner product in Cn such
that ‖z‖2 = (z, z), namely the inner product given by

(z,w)1 = z1w1 + z2w2 + . . . + znwn = z∗w.

We did not specify, what properties we want the inner product to satisfy, but z∗w
and w∗z are the only reasonable choices giving ‖z‖2 = (z, z).

Note, that the above two choices of the inner product are essentially equivalent:
the only difference between them is notational, because (z,w)1 = (w, z).

While the second choice of the inner product looks more natural, the first one,
(z,w) = w∗z is more widely used, so we will use it as well.

1.3. Inner product spaces. The inner product we defined for Rn and Cn

satisfies the following properties:

1. (Conjugate) symmetry: (x,y) = (y,x); note, that for a real space,
this property is just symmetry, (x,y) = (y,x);

2. Linearity: (αx + βy, z) = α(x, z) + β(y, z) for all vector x,y, z and
all scalars α, β;

3. Non-negativity: (x,x) ≥ 0 ∀x;
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4. Non-degeneracy: (x,x) = 0 if and only if x = 0.

Let V be a (complex or real) vector space. An inner product on V is a
function, that assign to each pair of vectors x, y a scalar, denoted by (x,y)
such that the properties 1–4 from the previous section are satisfied.

Note that for a real space V we assume that (x,y) is always real, and
for a complex space the inner product (x,y) can be complex.

A space V together with an inner product on it is called an inner product
space. Given an inner product space, one defines the norm on it by

‖x‖ =
√

(x,x).

1.3.1. Examples.

Example 1.1. Let V be Rn or Cn. We already have an inner product
(x,y) = y∗x =

∑n
k=1 xkyk defined above.

This inner product is called the standard inner product in Rn or Cn

We will use symbol F to denote both C and R. When we have some
statement about space Fn, it means the statement is true for both Rn and
Cn.

Example 1.2. Let V be the space Pn of polynomials of degree at most n.
Define the inner product by

(f, g) =
∫ 1

−1
f(t)g(t)dt.

It is easy to check, that the above properties 1–4 are satisfied.
This definition works both for complex and real cases. In the real case

we only allow polynomials with real coefficients, and we do not need the
complex conjugate here.

Let us recall, that for a square matrix A, its trace is defined as the sum
of the diagonal entries,

trace A :=
n∑

k=1

ak,k.

Example 1.3. For the space Mm×n of m × n matrices let us define the
so-called Frobenius inner product by

(A,B) = trace(B∗A).

Again, it is easy to check that the properties 1–4 are satisfied, i.e. that we
indeed defined an inner product.

Note, that
trace(B∗A) =

∑
j,k

Aj,kBj,k,
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so this inner product coincides with the standard inner product in Cmn.

1.4. Properties of inner product. The statements we get in this section
are true for any inner product space, not only for Fn. To prove them we use
only properties 1–4 of the inner product.

Firs of all let us notice, that properties 1 and 2 imply that

2′. (x, αy + βz) = α(x,y) + β(x, z).

Indeed,

(x, αy + βz) = (αy + βz,x) = α(y,x) + β(z,x) =

= α(y,x) + β (z,x) = α(x,y) + β(x, z)

Note also that the property 2 implies that for all vectors x

(0,x) = (x,0) = 0.

Lemma 1.4. Let x be a vector in an inner product space V . Then x = 0 if
and only if

(1.1) (x,y) = 0 ∀y ∈ V.

Proof. Since (0,y) = 0 we only need to show that (1.1) implies x = 0.
Putting y = x in (1.1) we get (x,x) = 0, so x = 0. �

Applying the above lemma to the difference x− y we get the following

Corollary 1.5. Let x,y be vectors in an inner product space V . The equality
x = y holds if and only if

(x, z) = (y, z) ∀z ∈ V.

The following corollary is very simple, but will be used a lot

Corollary 1.6. Suppose two operators A,B : X → Y satisfy

(Ax,y) = (Bx,y) ∀x ∈ X, ∀y ∈ Y.

Then A = B

Proof. By the previous corollary (fix x and take all possible ys) we get
Ax = Bx. Since this is true for all x ∈ X, the transformations A and B
coincide. �

The following property relates the norm and the inner product.

Theorem 1.7 (Cauchy–Schwarz inequality).

|(x,y)| ≤ ‖x‖ · ‖y‖.
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Proof. The proof we are going to present, is not the shortest one, but it
gives a lot for the understanding.

Let us consider the real case first. If y = 0, the statement is trivial, so
we can assume that y 6= 0. By the properties of an inner product, for all
scalar t

0 ≤ ‖x− ty‖2 = (x− ty,x− ty) = ‖x‖2 − 2t(x,y) + t2‖y‖2.

In particular, this inequality should hold for t = (x,y)
‖y‖2

1, and for this point
the inequality becomes

0 ≤ ‖x‖2 − 2
(x,y)2

‖y‖2
+

(x,y)2

‖y‖2
= ‖x‖2 − (x,y)2

‖y‖2
,

which is exactly the inequality we need to prove.
There are several possible ways to treat the complex case. One is to

replace x by αx, where α is a complex constant, |α| = 1 such that (αx,y)
is real, and then repeat the proof for the real case.

The other possibility is again to consider

0 ≤ ‖x− ty‖2 = (x− ty,x− ty) = (x,x− ty)− t(y,x− ty)

= ‖x‖2 − t(y,x)− t(x,y) + |t|2‖y‖2.

Substituting t = (x,y)
‖y‖2 = (y,x)

‖y‖2 into this inequality, we get

0 ≤ ‖x‖2 − |(x,y)|2

‖y‖2

which is the inequality we need.
Note, that the above paragraph is in fact a complete formal proof of the

theorem. The reasoning before that was only to explain why do we need to
pick this particular value of t. �

An immediate Corollary of the Cauchy–Schwarz Inequality is the follow-
ing lemma.

Lemma 1.8 (Triangle inequality). For any vectors x, y in an inner product
space

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof.

‖x + y‖2 = (x + y,x + y) = ‖x‖2 + ‖y‖2 + (x,y) + (y,x)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖ · ‖y‖ = (‖x‖+ ‖y‖)2.

1That is the point where the above quadratic polynomial has minimum: it can be computed,
for example by taking the derivative in t and equating it to 0
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�

The following polarization identities allow to reconstruct the inner prod-
uct from the norm:

Lemma 1.9 (Polarization identities). For x,y ∈ V

(x,y) =
1
4
(
‖x + y‖2 − ‖x− y‖2

)
if V is a real inner product space, and

(x,y) =
1
4

∑
α=±1,±i

α‖x + αy‖2

if V is a complex space.

The lemma is proved by direct computation. We leave the proof as an
exercise for the reader.

Another important property of the norm in an inner product space can
be also checked by direct calculation.

Lemma 1.10 (Parallelogram Identity). For any vectors u,v

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

In 2-dimensional space this lemma relates sides of a parallelogram with
its diagonals, which explains the name. It is a well-known fact from planar
geometry.

1.5. Norm. Normed spaces. We have proved before that the norm ‖v‖
satisfies the following properties:

1. Homogeneity: ‖αv‖ = |α| · ‖v‖ for all vectors v and all scalars α.
2. Triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖.
3. Non-negativity: ‖v‖ ≥ 0 for all vectors v.
4. Non-degeneracy: ‖v‖ = 0 if and only if v = 0.

Suppose in a vector space V we assigned to each vector v a number ‖v‖
such that above properties 1–4 are satisfied. Then we say that the function
v 7→ ‖v‖ is a norm. A vector space V equipped with a norm is called a
normed space.

Any inner product space is a normed space, because the norm ‖v‖ =√
(v,v) satisfies the above properties 1–4. However, there are many other

normed spaces. For example, given p, 1 < p < ∞ one can define the norm
‖ · ‖p on Rn or Cn by

‖x‖p = (|x1|p + |x2|p + . . . + ‖xn‖p)1/p =

(
n∑

k=1

|xk|p
)1/p

.
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One can also define the norm ‖ · ‖∞ (p = ∞) by

‖x‖∞ = max{|xk| : k = 1, 2, . . . , n}.
The norm ‖ · ‖p for p = 2 coincides with the regular norm obtained from
the inner product.

It is easy to check that the norm ‖ · ‖p satisfies all the above properties
1–4 except the triangle inequality. Triangle inequality is easy to check for
p = 1 and p = ∞ (and we proved it for p = 2).

For all other p the triangle inequality is true, but the proof is not so
simple: we will not present it here. The triangle inequality for ‖ · ‖p even has
special name: its called Minkowsky inequality, after German mathematician
H. Minkowsky.

Note, that the norm ‖ · ‖p for p 6= 2 cannot be obtained from an inner
product. It is easy to see that this norm is not obtained from the standard
inner product in Rn (Cn). But we claim more! We claim that it is impossible
to introduce an inner product which gives rise to the norm ‖ · ‖p, p 6= 2.

This statement is actually quite easy to prove. By Lemma 1.10 any
norm obtained from an inner must satisfy the Parallelogram Identity. And
it is easy to see that the Parallelogram Identity fails for the norm ‖ · ‖p,
p 6= 2: one can easily find a counterexample in R2, which then gives rise to
a counterexample in all other spaces.

In fact, the Parallelogram Identity, as the theorem below asserts com-
pletely characterises norms obtained from an inner product.

Theorem 1.11. A norm in a normed space is obtained from some inner
product if and only if it satisfies the Parallelogram Identity

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) ∀u,v ∈ V.

Lemma 1.10 asserts that a norm obtained from an inner product satisfies
the Parallelogram Identity.

The inverse implication is more complicated. If we are given a norm,
and this norm came from an inner product, then we do not have any choice:
this inner product must be given by the polarization identities, see Lemma
1.9. But we need to show, that (x,y) we got from the polarization identities
is indeed an inner product, i.e. that it satisfies all the properties. It is indeed
posible to check if the norm satisfies the parallelogram identity, but the proof
is a bit too involved, so we do not present it here.

Exercises.

1.1. Compute

(3 + 2i)(5− 3i),
2− 3i

1− 2i
, Re

(
2− 3i

1− 2i

)
, (1 + 2i)3, Im((1 + 2i)3)
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1.2. For vectors x = (1, 2i, 1 + i)T and y = (i, 2− i, 3)T compute

a) (x,y), ‖x‖2, ‖y‖2, ‖y‖.
b) (3x, 2iy), (2x, ix + 2y).

c) ‖x + 2y‖

Remark: After you have done part a), you can do parts b) and c) without actually
computing all vectors involved, just by using the properties of inner product.

1.3. Let ‖u‖ = 2, ‖v‖ = 3, (u,v) = 2 + i. Compute

‖u + v‖2, ‖u− v‖2, (u + v,u− iv), (u + 3iv, 4iu).

1.4. Prove that for vectors in a inner product space

‖x± y‖2 = ‖x‖2 + ‖y‖2 ± 2 Re(x,y)

Recall that Re z = 1
2 (z + z)

1.5. Explain why each of the following is not an inner product on a given vector
space;

a) (x,y) = x1y1 − x2y2 on R2.

b) (A,B) = trace(A + B) on the space of real 2× 2 matrices.

c) (f, g) =
∫ 1

0
f ′(t)g(t)dt on the space of polynomials; f ′(t) denotes derivative.

1.6 (Equality in Cauchy–Schwarz inequality). Prove that

|(x,y)| = ‖x‖ · ‖y‖

if and only if one of the vectors is a multiple of the other. Hint: analyze the proof
of Cauchy–Schwarz inequality.

1.7. Prove the parallelogram identity for an inner product space V ,

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

1.8. Let v1,v2, . . . ,vn be a spanning set (in particular a basis) in an inner product
space V . Prove that

a) If (x,v) = 0 for all v ∈ V , then x = 0.

b) If (x,vk) = 0 ∀k, then x = 0.

c) If (x− y,vk) = 0 ∀k, then x = y

1.9. Consider space R2 with the norm ‖ · ‖p, introduced in Section 1.5. For
p = 1, 2,∞ draw the “unit ball” Bp in the norm ‖ · ‖p

Bp := {x ∈ R2 : ‖x‖p ≤ 1}.

Can you guess how the balls Bp for other p look like?
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2. Orthogonality. Orthogonal and orthonormal bases.

Definition 2.1. Two vectors u and v are called orthogonal (also perpen-
dicular) if (u,v) = 0. We will write u ⊥ v to say that the vectors are
orthogonal.

Note, that for orthogonal vectors u and v we have the following Pythagorean
identity:

‖u + v‖2 = ‖u‖2 + ‖v‖2 if u ⊥ v.

The proof is straightforward computation,

‖u + v‖2 = (u + v,u + v) = (u,u) + (v,v) + (u,v) + (v,u) = ‖u‖2 + ‖v‖2

((u,v) = (v,u) = 0 because of orthogonality).

Definition 2.2. We say that a vector v is orthogonal to a subspace E if v
is orthogonal to all vectors w in E.

And we say that subspaces E and F are orthogonal if all vectors in E
are orthogonal to F , i.e. all vectors in E are orthogonal to all vectors in F

The following lemma shows how to check that a vector is orthogonal to
a subspace.

Lemma 2.3. Let E be spanned by vectors v1,v2, . . . ,vr. Then v ⊥ E if
and only if

v ⊥ vk, ∀k = 1, 2, . . . , r.

Proof. By the definition, if v ⊥ E then v is orthogonal to all vectors in E.
In particular, v ⊥ vk, k = 1, 2, . . . , r.

On the other hand, let v ⊥ vk, k = 1, 2, . . . , r. Since the vectors vk span
E, any vector w ∈ E can be represented as a linear combination

∑r
k=1 αkvk.

Then

(v,w) =
r∑

k=1

αk(v,vk) = 0,

so v ⊥ w. �

Definition 2.4. A system of vectors v1,v2, . . . ,vn is called orthogonal if
any two vectors are orthogonal to each other (i.e. if (vj ,vk) = 0 for j 6= k).

If, in addition ‖vk‖ = 1 for all k, we call the system orthonormal.

Lemma 2.5 (Generalized Pythagorean identity). Let v1,v2, . . . ,vn be an
orthogonal system. Then∥∥∥∥∥

n∑
k=1

αkvk

∥∥∥∥∥
2

=
n∑

k=1

|αk|2‖vk‖2
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This formula looks particularly simple for orthonormal systems, where
‖vk‖ = 1.

Proof of the Lemma.∥∥∥∥∥
n∑

k=1

αkvk

∥∥∥∥∥
2

=
( n∑

k=1

αkvk,
n∑

j=1

αjvj

)
=

n∑
k=1

n∑
j=1

αkαj(vk,vj).

Because of orthogonality vk,vj) = 0 if j 6= k. Therefore we only need to
sum the terms with j = k, which gives exactly

n∑
k=1

|αk|2(vk,vk) =
n∑

k=1

|αk|2‖vk‖2.

�

Corollary 2.6. Any orthogonal system v1,v2, . . . ,vn of non-zero vectors is
linearly independent.

Proof. Let for some α1, α2, . . . , αn we have
∑n

k=1 αkvk = 0. Then by the
Generalized Pythagorean identity (Lemma 2.5)

0 = ‖0‖2 =
n∑

k=1

|αk|2‖vk‖2.

Since ‖vk‖ 6= 0 (vk 6= 0) we conclude that

αk = 0 ∀k,

so only the trivial linear combination gives 0. �

Remark. In what follows we will usually mean by an orthogonal system an
orthogonal system of non-zero vectors. Since zero vector 0 is orthogonal to
everything, it always can be added to any orthogonal system, but it really
not interesting to consider orthogonal systems with zero vectors.

2.1. Orthogonal and orthonormal bases.

Definition 2.7. An orthogonal (orthonormal) system v1,v2, . . . ,vn which
is also a basis is called an orthogonal (orthonormal) basis.

It is clear that in dim V = then any orthogonal system of n non-zero
vectors is an orthogonal basis.

As we studied before, to fund coordinates of a vector in a basis one needs
to solve a linear system. However for an orthogonal basis finding coordinates
of a vector is much easier. Namely, suppose v1,v2, . . . ,vn be an orthogonal
basis, and let

x = α1v1 + α2v2 + . . . + αnvn =
n∑

j=1

αjvj .
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Taking inner product of both sides of the equation with v1 we get

(x,v1) =
n∑

j=1

αj(vj ,v1) = α1(v1,v1) = α1‖v1‖2

(all inner products (vj ,v1) = 0 if j 6= 1), so

α1 =
(x,v1)
‖v1‖2

.

Similarly, multiplying both sides by vk we get

(x,vk) =
n∑

j=1

αj(vj ,vk) = αk(vk,vk) = αk‖vk‖2

so

(2.1) αk =
(x,vk)
‖vk‖2

.

Therefore,

to find coordinates of a vector in an orthogonal basis one does not
need to solve a linear system, the coordinates are determined by
the formula (2.1)

This formula is especially simple for orthonormal bases, when ‖vk‖ = 1.

Exercises.

2.1. Find the set of all vectors in R4 orthogonal to vectors (1, 1, 1, 1)T and (1, 2, 3, 4)T .

2.2. Let A be a real m× n matrix. Describe (RanAT )⊥, (RanA)⊥

2.3. Let v1,v2, . . . ,vn be an orthonormal basis in V .

a) Prove that for any x =
∑n

k=1 αkvk, y =
∑∞

k=1 βkvk

(x,y) =
n∑

k=1

αkβk.

b) Deduce from this the Parseval’s identity

(x,y) =
n∑

k=1

(x,vk)(y,vk)

c) Assume now that v1,v2, . . . ,vn is only orthogonal basis, not orthonormal.
Can you write down the Parseval’s identity in this case?

2.4. Let A be a real m × n matrix. Describe the set of all vectors orthogonal to
RanAT , and the set of all vectors orthogonal to RanA.

2.5. Find the orthogonal projection of a vector (1, 1, 1, 1)T onto the subspace
spanned by the vectors v1 = (1, 3, 1, 1)T and v2 = (2,−1, 1, 0)T (note that v1 ⊥ v2).
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2.6. Find the distance from a vector (1, 2, 3, 4) to the subspace spanned by the
vectors v1 = (1,−1, 1, 0)T and v2 = (1, 2, 1, 1)T (note that v1 ⊥ v2). Can you find
the distance without actually computing the projection? That would simplify the
calculations.

2.7. True or false: if E is a subspace of V , then dim E+dim(E⊥) = dim V ? Justify.

2.8. Let P be the orthogonal projection onto subspace E of an inner product space
V , dim V = n, dim E = r. Find eigenvalues, eigenvectors (eigenspaces). Find
algebraic and geometric multiplicities of each eigenvalue.

2.9. a) Find the matrix of the orthogonal projection onto one-dimensional
subspace in Rn spanned by the vector (1, 1, . . . , 1)T .

b) Let A be the n×n matrix with all entries equal 1. Compute its eigenvalues
and their multiplicities (use previous problem).

c) Compute eigenvalues (and multiplicities) of the matrix A − I, i.e. of the
matrix with zeroes on the main diagonal and ones everywhere else.

d) Compute det(A− I).

3. Orthogonal projection and Gram-Schmidt
orthogonalization

Recalling the definition of orthogonal projection from the classical planar
(2-dimensional) geometry, one can introduce the following definition. Let E
be a subspace of an inner product space V .

Definition 3.1. For a vector v its orthogonal projection PEv onto the
subspace E is a vector w such that

1. w ∈ E ;
2. v −w ⊥ E.

We will use notation w = PEv for the orthogonal projection.

After introducing an object, it is natural to ask:

1. Does the object exist?
2. Is the object unique?
3. How to find it?

We will show first that the projection is unique. Then we present a
method of finding the projection, proving its existence.

The following theorem shows why the orthogonal projection is important
and also proves that it is unique.

Theorem 3.2. The orthogonal projection w = PEv minimizes the distance
from v to E, i.e. for all x ∈ E

‖v −w‖ ≤ ‖v − x‖.
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Moreover, if for some x ∈ E

‖v −w‖ = ‖v − x‖,

then x = v.

Proof. Let y = w − x. Then

v − x = v −w + w − x = v −w + y.

Since v −w ⊥ E we have y ⊥ v −w and so by Pythagorean Theorem

‖v − x‖2 = ‖v −w‖2 + ‖y‖2 ≥ ‖v −w‖2.

Note that equality happens only if y = 0 i.e. if x = w. �

The following proposition shows how to find an orthogonal projection if
we know an orthogonal basis in E.

Proposition 3.3. Let v1,v2, . . . ,vr be an orthogonal basis in E. Then the
orthogonal projection PEv of a vector v is given by the formula

P
E
v =

r∑
k=1

αkvk, where αk =
(v,vk)
‖vk‖2

.

In other words

(3.1) P
E
v =

r∑
k=1

(v,vk)
‖vk‖2

vk.

Note that the formula for αk coincides with (2.1), i.e. this formula for
an orthogonal system (not a basis) give us a projection onto its span.

Remark 3.4. It is easy to see now from formula (3.1) that the orthogonal
projection P

E
is a linear transformation.

One can also see linearity of P
E

directly, from the definition and unique-
ness of the orthogonal projection. Indeed, it is easy to check that for any x
and y the vector αx + βy− (αP

E
x− βP

E
y) is orthogonal to any vector in

E, so by the definition P
E

(αx + βy) = αP
E
x− βP

E
y.

Remark 3.5. Recalling the definition of inner product in Cn and Rn one
can get from the above formula (3.1) the matrix of the orthogonal projection
P

E
onto E in Cn (Rn) is given by

(3.2) P
E

=
r∑

k=1

1
‖vk‖2

vkv∗k

where columns v1,v2, . . . ,vr form an orthogonal basis in E.
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Proof of Proposition 3.3. Let

w :=
r∑

k=1

αkvk, where αk =
(v,vk)
‖vk‖2

.

We want to show that v − w ⊥ E. By Lemma 2.3 it is sufficient to show
that v − w ⊥ vk, k = 1, 2, . . . , n. Computing inner product we get for
k = 1, 2, . . . , r

(v −w,vk) = (v,vk)− (w,vk) = (v,vk)−
r∑

j=1

αj(vj ,vk)

= (v,vk)− αk(vk,vk) =
(v,vk)
‖vk‖2

‖vk‖2 = 0.

�

So, if we know an orthogonal basis in E we can find the orthogonal
projection onto E. In particular, since any system consisting of one vector
is an orthogonal system, we know how to perform orthogonal projection
onto one-dimensional spaces.

But how to find an orthogonal projection if we are only given a ba-
sis in E? Fortunately, there exists a simple algorithm allowing to get an
orthogonal basis from a basis.

3.1. Gram-Schmidt orthogonalization algorithm. Suppose we have
a linearly independent system x1,x2, . . . ,xn. The Gram-Schmidt method
constructs from this system an orthogonal system v1,v2, . . . ,vn such that

span{x1,x2, . . . ,xn} = span{v1,v2, . . . ,vn}.
Moreover, for all r ≤ n we get

span{x1,x2, . . . ,xr} = span{v1,v2, . . . ,vr}

Now let us describe the algorithm.
Step 1. Put v1 := x1. Denote by E1 := span{x1} = span{v1}.
Step 2. Define v2 by

v2 = x2 − PE1x2 = x2 −
(x2,v1)
‖v1‖2

v1.

Define E2 = span{v1,v2}. Note that span{x1,x2} = E2.
Step 3. Define v3 by

v3 := x3 − PE2x3 = x3 −
(x3,v1)
‖v1‖2

v1 −
(x3,v2)
‖v2‖2

v2

Put E3 := span{v1,v2,v3}. Note that span{x1,x2,x3} = E3. Note also
that x3 /∈ E2 so v3 6= 0.
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. . .
Step r + 1. Suppose that we already made r steps of the process, con-

structing an orthogonal system (consisting of non-zero vectors) v1,v2, . . . ,vr

such that Er := span{v1,v2, . . . ,vr} = span{x1,x2, . . . ,xr}. Define

vr+1 := xr+1 − PErxr+1 = xr+1 −
r∑

k=1

(xr+1,vk)
‖vk‖2

vk

Note,that xr+1 /∈ Er so vr+1 6= 0.
. . .
Continuing this algorithm we get an orthogonal system v1,v2, . . . ,vn.

3.2. An example. Suppose we are given vectors

x1 = (1, 1, 1)T , x2 = (0, 1, 2)T , x3 = (1, 0, 2)T ,

and we want to orthogonalize it by Gram-Schmidt. On the first step define

v1 = x1 = (1, 1, 1)T .

On the second step we get

v2 = x2 − PE1x2 = x2 −
(x2,v1)
‖v1‖2

.

Computing

(x2,v1) =
( 0

1
2

 ,

 1
1
1

) = 3, ‖v1‖2 = 3,

we get

v2 =

 0
1
2

− 3
3

 1
1
1

 =

 −1
0
1

 .

And finally, define

v3 = x3 − PE2x3 = x3 −
(x3,v1)
‖v1‖2

v1 −
(x3,v2)
‖v2‖2

v2.

Computing

( 1
0
2

 ,

 1
1
1

) = 3,
( 1

0
2

 ,

 −1
0
1

) = 1, ‖v1‖2 = 3, ‖v2‖2 = 2

(‖v1‖2 was already computed before) we get

v3 =

 1
0
2

− 3
3

 1
1
1

− 1
2

 −1
0
1

 =

 1
2
−1
1
2


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Remark. Since the multiplication by a scalar does not change the orthog-
onality, one can multiply vectors vk obtained by Gram-Schmidt by any
non-zero numbers.

In particular, in many theoretical constructions one normalizes vectors
vk by dividing them by their respective norms ‖vk‖. Then the resulting
system will be orthonormal, and the formulas will look simpler.

On the other hand, when performing the computations one may want
to avoid fractional entries by multiplying a vector by the least common
denominator of its entries. Thus one may want to replace the vector v3

from the above example by (1,−2, 1)T .

3.3. Orthogonal complement. Decomposition V = E ⊕ E⊥.

Definition. For a subspace E its orthogonal complement E⊥ is the set of
all vectors orthogonal to E,

E⊥ := {x : x ⊥ E}.

If x,y ⊥ E then for any linear combination αx + βy ⊥ E (can you see
why?). Therefore E⊥ is a subspace.

By the definition of orthogonal projection any vector in an inner product
space V admits a unique representation

v = v1 + v2, v1 ∈ E, v2 ⊥ E (eqv. v2 ∈ E⊥)

(where clearly v1 = P
E
v).

This statement is often symbolically written as V = E ⊕ E⊥, which
mean exactly that any vector admits the unique decomposition above.

The following proposition gives an important property of the orthogonal
complement.

Proposition 3.6. For a subspace E

(E⊥)⊥ = E.

The proof is left as an exercise, see Exercise 3.7 below.

Exercises.

3.1. Apply Gram–Schmidt orthogonalization to the system of vectors (1, 2,−2)T ,
(1,−1, 4)T , (2, 1, 1)T

3.2. Apply Gram–Schmidt orthogonalization to the system of vectors (1, 2, 3)T ,
(1, 3, 1)T . Write the matrix of orthogonal projection onto 2-dimensional subspace
spanned by these vectors.
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3.3. Complete an orthogonal system obtained in the previous problem to an or-
thogonal basis in R3, i.e. add to the system some vectors (how many?) to get an
orthogonal basis.

Can you describe how to complete an orthogonal system to an orthogonal basis
in general situation of Rn or Cn?

3.4. Find the distance from a vector (2, 3, 1)T to the subspace spanned by the
vectors (1, 2, 3)T , (1, 3, 1)T . Note, that I am only asking to find the distance to the
subspace, not the orthogonal projection.

3.5 (Legendre’s polynomials:). Let inner product on the space of polynomials be
defined by (f, g) =

∫ 1

−1
f(t)g(t)dt. Apply Gram-Schmidt orthogonalization to the

system 1, t, t2, t3.

Legendre’s polynomials are particular case of the so-called orthogonal polyno-
mials, which play an important role in many branches of mathematics.

3.6. Let P = PE be the matrix of an orthogonal projection onto a subspace E.
Show that

a) The matrix P is self-adjoint, meaning that P ∗ = P .
b) P 2 = P .

Remark: above 2 properties completely characterize orthogonal projection, i.e. any
matrix P satisfying these properties is the matrix of some orthogonal projection.
We will discuss this some time later.

3.7. Show that for a subspace E we have (E⊥)⊥ = E. Hint: It is easy to see
that E is orthogonal to E⊥ (why?). To show that any vector x orthogonal to E⊥

belongs to E use the decomposition V = E ⊕ E⊥ from Section 3.3 above.

3.8. Suppose P is the orthogonal projection onto a subspace E, and Q is the
orthogonal projection onto the orthogonal complement E⊥.

a) Wnat are P + Q and PQ?
b) Show that P −Q is its own inverse.
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4. Least square solution. Formula for the orthogonal
projection

As it was discussed before in Chapter 2, the equation

Ax = b

has a solution if and only if b ∈ RanA. But what to do if we want to solve
an equation that does not have a solution?

This seems to be a silly question, because if there is no solution, then
there is no solution. But situations when we want to solve an equation that
does not have a solution can appear naturally, for example, if we obtained
the equation from an experiment. If we do not have any errors, the right side
b belongs to the column space Ran A, and equation is consistent. But in
real life it is impossible to avoid errors in measurements, so it is possible that
an equation that in theory should be consistent, does not have a solution.
So, what one can do in this situation?

4.1. Least square solution. The simplest idea is to write down the error

‖Ax− b‖

and try to find x minimizing it. If we can find x such that the error is 0,
the system is consistent and we have exact solution. Otherwise, we get the
so-called least square solution.

The term least square arises from the fact that minimizing ‖Ax− b‖ is
equivalent to minimizing

‖Ax− b‖2 =
m∑

k=1

|(Ax)k − bk|2 =
m∑

k=1

∣∣∣ n∑
j=1

Ak,jxj − bk

∣∣∣2
i.e. to minimizing the sum of squares of linear functions.

There are several ways to find the least square solution. If we are in
Rn, and everything is real, we can forget about absolute values. Then we
can just take partial derivatives with respect to xj and find the where all of
them are 0, which gives us minimum.
4.1.1. Geometric approach. However, there is a simpler way of finding the
minimum. Namely, if we take all possible vectors x, then Ax gives us all
possible vectors in RanA, so minimum of ‖Ax− b‖ is exactly the distance
from b to Ran A. Therefore the value of ‖Ax− b‖ is minimal if and only if
Ax = PRan Ab, where PRan A stands for the orthogonal projection onto the
column space Ran A.

So, to find the least square solution we simply need to solve the equation

Ax = PRan Ab.
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If we know an orthogonal basis v1,v2, . . . ,vn in RanA, we can find vector
PRan Ab by the formula

PRan Ab =
n∑

k=1

(b,vk)
‖vk‖2

vk.

If we only know a basis in RanA, we need to use the Gram–Schmidt orthog-
onalization to obtain an orthogonal basis from it.

So, theoretically, the problem is solved, but the solution is not very
simple: it involves Gram–Schmidt orthogonalization, which can be compu-
tationally intensive. Fortunately, there exists a simpler solution.
4.1.2. Normal equation. Namely, Ax is the orthogonal projection PRan Ab
if and only if b−Ax ⊥ RanA (Ax ∈ RanA for all x).

If a1,a2, . . . ,an are columns of A, then the condition Ax ⊥ RanA can
be rewritten as

b−Ax ⊥ ak, ∀k = 1, 2, . . . , n.

That means

0 = (b−Ax,ak) = a∗k(b−Ax) ∀k = 1, 2, . . . , n.

Joining rows a∗k together we get that these equations are equivalent to

A∗(b−Ax) = 0,

which in turn is equivalent to the so-called normal equation

A∗Ax = A∗b.

A solution of this equation gives us the least square solution of Ax = b.
Note, that the least square solution is unique if and only if A∗A is

invertible.

4.2. Formula for the orthogonal projection. As we already discussed
above, if x is a solution of the normal equation A∗Ax = A∗b (i.e. a least
square solution of Ax = b), then Ax = PRan Ab. So, to find the orthogonal
projection of b onto the column space RanA we need to solve the normal
equation A∗Ax = A∗b, and then multiply the solution by A.

If operator A∗A is invertible, the solution of the normal equation A∗Ax =
A∗b is given by x = (A∗A)−1A∗b, so the orthogonal projection PRan Ab can
be computed as

PRan Ab = A(A∗A)−1A∗b.

Since this is true for all b,

PRan A = A(A∗A)−1A∗

is the formula for the matrix of the orthogonal projection onto RanA.
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The following theorem implies that for an m × n matrix A the matrix
A∗A is invertible if and only if rankA = n.

Theorem 4.1. For an m× n matrix A

Ker A = Ker(A∗A).

Indeed, according to the rank theorem KerA = {0} if and only rank A
is n. Therefore Ker(A∗A) = {0} if and only if rank A = n. Since the matrix
A∗A is square, it is invertible if and only if rank A = n.

We leave the proof of the theorem as an exercise. To prove the equality
Ker A = Ker(A∗A) one needs to prove two inclusions Ker(A∗A) ⊂ Ker A
and KerA ⊂ Ker(A∗A). One of the inclusion is trivial, for the other one use
the fact that

‖Ax‖2 = (Ax, Ax) = (A∗Ax,x).

4.3. An example: line fitting. Let us introduce few examples where the
least square solution appears naturally. Suppose that we know that two
quantities x and y are related by the law y = a + bx. The coefficients a and
b are unknown, and we would like to find them from an experiment data.

Suppose we run the experiment n times, and we got n pairs (xk, yk),
k = 1, 2, . . . , n. Ideally, all the points (xk, yk) should be on a straight line,
but because of errors in measurements, it usually does not happen: the point
are usually close to some line, but not exactly on it. And that is where the
least square solution helps!

Ideally, the coefficients a and b should satisfy the equations

a + bxk = yk, k = 1, 2, . . . , n

(note that here, xk and yk are some fixed numbers, and the unknowns are
a and b). If it is possible to find such a and b we are lucky: if not, the
standard thing to do, is to minimize the total quadratic error

n∑
k=1

|a + bxk − yk|2.

But minimizing this error is exactly finding the least square solution of the
system 

1 x1

1 x2
...

...
1 xn


[

a
b

]
=


y1

y2
...

yn


(let us remind, that xk yk are some given numbers, and the unknowns are
a and b).
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4.3.1. An example. Suppose our data (xk, yk) consist of pairs

(−2, 4), (−1, 2), (0, 1), (2, 1), (3, 1).

Then we need to find the least square solution of
1 −2
1 −1
1 0
1 2
1 3


[

a
b

]
=


4
2
1
1
1


Then

A∗A =
(

1 1 1 1 1
−2 −1 0 2 3

)
1 −2
1 −1
1 0
1 2
1 3

 =
(

5 2
2 18

)

and

A∗b =
(

1 1 1 1 1
−2 −1 0 2 3

)
4
2
1
1
1

 =
(

9
−5

)

so the normal equation A∗Ax = A∗b is rewritten as(
5 2
2 18

)(
a
b

)
=
(

9
−5

)
.

The solution of this equation is

a = 2, b = −1/2,

so the best fitting straight line is

y = 2− 1/2x.

4.4. Other examples: curves and planes. The least square method is
not limited to the line fitting: it can be applied to more general curves, as
well as to surfaces in higher dimensions.

The only constrain here is that the parameters we want to find be in-
volved linearly. The general algorithm is as follows:

1. Find the equations that your data should satisfy if there is exact fit;
2. Write these equations as a linear system, where unknowns are the

parameters you want to find. Note, that the system need not to be
consistent (and usually is not);

3. Find the least square solution of the system.
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4.4.1. An example: curve fitting. For example, suppose we know that the
relation between x and y is given by the quadratic law y = a + bx + cx2, so
we want to fit a parabola y = a + bx + cx2 to the data. Then our unknowns
a, b, c should satisfy the equations

a + bxk + cx2
k = yk, k = 1, 2, . . . , n

or, in matrix form 
1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n


 a

b
c

 =


y1

y2
...

yn


For example, for the data from the previous example we need to find the
least square solution of

1 −2 4
1 −1 1
1 0 0
1 2 4
1 3 9


 a

b
c

 =


4
2
1
1
1

 .

Then

A∗A =

 1 1 1 1 1
−2 −1 0 2 3
4 1 0 4 9




1 −2 4
1 −1 1
1 0 0
1 2 4
1 3 9

 =

 5 2 18
2 18 26
18 26 114


and

A∗b =

 1 1 1 1 1
−2 −1 0 2 3
4 1 0 4 9




4
2
1
1
1

 =

 9
−5
31

 .

Therefore the normal equation A∗Ax = A∗b is 5 2 18
2 18 26
18 26 114

 a
b
c

 =

 9
−5
31


which has the unique solution

a = 86/77, b = −62/77, c = 43/154.

Therefore,
y = 86/77− 62x/77 + 43x2/154

is the best fitting parabola.
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4.4.2. Plane fitting. As another example, let us fit a plane z = a + bx + cy
to the data

(xk, yk, zk) ∈ R3, k = 1, 2, . . . n.

The equations we should have in the case of exact fit are

a + bxk + cyk = zk, k = 1, 2, . . . , n,

or, in the matrix form
1 x1 y1

1 x2 y2
...

...
...

1 xn yn


 a

b
c

 =


z1

z2
...

zn

 .

So, to find the best fitting plane, we need to find the best square solution of
this system (unknowns are a, b, c).

Exercises.

4.1. Find least square solution of the system 1 0
0 1
1 1

x =

 1
1
0


4.2. Find the matrix of the orthogonal projection P onto the column space of 1 1

2 −1
−2 4

 .

Use two methods: Gram–Schmidt orthogonalization and formula for the projection.
Compare the results.

4.3. Find the best straight line fit (least square solution) to the points (−2, 4),
(−1, 3), (0, 1), (2, 0).

4.4. Fit a plane z = a + bx + cy to four points (1, 1, 3), (0, 3, 6), (2, 1, 5), (0, 0, 0).
To do that

a) Find 4 equations with 3 unknowns a, b, c such that the plane pass through
all 4 points (This system does not have to have a solution)

b) Find the least square solution of the system

5. Fundamental subspaces revisited.

5.1. Adjoint matrices and adjoint operators. Let as recall that for
an m × n matrix A its Hermitian adjoint (or simply adjoint) A∗ is defined
by A∗ := AT . In other words. matrix A∗ is obtained from the transposed
matrix AT by taking complex conjugate of each entry.
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The following identity is the main property of adjoint matrix:

(Ax,y) = (x, A∗y) ∀x,y ∈ V.

Before proving this identity, let us introduce some useful formulas. Let us
recall that for transposed matrices we have the identity (AB)T = BT AT .
Since for complex numbers z and w we have zw = z w, the identity

(AB)∗ = B∗A∗

holds for the adjoint.
Also, since (AT )T = A and z = z,

(A∗)∗ = A.

Now, we are ready to prove the main identity:

(Ax,y) = y∗Ax = (A∗y)∗x = (x, A∗y);

the first and the last equalities here follow from the definition of inner prod-
uct in Fn, and the middle one follows from the fact that

(A∗x)∗ = x∗(A∗)∗ = x∗A.

5.1.1. Uniqueness of the adjoint. The above main identity (Ax,y)
= (x, A∗y) is often used as the definition of the adjoint operator. Let us
first notice that the adjoint operator is unique: if a matrix B satisfies

(Ax,y) = (x, By) ∀x,y,

then B = A∗. Indeed, by the definition of A∗

(x, A∗y) = (x, By) ∀x

and therefore by Corollary 1.5 A∗y = By. Since it is true for all y, the
linear transformations, and therefore the matrices A∗ and B coincide.
5.1.2. Adjoint transformation in abstract setting. The above main identity
(Ax,y) = (x, A∗y) can be used to define the adjoint operator in abstract
setting, where A : V → W is an operator acting from one inner product
space to another. Namely, we define A∗ : W → V be the operator satisfying

(Ax,y) = (x, A∗y) ∀x ∈ V, ∀y ∈ W.

Why does such an operator exists? We can simply construct it: consider
orthonormal bases A = v1,v2, . . . ,vn in V and B = w1,w2, . . . ,wm in W .
If [A]BA is the matrix of A with respect to these bases, we define the operator
A∗ by defining its matrix [A∗]AB as

[A∗]AB = ([A]BA)∗.

We leave the proof that this indeed gives the adjoint operator as an exercise
for the reader.
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Note, that the reasoning in the above Sect. 5.1.1 implies that the adjoint
operator is unique.
5.1.3. Useful formulas. Below we present the properties of the adjoint op-
erators (matrices) we will use a lot. We leave the proofs as an exercise for
the reader.

1. (A + B)∗ = A∗ + B∗;
2. (αA)∗ = αA∗;
3. (AB)∗ = B∗A∗;
4. (A∗)∗ = A;
5. (y, Ax) = (A∗y,x).

5.2. Relation between fundamental subspaces.

Theorem 5.1. Let A : V → W be an operator acting from one inner product
space to another. Then

1. KerA∗ = (RanA)⊥;
2. KerA = (RanA∗)⊥;
3. Ran A = (KerA∗)⊥;
4. Ran A∗ = (KerA)⊥.

Proof. First of all, let us notice, that since for a subspace E we have
(E⊥)⊥ = E, the statements 1 and 3 are equivalent. Similarly, for the same
reason, the statements 2 and 4 are equivalent as well. And finally, the state-
ment 2 in exactly the statement 1 applied to the operator A∗ (here we use
the fact that (A∗)∗ = A).

So, to prove the theorem we only need to prove the statement 1.
We will present 2 proofs of this statement: a “matrix” proof, and an

“invariant”, or “coordinate-free” one.
In the “matrix” proof, we assume that A is an m × n matrix, i.e. that

A : Fn → Fm. The general case can be always reduced to this one by
picking orthonormal bases in V and W , and considering the matrix of A in
this bases.

Let a1,a2, . . . ,an be the columns of A. Note, that x ∈ (RanA)⊥ if and
only if x ⊥ ak (i.e. (x,ak) = 0) ∀k = 1, 2, . . . , n.

By the definition of the inner product in Fn, that means

0 = (x,ak) = a∗k x ∀k = 1, 2, . . . , n.

Since a∗k is the row number k of A∗, the above n equalities are equivalent to
the equation

A∗x = 0.
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So, we proved that x ∈ (RanA)⊥ if and only if A∗x = 0, and that is exactly
the statement 1.

Now, let us present the “coordinate-free” proof. The inclusion x ∈
(RanA)⊥ means that x is orthogonal to all vectors of the form Ay, i.e. that

(x, Ay) = 0 ∀y.

Since (x, Ay) = (A∗x,y), the last identity is equivalent to

(A∗x,y) = 0 ∀y,

and by Lemma 1.4 this happens if and only if A∗x = 0. So we proved that
x ∈ (RanA)⊥ if and only if A∗x = 0, which is exactly the statement 1 of
the theorem. �

The above theorem makes the structure of the operator A and the geom-
etry of fundamental subspaces much more transparent. It follows from this
theorem that the operator A can be represented as a composition of orthog-
onal projection onto RanA∗ and an isomorphism from RanA∗ to Ran A.

Exercises.

5.1. Show that for a square matrix A the equality det(A∗) = det(A) holds.

5.2. Find matrices of orthogonal projections onto all 4 fundamental subspaces of
the matrix

A =

 1 1 1
1 3 2
2 4 3

 .

Note, that really you need only to compute 2 of the projections. If you pick appro-
priate 2, the other 2 are easy to obtain from them (recall, how the projections onto
E and E⊥ are related)

5.3. Let A be an m× n matrix. Show that KerA = Ker(A∗A).
To do that you need to prove 2 inclusions, Ker(A∗A) ⊂ KerA and KerA ⊂

Ker(A∗A). One of the inclusions is trivial, for the other one use the fact that

‖Ax‖2 = (Ax, Ax) = (A∗Ax,x).

5.4. Use the equality KerA = Ker(A∗A) to prove that

a) rankA = rank(A∗A)

b) If Ax = 0 has only trivial solution, A is left invertible. (You can just write
a formula for a left inverse)

5.5. Suppose, that for a matrix A the matrix A∗A is invertible, so the orthogonal
projection onto RanA is given by the formula A(A∗A)−1A∗. Can you write formulas
for the orthogonal projections onto other 3 fundamental subspaces (KerA, KerA∗,
RanA∗)?
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5.6. Let a matrix P be self-adjoint (P ∗ = P ) and let P 2 = P . Show that P is the
matrix of an orthogonal projection. Hint: consider the decomposition x = x1 +x2,
x1 ∈ RanP , x2 ⊥ RanP and show that Px1 = x1, Px2 = 0. For one of the
equalities you will need self-adjointness, for the other one the property P 2 = P .

6. Isometries and unitary operators. Unitary and orthogonal
matrices.

6.1. Main definitions.

Definition. An operator U : X → Y is called an isometry, if it preserves
the norm,

‖Ux‖ = ‖x‖ ∀x ∈ X.

The following theorem shows that an isometry preserves the inner prod-
uct

Theorem 6.1. An operator U : X → Y is an isometry if and only if it
preserves the inner product, i.e if and only if

(x,y) = (Ux, Uy) ∀x,y ∈ X.

Proof. The proof uses polarization identities (Lemma 1.9). For example, if
X is a complex space

(Ux, Uy) =
1
4

∑
α=±1,±i

α‖Ux + αUy‖2

=
1
4

∑
α=±1,±i

α‖U(x + αy)‖2

=
1
4

∑
α=±1,±i

α‖x + αy‖2 = (x,y).

Similarly, for a real space X

(Ux, Uy) =
1
4
(
‖Ux + Uy‖2 − ‖Ux− Uy‖2

)
=

1
4
(
‖U(x + y)‖2 − ‖U(x− y)‖2

)
=

1
4
(
‖x + y‖2 − ‖x− y‖2

)
= (x,y).

�

Lemma 6.2. An operator U : X → Y is an isometry if and only if U∗U = I.

Proof. By the definitions of the isometry and of the adjoint operator

(x,y) = (Ux, Uy) = (U∗Ux,y) ∀x,y ∈ X.
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Therefore, if U∗U = I, we have (x,y) = (Ux, Uy) and therefore U is an
isometry.

On the other hand, if U is an isometry, then for all x ∈ X

(U∗Ux,y) = (x,y) ∀y ∈ X,

and therefore by Corollary 1.5 U∗Ux = x. Since it is true for all x ∈ X, we
have U∗U = I. �

The above lemma implies that an isometry is always left invertible (U∗

being a left inverse).

Definition. An isometry U : X → Y is called a unitary operator if it is
invertible.

Proposition 6.3. An isometry U : X → Y is a unitary operator if and
only if dim X = dim Y .

Proof. Since U is an isometry, it is left invertible, and since dim X = dim Y ,
it is invertible (a left invertible square matrix is invertible).

On the other hand, if U : X → Y is invertible, dim X = dim Y (only
square matrices are invertible, isomorphic spaces have equal dimensions).

�

A square matrix U is called unitary if U∗U = I, i.e. a unitary matrix is
a matrix of a unitary operator acting in Fn.

A unitary matrix with real entries is called an orthogonal matrix. In
other words, an orthogonal matrix is a matrix of a unitary operator acting
in the real space Rn.

Few properties of unitary operators:

1. For a unitary transformation U , U−1 = U∗;

2. If U is unitary, U∗ = U−1 is also unitary;

3. If U is a isometry, and v1,v2, . . . ,vn is an orthonormal basis, then
Uv1, Uv2, . . . , Uvn is an orthonormal system. Moreover, if U is
unitary, Uv1, Uv2, . . . , Uvn is an orthonormal basis.

4. A product of unitary operators is a unitary operator as well.

6.2. Examples. First of all, let us notice, that

a matrix U is an isometry if and only if its columns form an or-
thonormal system.

This statement can be checked directly by computing the product U∗U .
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It is easy to check that the columns of the rotation matrix(
cos α − sinα
sinα cos α

)
are orthogonal to each other, and that each column has norm 1. Therefore,
the rotation matrix is an isometry, and since it is square, it is unitary. Since
all entries of the rotation matrix are real, it is an orthogonal matrix.

The next example is more abstract. Let X and Y be inner product
spaces, dim X = dim Y = n, and let x1,x2, . . . ,xn and y1,y2, . . . ,yn be
orthonormal bases in X and Y respectively. Define an operator U : X → Y
by

Uxk = yk, k = 1, 2, . . . , n.

Since for a vector x = c1x1 + c2x2 + . . . + cnxn

‖x‖2 = |c1|2 + |c2|2 + . . . + |cn|2

and

‖Ux‖2 = ‖U(
n∑

k=1

ckxk)‖2 = ‖
n∑

k=1

ckxk‖2 =
n∑

k=1

|ck|2,

one can conclude that ‖Ux‖ = ‖x‖ for all x ∈ X, so U is a unitary operator.

6.3. Properties of unitary operators.

Proposition 6.4. Let U be a unitary matrix. Then

1. |det U | = 1. In particular, for an orthogonal matrix det U = ±1;

2. If λ is an eigenvalue of U , then |λ| = 1

Remark. Note, that for an orthogonal matrix, an eigenvalue (unlike the
determinant) does not have to be real. Our old friend, the rotation matrix
gives an example.

Proof of Proposition 6.4. Let detU = z. Since det(U∗) = det(U), see
Problem 5.1, we have

|z|2 = zz = det(U∗U) = detI = 1,

so |det U | = |z| = 1. Statement 1 is proved.
To prove statement 2 let us notice that if Ux = λx then

‖Ux‖ = ‖λx‖ = |λ| · ‖x‖,

so |λ| = 1. �
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6.4. Unitary equivalent operators.

Definition. Operators (matrices) A and B are called unitarily equivalent if
there exists a unitary operator U such that A = UBU∗.

Since for a unitary U we have U−1 = U∗, any two unitary equivalent
matrices are similar as well.

Converse is not true, it is easy to construct a pair of similar matrices,
which are not unitarily equivalent.

The following proposition gives a way to construct a counterexample

Proposition 6.5. A matrix A is unitarily equivalent to a diagonal one if
and only if it has an orthogonal (orthonormal) basis of eigenvectors.

Proof. Let A = UBU∗ and let Ax = λx. Then BUx = UAU∗Ux =
UAx = U(λx) = λUx, i.e. Ux is an eigenvector of B.

So, let A be unitarily equivalent to a diagonal matrix D, i.e. let D =
UAU∗. The vectors ek of the standard basis are eigenvectors of D, so
the vectors Uek are eigenvectors of A. Since U is unitary, the system
Ue1, Ue2, . . . , Uen is an orthonormal basis.

Let now A has an orthogonal basis u1,u2, . . . ,un of eigenvectors. Di-
viding each vector uk by its norm if necessary, we can always assume that
the system u1,u2, . . . ,un is an orthonormal basis. Let D be the matrix of
A in the basis B = u1,u2, . . . ,un. Clearly, D is a diagonal matrix.

Denote by U the matrix with columns u1,u2, . . . ,un. Since the columns
form an orthonormal basis, U is unitary. The standard change of coordinate
formula implies

A = [A]SS = [I]SB [A]BB [I]BS = UDU−1

and since U is unitary, A = UDU∗. �

Exercises.

6.1. Orthogonally diagonalize the following matrices,(
1 2
2 1

)
,

(
0 −1
1 0

)
,

 0 2 2
2 0 2
2 2 0


i.e. for each matrix A find a unitary matrix U and a diagonal matrix D such that
A = UDU∗

6.2. Prove the polarization identities

(Ax,y) =
1
4
[
(A(x + y),x + y)− (A(x− y),x− y)

]
(real case, A = A∗)
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and

(Ax,y) =
1
4

∑
α=±1,±i

α(A(x + αy),x + αy) (complex case, A is arbitrary)

6.3. Show that a product of unitary (orthogonal) matrices is unitary (orthogonal)
as well.

6.4. Let U : X → X be a linear transformation on a finite-dimensional inner
product space. True or false:

a) If ‖Ux‖ = ‖x‖ for all x ∈ X, then U is unitary.
b) If ‖Uek‖ = ‖ek‖, k = 1, 2 . . . , n for some orthonormal basis e1, e2, . . . , en,

then U is unitary.

Justify your answers with a proof or a counterexample.

6.5. Let A and B be unitarily equivalent n× n matrices.

a) Prove that trace(A∗A) = trace(B∗B).
b) Use a) to prove that

n∑
j,k=1

|Aj,k|2 =
n∑

j,k=1

|Bj,k|2.

c) Use b) to prove that the matrices(
1 2
2 i

)
and

(
i 4
1 1

)
are not unitarily equivalent.

6.6. Which of the following pairs of matrices are unitarily equivalent:

a)
(

1 0
0 1

)
and

(
0 1
1 0

)
.

b)
(

0 1
1 0

)
and

(
0 1/2
1/2 0

)
.

c)

 0 1 0
−1 0 0

0 0 1

 and

 2 0 0
0 −1 0
0 0 0

.

d)

 0 1 0
−1 0 0

0 0 1

 and

 1 0 0
0 −i 0
0 0 i

.

e)

 1 1 0
0 2 2
0 0 3

 and

 1 0 0
0 2 0
0 0 3

.

Hint: It is easy to eliminate matrices that are not unitarily equivalent: remember,
that unitarily equivalent matrices are similar, and trace, determinant and eigenval-
ues of similar matrices coincide.

Also, the previous problem helps in eliminating non unitarily equivalent matri-
ces.
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And finally, matrix is unitarily equivalent to a diagonal one if and only if it has
an orthogonal basis of eigenvectors.

6.7. Let U be a 2×2 orthogonal matrix with det U = 1. Prove that U is a rotation
matrix.

6.8. Let U be a 3× 3 orthogonal matrix with det U = 1. Prove that

a) 1 is an eigenvalue of U ;
b) If v1,v2,v3 is an orthonormal basis, such that Uv1 = v1 (remember, that

1 is an eigenvalue), then in this basis the matrix of U is 1 0 0
0 cos α − sinα
0 sinα cos α

 ,

where α is some angle.
Hint: Show, that since v1 is an eigenvector of U , all entries below 1

must be zero, and since v1 is also an eigenvector of U∗ (why?), all entries
right of 1 also must be zero. Then show that the lower right 2× 2 matrix
is an orthogonal one with determinant 1, and use the previous problem.



Chapter 6

Structure of operators
in inner product
spaces.

In this chapter we again assuming that all spaces are finite-dimensional

1. Upper triangular (Schur) representation of an operator.

Theorem 1.1. Let A : X → X be an operator acting in a complex inner
product space. There exists an orthonormal basis u1,u2, . . . ,un in X such
that the matrix of A in this basis is upper triangular.

In other words, any n × n matrix A can be represented as T = UTU∗,
where U is a unitary, and T is an upper triangular matrix.

Proof. We prove the theorem using the induction in dim X. If dim X = 1
the theorem is trivial, since any 1× 1 matrix is upper triangular.

Suppose we proved that the theorem is true if dim X = n − 1, and we
want to prove it for dim X = n.

Let λ1 be an eigenvalue of A, and let u1, ‖u1‖ = 1 be a corresponding
eigenvector, Au1 = λ1u1. Denote E = u⊥1 , and let v2, . . . ,vn be some
orthonormal basis in E (clearly, dim E = dim X−1 = n−1), so u1,v2, . . . ,vn

141



142 6. Structure of operators in inner product spaces.

is an orthonormal basis in X. In this basis the matrix of A has the form

(1.1)


λ1 ∗
0
... A1

0

 ;

here all entries below λ1 are zeroes, and ∗ means that we do not care what
entries are in the first row right of λ1.

We do care enough about the lower left (n− 1)× (n− 1) block, to give
it name: we denote it as A1.

Note, that A1 defines a linear transformation in E, and since dim E =
n − 1, the induction hypothesis implies that there exists an orthonormal
basis (let us denote is as u2, . . . ,un) in which the matrix of A1 is upper
triangular.

So, matrix of A in the orthonormal basis u1,u2, . . . ,un has the form
(1.1), where matrix A1 is upper triangular. Therefore, the matrix of A in
this basis is upper triangular as well. �

Remark. Note, that the subspace E = u⊥1 introduced in the proof is not invariant
under A, i.e. the inclusion AE ⊂ E does not necessarily holds. That means that
A1 is not a part of A, it is some operator constructed from A.

Note also, that AE ⊂ E if and only if all entries denoted by ∗ (i.e. all entries
in the first row, except λ1) are zero.

Remark. Note, that even if we start from a real matrix A, the matrices U
and T can have complex entries. The rotation matrix(

cos α − sinα
sinα cos α

)
, α 6= kπ, k ∈ Z

is not unitarily equivalent (not even similar) to a real upper triangular ma-
trix. Indeed, eigenvalues of this matrix are complex, and the eigenvalues of
an upper triangular matrix are its diagonal entries.

The following theorem is a real-valued version of Theorem 1.1

Theorem 1.2. Let A : X → X be an operator acting in a real inner
product space. Suppose that all eigenvalues of A are real. Then there exists
an orthonormal basis u1,u2, . . . ,un in X such that the matrix of A in this
basis is upper triangular.

In other words, any real n × n matrix A can be represented as T =
UTU∗ = UTUT , where U is an orthogonal, and T is a real upper triangular
matrices.
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Proof. To prove the theorem we just need to analyze the proof of Theorem
1.1. Let us assume (we can always do that without loss of generality, that
the operator (matrix) A acts in Rn.

Suppose, the theorem is true for (n − 1) × (n − 1) matrices. As in the
proof of Theorem 1.1 let λ1 be a real eigenvalue of A, u1 ∈ Rn, ‖u1‖ = 1 be
a corresponding eigenvector, and let v2, . . . ,vn be on orthonormal system
(in Rn) such that u1,v2, . . . ,vn is an orthonormal basis in Rn.

The matrix of A in this basis has form (1.1), where A1 is some real
matrix.

If we can prove that matrix A1 has only real eigenvalues, then we are
done. Indeed, then by induction hypothesis there exists an orthonormal
basis u2, . . . ,un in E = u⊥1 such that the matrix of A1 in this basis is
upper triangular, so the matrix of A in the basis u1,u2, . . . ,un is also upper
triangular.

To show that A1 has only real eigenvalues, let us notice that

det(A− λI) = (λ1 − λ) det(A1 − λ)

(take the cofactor expansion in the first row, for example), and so any eigen-
value of A1 is also an eigenvalue of A. But A has only real eigenvalues! �

2. Spectral theorem for self-adjoint and normal operators.

In this section we deal with matrices (operators) which are unitarily equiv-
alent to diagonal matrices.

Let u recall that an operator is called self-adjoint if A = A∗.

Theorem 2.1. Let A = A∗ be a self-adjoint operator in an inner product
space X (the space can be complex or real). Then all eigenvalues of A are
real, and there exists and orthonormal basis of eigenvectors of A in X.

This theorem can be restated in matrix form as follows

Theorem 2.2. Let A = A∗ be a self-adjoint (and therefore square) matrix.
Then A can be represented as

A = UDU∗,

where U is a unitary matrix and D is a diagonal matrix with real entries.
Moreover, if the matrix A is real, matrix U can be chosen to be real

(i.e. orthogonal).

Proof. To prove Theorems 2.1 and 2.2 let us first apply Theorem 1.1 (The-
orem 1.2 if X is a real space) to find an orthonormal basis in X such that
the matrix of A in this basis is upper triangular. And now let us ask ourself
the question: what upper triangular matrices are self-adjoint?
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The answer is immediate: an upper triangular matrix is self-adjoint if
and only if it is a diagonal matrix with real entries. Theorem 2.1 (and so
Theorem 2.2) is proved. �

Let us give an independent proof to the fact that eigenvalues of a self-
adjoint operators are real. Let A = A∗ and Ax = λx, x 6= 0. Then

(Ax,x) = (λx,x) = λ(x,x) = λ‖x‖2.

On the other hand,

(Ax,x) = (x, A∗x) = (x, Ax) = (x, λx) = λ(x,x) = λ‖x‖2,

so λ‖x‖2 = λ‖x‖2. Since ‖x‖ 6= 0 (x 6= 0), we can conclude λ = λ, so λ is
real.

It also follows from Theorem 2.1 that eigenspaces of a self-adjoint oper-
ator are orthogonal. Let us give an alternative proof of this result.

Proposition 2.3. Let A = A∗ be a self-adjoint operator, and let u,v be its
eigenvectors, Au = λu, Av = λv. Then, if λ 6= µ, the eigenvectors u and
v are orthogonal.

Proof. This proposition follows from the spectral theorem (Theorem 1.1),
but here we are giving a direct proof. Namely,

(Au,v) = (λu,v) = λ(u,v).

On the other hand

(Au,v) = (u, A∗v) = (u, Av) = (u, µv) = µ(u,v) = µ(u,v)

(the last equality holds because eigenvalues of a self-adjoint operator are
real), so λ(u,v) = µ(u,v). If λ 6= µ it is possible only if (u,v) = 0. �

Now let us try to find what matrices are unitarily equivalent to a diagonal
one. It is easy to check that for a diagonal matrix D

D∗D = DD∗.

Therefore A∗A = AA∗ if the matrix of A in some orthonormal basis is
diagonal.

Definition. An operator (matrix) N is called normal if N∗N = NN∗.

Clearly, any self-adjoint operator (A∗A = AA∗) is normal. Also, any
unitary operator U : X → X is normal since U∗U = UU∗ = I.

Note, that a normal operator is an operator acting in one space, not from one
space to another. So, if U is a unitary operator acting from one space to another,
we cannot say that U is normal.
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Theorem 2.4. Any normal operator N in a complex vector space has an
orthonormal basis of eigenvectors.

In other words, any matrix N satisfying N∗N = NN∗ can be represented
as

N = UDU∗,

where U is a unitary matrix, and D is a diagonal one.

Remark. Note, that in the above theorem even if N is a real matrix, we
did not claim that matrices U and D are real. Moreover, it can be easily
shown, that if D is real, N must be self-adjoint.

Proof of Theorem 2.4. To prove Theorem 2.4 we apply Theorem 1.1 to
get an orthonormal basis, such that the matrix of N in this basis is upper
triangular. To complete the proof of the theorem we only need to show that
an upper triangular normal matrix must be diagonal.

We will prove this using induction in the dimension of matrix. The case
of 1× 1 matrix is trivial, since any 1× 1 matrix is diagonal.

Suppose we have proved that any (n − 1) × (n − 1) upper triangular
normal matrix is diagonal, and we want to prove it for n× n matrices. Let
N be n× n upper triangular normal matrix. We can write it as

N =


a1,1 a1,2 . . . a1,n

0
... N1

0


where N1 is an upper triangular (n− 1)× (n− 1) matrix.

Let us compare upper left entries (firs row first column) of N∗N and
NN∗. Direct computation shows that that

(N∗N)1,1 = a1,1a1,1 = |a1,1|2

and

(NN∗)1,1 = |a1,1|2 + |a1,2|2 + . . . + |a1,n|2.

So, (N∗N)1,1 = (NN∗)1,1 if and only if a1,2 = . . . = a1,n = 0. Therefore,
the matrix N has the form

N =


a1,1 0 . . . 0
0
... N1

0


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It follows from the above representation that

N∗N =


|a1,1|2 0 . . . 0

0
... N∗

1 N1

0

 , NN∗ =


|a1,1|2 0 . . . 0

0
... N1N

∗
1

0


so N∗

1 N1 = N1N
∗
1 . That means the matrix N1 is also normal, and by the

induction hypothesis it is diagonal. So the matrix N is also diagonal. �

The following proposition gives a very useful characterization of normal
operators.

Proposition 2.5. An operator N : X → X is normal if and only if

‖Nx‖ = ‖N∗x‖ ∀x ∈ X.

Proof. Let N be normal, N∗N = NN∗. Then

‖Nx‖2 = (Nx, Nx) = (N∗Nx,x) = (NN∗x,x) = (N∗x, N∗x) = ‖N∗x‖2

so ‖Nx‖ = ‖N∗x‖.
Let now

‖Nx‖ = ‖N∗x‖ ∀x ∈ X.

Polarization identities (Lemma 1.9 in Chapter 5) imply that for all x,y ∈ X

(N∗Nx,y) = (Nx, Ny) =
∑

α=±1,±i

α‖Nx + αNy‖2

=
∑

α=±1,±i

α‖N(x + αy)‖2

=
∑

α=±1,±i

α‖N∗(x + αy)‖2

=
∑

α=±1,±i

α‖N∗x + αN∗y‖2

= (N∗x, N∗y) = (NN∗x,y)

and therefore (see Corollary 1.6) N∗N = NN∗. �

Exercises.

2.1. True or false: a matrix is unitarily equivalent to a diagonal one if and only if
it has an orthogonal basis of eigenvectors.

2.2. Orthogonally diagonalize the matrix,

A =
(

3 2
2 3

)
.

Find all square roots of A, i.e. find all matrices B such that B2 = A.
Note, that all square roots of A are self-adjoint.
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2.3. True or false: any self-adjoint matrix has a sel-adjoint square root. Justify.

2.4. True or false:

a) A product of two self-adjoint matrices is self-adjoint.
b) If A is self-adjoint, then Ak is self-adjoint.

Justify your conclusions

2.5. Let A be m× n matrix. Prove that

a) A∗A is self-adjoint.
b) All eigenvalues of A∗A are non-negative.
c) A∗A + I is invertible.

2.6. Give a proof if the statement is true, or give a counterexample if it is false;

a) If A = A∗ then A + iI is invertible.
b) If U is unitary, U + 3

4I is invertible
c) If a matrix A is real, A− iI is invertible

3. Polar and singular value decompositions.

3.1. Positive definite operators. Square roots.

Definition. A self adjoint operator A : X → X is called positive definite if

(Ax,x) > 0 ∀x 6= 0,

and it is called positive semidefinite if

(Ax,x) ≥ 0 ∀x ∈ X.

We will use the notation A > 0 for positive definite operators, and A ≥ 0
for positive semi-definite.

The following theorem describes positive definite and semidefinite oper-
ators.

Theorem 3.1. Let A = A∗. Then

1. A > 0 if and only if all eigenvalues of A are positive.

2. A ≥ 0 if and only if all eigenvalues of A are non-negative.

Proof. Pick an orthonormal basis such that matrix of A in this basis is
diagonal (see Theorem 2.1). To finish the proof it remains to notice that a
diagonal matrix is positive definite (positive semidefinite) if and only if all
its diagonal entries are positive (non-negative). �

Corollary 3.2. Let A = A∗ ≥ 0 be a positive semidefinite operator. There
exists a unique positive semidefinite operator B such that B2 = A
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Such B is called (positive) square root of A and is denoted as
√

A or
A1/2.

Proof. Let us prove that
√

A exists. Let v1,v2, . . . ,vn be an orthonor-
mal basis of eigenvectors of A, and let λ1, λ2, . . . , λn be the corresponding
eigenvalues. Note, that since A ≥ 0, all λk ≥ 0.

In the basis v1,v2, . . . ,vn the matrix of A is a diagonal matrix
diag{λ1, λ2, . . . , λn} with entries λ1, λ2, . . . , λn on the diagonal. Define the
matrix of B in the same basis as diag{

√
λ1,

√
λ2, . . . ,

√
λn}.

Clearly, B = B∗ ≥ 0 and B2 = A.
To prove that such B is unique, let us suppose that there exists an op-

erator C = C∗ ≥ 0 such that C2 = A. Let u1,u2, . . . ,un be an orthonormal
basis of eigenvalues of C, and let µ1, µ2, . . . , µn be the corresponding eigen-
values (note that µk ≥ 0 ∀k). The matrix of C in the basis u1,u2, . . . ,un

is a diagonal one diag{µ1, µ2, . . . , µn}, and therefore the matrix of A = C2

in the same basis is diag{µ2
1, µ

2
2, . . . , µ

2
n}. This implies that any eigenvalue

λ of A is of form µ2
k, and, moreover, if Ax = λx, then Cx =

√
λx.

Therefore in the basis v1,v2, . . . ,vn above, the matrix of C has the
diagonal form diag{

√
λ1,

√
λ2, . . . ,

√
λn}, i.e. B = C. �

3.2. Modulus of an operator. Singular values. Consider an operator
A : X → Y . Its Hermitian square A∗A is a positive semidefinite operator
acting in X. Indeed,

(A∗A)∗ = A∗A∗∗ = A∗A

and
(A∗Ax,x) = (Ax, Ax) = ‖Ax‖2 ≥ 0 ∀x ∈ X.

Therefore, there exists a (unique) positive-semidefinite square root R =√
A∗A. This operator R is called the modulus of the operator A, and is

often denoted as |A|.
The modulus of A shows how “big” the operator A is:

Proposition 3.3. For a linear operator A : X → Y

‖|A|x‖ = ‖Ax‖ ∀x ∈ X.

Proof. For any x ∈ X

‖|A|x‖2 = (|A|x, |A|x) = (|A|∗|A|x,x) = (|A|2x,x)

= (A∗Ax,x) = (Ax, Ax) = ‖Ax‖2

�

Corollary 3.4.
Ker A = Ker |A| = (Ran |A|)⊥.
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Proof. The first equality follows immediately from Proposition 3.3, the sec-
ond one follows from the identity Ker T = (RanT ∗)⊥ (|A| is self-adjoint). �

Theorem 3.5 (Polar decomposition of an operator). Let A : X → X be an
operator (square matrix). Then A can be represented as

A = U |A|,

where U is a unitary operator.

Remark. The unitary operator U is generally not unique. As one will see
from the proof of the theorem, U is unique if and only if A is invertible.

Remark. The polar decomposition A = U |A| also holds for operators A :
X → Y acting from one space to another. But in this case we can only
guarantee that U is an isometry from Ran |A| = (KerA)⊥ to Y .

If dim X ≤ dim Y this isometry can be extended to the isometry from
the whole X to Y (if dim X = dim Y this will be a unitary operator).

Proof of Theorem 3.5. Consider a vector x ∈ Ran |A|. Then vector x
can be represented as x = |A|v for some vector v ∈ X.

Define U0x := Av. By Proposition 3.3

‖U0x‖ = ‖Av‖ = ‖|A|v‖ = ‖x‖

so it looks like U is an isometry from Ran |A| to X.
But first we need to prove that U0 is well defined. Let v1 be another

vector such that x = |A|v1. But x = |A|v = |A|v1 means that v − v1 ∈
Ker |A| = Ker A (cf Corollary 3.4), so Av = Av1, meaning that U0x is well
defined.

By the construction A = U0|A|. We leave as an exercise for the reader
to check that U0 is a linear transformation.

To extend U0 to a unitary operator U , let us find some unitary transfor-
mation U1 : KerA → (RanA)⊥ = KerA∗. It is always possible to do, since
for square matrices dim KerA = dim Ker A∗ (the Rank Theorem).

It is easy to check that U = U0 + U1 is a unitary operator, and that
A = U |A|. �

3.3. Singular values. Singular value decomposition.

Definition. Eigenvalues of |A| are called the singular values of A. In other
words, if λ1, λ2, . . . , λn are eigenvalues of A∗A, then

√
λ1,

√
λ2, . . . ,

√
λn are

singular values of A.

Consider an operator A : X → Y , and let σ1, σ2, . . . , σr be the non-
zero singular values of A, counting multiplicities. That means σ2

1, σ
2
2, . . . , σ

2
r
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are eigenvalues of A∗A, and let v1,v2, . . . ,vr be an orthonormal basis of
eigenvectors of A∗A, A∗Avk = σ2

kvk.

Proposition 3.6. The system

wk :=
1
σk

Avk, k = 1, 2, . . . , r

is an orthonormal system.

Proof.

(Avj , Avk) = (A∗Avj ,vk) = (σ2
jvj ,vk) = σ2

j (vj ,vk) =
{

0, j 6= k
σ2

j , j = k

since v1,v2, . . . ,vr is an orthonormal system. �

In the notation of the above proposition, the operator A can be repre-
sented as

(3.1) A =
r∑

k=1

σkwkv∗k,

or, equivalently

(3.2) Ax =
r∑

k=1

σk(x,vk)wk.

Indeed, let vr+1, . . . ,vn be an orthonormal basis in KerA = Ker |A| =
Ker A∗A, so v1,v2, . . . ,vn is an orthonormal basis in X. Then

r∑
k=1

σkwkv∗kvj = σjwjv∗jvj = σjwj = Avj if j = 1, 2, . . . , r,

and
r∑

k=1

σkwkv∗kvj = 0 = Avj for j > r.

So the operators in the left and right sides of (3.1) coincide on the basis
v1,v2, . . . ,vn, so they are equal.

Definition. The above decomposition (3.1) (or (3.2)) is called the singular
value decomposition of the operator A

Remark. Singular value decomposition is not unique. Why?

Lemma 3.7. Let A can be represented as

A =
r∑

k=1

σkwkv∗k

where σk > 0 and v1,v2, . . . ,vr, w1,w2, . . . ,wr are some orthonormal sys-
tems.
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Then this representation gives a singular value decomposition of A.

Proof. We only need to show that vk are eigenvalues of A∗A, A∗Avk =
σ2

kvk. Since v1,v2, . . . ,vr is an orthonormal system,

w∗
kwj = (wj ,wk) = δk,j :=

{
0, j 6= k
1, j = k,

and therefore

A∗A =
r∑

k=1

σ2
kvkv∗k.

Since v1,v2, . . . ,vr is an orthonormal system

A∗Avj =
r∑

k=1

σ2
kvkv∗kvj = σ2

jvj

thus vk are eigenvectors of A∗A. �

Corollary 3.8. Let

A =
r∑

k=1

σkwkv∗k

be a singular value decomposition of A. Then

A∗ =
r∑

k=1

σkvkw∗
k

is a singular value decomposition of A∗

3.4. Matrix representation of the singular value decomposition.
The singular value decomposition can be written in a nice matrix form. It
is especially easy to do if the operator A is invertible. In this case dim X =
dim Y = n, and the operator A has n non-zero singular values (counting
multiplicities), so the singular value decomposition has the form

A =
n∑

k=1

σkwkv∗k

where v1,v2, . . . ,vn and w1,w2, . . . ,wn are orthonormal bases in X and Y
respectively. It can be rewritten as

A = WΣV ∗,

where Σ = diag{σ1, σ2, . . . , σn} and V and W are unitary matrices with
columns v1,v2, . . . ,vn and w1,w2, . . . ,wn respectively.
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Such representation can be written even if A is not invertible. Let us
first consider the case dim X = dim Y = n, and let σ1, σ2, . . . , σr, r < n be
non-zero singular values of A. Let

A =
r∑

k=1

σkwkv∗k

be a singular value decomposition of A. To represent A as WΣV let us
complete the systems {vk}r

k=1, {wk}r
k=1 to orthonormal bases. Namely, let

vr+1, . . . ,vn and wr+1, . . . ,wn be an orthonormal bases in Ker A = Ker |A|
and (RanA)⊥ respectively. Then v1,v2, . . . ,vn and w1,w2, . . . ,wn are or-
thonormal bases in X and Y respectively and A can be represented as

A = WΣV ∗,

where Σ is n × n diagonal matrix diag{σ1, . . . , σr, 0, . . . , 0}, and V , W are
n × n unitary matrices with columns v1,v2, . . . ,vn and w1,w2, . . . ,wn re-
spectively.

Remark 3.9. Another way to interpret singular value decomposition A =
WΣV ∗ is to say that Σ is the matrix of A in the (orthonormal) bases A =
v1,v2, . . . ,vn and B := w1,w2, . . . ,wn, i.e that Σ = [A]B,A .

We will use this interpretation later.

3.4.1. From singular value decomposition to the polar decomposition. Note,
that if we know the singular value decomposition A = WΣV ∗ of a square
matrix A, we can write a polar decomposition of A:

A = WΣV ∗ = (WV ∗)(V ΣV ∗) = U |A|

so |A| = V ΣV ∗ and U = WV ∗.
3.4.2. General matrix form of the singular value decomposition. In the gen-
eral case when dim X = n, dim Y = m (i.e. A is an m×n matrix), the above
representation A = WΣV ∗ is also possible. Namely, if

A =
r∑

k=1

σkwkv∗k

is a singular value decomposition of A, we need to complete the systems
v1,v2, . . . ,vr and w1,w2, . . . ,wr to orthonormal bases in X and Y respec-
tively. Then A can be represented as

(3.3) A = WΣV ∗,

where V ∈ Mn×n and W ∈ Mm×m are unitary matrices with columns
v1,v2, . . . ,vn and w1,w2, . . . ,wm respectively, and Σ is a “diagonal” m×n
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matrix

(3.4) Σj,k =
{

σk j = k ≤ r :
0 otherwise.

In other words, to get the matrix Σ one has to take the diagonal matrix
diag{σ1, σ2, . . . , σr} and make it to an m×n matrix by adding extra zeroes
“south and east”.

Exercises.

3.1. Show that the number of non-zero singular values of a matrix A coincides with
its rank. Hint: invertible transformations do not change dimensions.

4. What singular values tell us about?

As we discussed above, the singular value decomposition is simply diago-
nalization with respect to two different orthonormal bases. Since we have
two different bases here, we cannot say much about spectral properties of an
operator from its singular value deomposition. For example, the diagonal
entries of Σ in the singular value decomposition (3.4) are not the eigenvalues
of A. Note, that for A = WΣV ∗ as in (3.4) we generally have An 6= WΣnV ∗,
so this diagonalization does not help us in computing functions of a matrix.

However, as the examples below show, singular values tell us a lot about
so-called metric properties of a linear transformation.

Final remark: performing singular value decomposition requires finding
eigenvalues and eigenvectors of the Hermitian (self-adjoint) matrix A∗A. To
find eigenvalues we usually computed characteristic polynomial, found its
roots, and so on... This looks like quite complicated process, epsecially if one
takes into account that there is no formula for finding roots of polynomials
of degree 5 and higher.

However, there are very effective numerical methods of find eigenvalues
and eigenvectors of a hermitian matrix up to any given precision. These
methods do not involve computing the charactristic polynomial and finding
its roots: they compute approximate eigenvalues and eigenvectors directly
by an iterative procedure. Because a Hermitian matrix has orthogonal basis
of eigenvectors, these methods work extremely well.

We will not discuss these methods here, it goes beyond the scope of this
book. However, you should belive me that that there are very effective nu-
merical methods for computing eiegnvalues and eigenvectors of a Hermitian
matrix and for finding the singular value decomposition. These methods are
extremely effective, and just a little more computantionally intensive than
solving a linear system.
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4.1. Image of the unit ball. Consider for example the following problem:
let A : Rn → Rm be a linear transformation, and let B = {x ∈ Rn : ‖x‖ ≤ 1}
be the closed unit ball in Rn. We want to describe A(B), i.e. we want to
find out how the unit ball is transformed under the linear transformation.

Let us first consider the simplest case when A is a diagonal matrix A =
diag{σ1, σ2, . . . , σn}, σk > 0, k = 1, 2, . . . , n. Then for v = (x1, x2, . . . , xn)T

and (y1, y2, . . . , yn)T = y = Ax we have yk = σkxk (equivalently, xk =
yk/σk) for k = 1, 2, . . . , n, so

y = (y1, y2, . . . , yn)T = Ax for ‖x‖ ≤ 1,

if and only if the coordinates y1, y2, . . . , yn satisfy the inequality

y2
1

σ2
1

+
y2
2

σ2
2

+ · · ·+ y2
n

σ2
n

=
n∑

k=1

y2
k

σ2
k

≤ 1

(this is simply the inequality ‖x‖2 =
∑

k |xk|2 ≤ 1).
The set of points in Rn satisfying the above inequalities is called an el-

lipsoid. If n = 2 it is an ellipse with half-axes σ1 and σ2, for n = 3 it is
an ellipsoid with half-axes σ1, σ2 and σ2. In Rn the geometry of this set
is also easy to visualize, and we call that set an ellipsoid with half axes
σ1, σ2, . . . , σn. The vectors e1, e2, . . . , en or, more precisely the correspond-
ing lines are called the principal axes of the ellipsoid.

The singular value decomposition essentially says that any operator in an
inner product space is diagonal with respect to a pair of orthonormal bases,
see Remark 3.9. Namely consider orthogonal bases A = v1,v2, . . . ,vn and
B = w1,w2, . . . ,wn from the singular value decomposition. Then the matrix
of A in these bases is diagonal

[A]B,A = diag{σn : n = 1, 2, . . . , n}.

Assuming that all σk > 0 and essentially repeating the above reasoning, it
is easy to show that any point y = Ax ∈ A(B) if and only if it satisfies the
inequality

y2
1

σ2
1

+
y2
2

σ2
2

+ · · ·+ y2
n

σ2
n

=
n∑

k=1

y2
k

σ2
k

≤ 1.

where y1, y2, . . . , yn are coordinates of y in the orthonormal basis B =
w1,w2, . . . ,wn, not in the standard one. Similarly, (x1, x2, . . . , xn)T = [x]A .

But that is essentially the same ellipsoid as before, only “rotated” (with
different but still orthogonal principal axes)!

There is also an alternative explanation we will present below.
Consider general case, when the matrix A is not necessarily square,

and (or) not all singular values are non-zero. Consider first the case of a
“diagonal” matrix Σ of form (3.4). It is easy to see that the image ΣB of
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the unit ball B is the ellipsoid (not in the whole space but in the RanΣ)
with half axes σ1, σ2, . . . , σr.

Consider now general case, A = WΣV ∗, where V , W are unitary op-
erators. Unitary transformations do not change the unit ball (because the
preserve norm), so V ∗(B) = B. We know that Σ(B) is an ellipsoid in RanΣ
with half-axes σ1, σ2, . . . , σr. Unitary transformations do not change geom-
etry of objects, so W (Σ(B)) is also an ellipsoid with the same half-axes. It
is not hard to see from the decomposition A = WΣV ∗ (using the fact that
both W and V ∗ are invertible) that W transforms RanΣ to RanA, so we
can conclude:

the image A(B) of the closed unit ball B is an ellipsoid in Ran A
with half axes σ1, σ2, . . . , σr. Here r is the number of non-zero
singular values, i.e. the rank of A.

4.2. Operator norm of a linear transformation. Given a linear trans-
formation A : X → Y let us consider the following optimization problem:
find maximum of ‖Ax‖ on the closed unit ball B = {x ∈ X : ‖x ≤ 1}.

Again, singular value decomposition allows us to solve the problem. For
a diagonal matrix A with non-negative entries the maximum is exactly max-
imal diagonal entry. Indeed, let s1, s2, . . . , sr be non-zero diagonal entries of
A and let s1 be the maximal one. Since

(4.1) Ax =
r∑

k=1

xkek,

we can conclude that

‖Ax‖ ≤
r∑

k=1

s2
k|xk|2 ≤ s2

1

r∑
k=1

|xk|2 = s1
1 · ‖x‖2,

so ‖Ax‖ ≤ s1‖x‖. On the other hand, ‖Ae1‖ = ‖s1e1‖ = s1‖e1‖, so indeed
s1 is the maximum of ‖Ax‖ on the closed unit ball B. Note, that in the
above reasoning we did not assume that the matrix A is square: we only
assumed that all entries outside the “main diagonal” are 0, so formula (4.1)
holds.

To treat general case let us consider singular value decomposition (3.4),
A = WΣV , where W , V are unitary operators, and Σ is the diagonal matrix
with non-negative entries. Since unitary transformations do not change the
norm, one can conclude that the maximum of ‖Ax‖ on the unit ball B is
the maximal diagonal entry of Σ i.e. that

the maximum of ‖Ax‖ on the unit ball B is the maximal singular
value of A
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Definition. The quantity max{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1} is called the oper-
ator norm of A and denoted ‖A‖.

It is an easy exercise to see that ‖A‖ satisfies all properties of the norm:

1. ‖αA‖ = |α| · ‖A‖;
2. ‖A + B‖ ≤ ‖A‖+ ‖B‖;
3. ‖A‖ ≥ 0 for all A;

4. ‖A‖ = 0 if and only if A = 0,

so it is indeed a norm on a space of linear transformations from from X to
Y .

One of the main properties of the operator norm is the inequality

‖Ax‖ ≤ ‖A‖ · ‖x‖,

which follows easily from the homogeneity of the norm ‖x‖.
In fact, it can be shown that the operator norm ‖A‖ is the best (smallest)

number C ≥ 0 such that

‖Ax‖ ≤ C‖x‖ ∀x ∈ X.

This is often used as a definition of the operator norm.
On the space of linear transformations we already have one norm, the

Frobenius, or Hilbert-Schmudt norm ‖A‖2,

‖A‖2
2 = trace(A∗A).

So, let us investigate how these two norms compare.
Let s1, s2, . . . , sr be non-zero singular values of A (counting multiplici-

ties), and let s1 be the largest eigenvalues. Then s2
1, s

2
2, . . . , s

2
r are non-zero

eigenvalues of A∗A (again counting multiplicities). Recalling that the trace
equals the sum of the eigenvalues we conclude that

‖A‖2 = trace(A∗A) =
r∑

k=1

s2
k.

On the other hand we know that the operator norm of A equals its largest
singular value, i.e. ‖A‖ = s1. So we can conclude that ‖A‖ ≤ ‖A‖2, i.e. that

the operator norm of a matrix cannot be more than its Frobenius
norm

This statement also admits a direct proof using Cauchy–Schwarz inequality,
and such proof is presented in some textbooks. The beauty of the proof we
presented here is that it does not require any computations and illuminates
the reasons behind the inequality.
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4.3. Condition number of a matrix. Suppose we have an invertible
matrix A and we want to solve the equation Ax = b. The solution, of course,
is given by x = A−1b, but we want to investigate whant to investigate what
happens if we know the data only approximately.

That happens in the real life, when the data is obtained, for example by
some experiments. But even if we have exact data, round-off errors during
computations by a computer may have the same effect of distorting the data.

Let us consider the simplest model, suppose there is a small error in the
right side of the equation. That means, instead of the equation Ax = b we
are solving

Ax = b + ∆b,

where ∆b is a small perturbation of the right side b.
So, instead of the exact solution x of Ax = b we get the approximate

solution x + ∆x of A(x + ∆x) = b + ∆b. We assuming that A is invertible,
so ∆x = A−1∆b.

We want to know how big is the relative error in the solution ‖∆x‖/‖x‖
in comparison with the relative error in the right side ‖∆b‖/‖b‖. It is easy
to see that

‖∆x‖
‖x‖

=
‖A−1∆b‖
‖x‖

=
‖A−1∆b‖
‖b‖

‖b‖
‖x‖

=
‖A−1∆b‖
‖b‖

‖Ax‖
‖x‖

.

Since ‖A−1∆b‖ ≤ ‖A−1‖ · ‖∆b‖ and ‖Ax‖ ≤ ‖A‖ · ‖x‖ we can conclude that

‖∆x‖
‖x‖

≤ ‖A−1‖ · ‖A‖ · ‖∆b‖
‖b‖

.

The quantity ‖A‖·‖A−1‖ is called the condition number of the matrix A.
It estimates how the relative error in the solution x depends on the relative
error in the right side b.

Let us see how this quntity is related to singular values. Let s1, s2, . . . , sn

be the singular values of A, and let us assume that s1 is the largest singular
value and sn is the smallest. We know that the (operator) norm of an
operator equals its largest singular value, so

‖A‖ = s1, ‖A−1‖ =
1
sn

,

so
‖A‖ · ‖A−1‖ =

s1

sn
.

In other words

The condition number of a matrix equals to the ratio of the largest
and the smallest singular values.
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We deduced above that ‖∆x‖
‖x‖ ≤ ‖A−1‖ · ‖A‖ · ‖∆b‖

‖b‖ . It is not hard to see
that this estimate is sharp, i.e. that it is possible to pick the right side b
and the error ∆b such that we have equality

‖∆x‖
‖x‖

= ‖A−1‖ · ‖A‖ · ‖∆b‖
‖b‖

.

We just put b = v1 and ∆b = αwn, where v1 is the first column of the
matrix V , and wn is the nth column of the matrix W in the singular value
decomposition A = WΣV ∗. Here α can be any scalar. We leave the details
as an exercise for the reader.

A matrix is called well conditioned is its condition number is not too big.
If the condition number is big, the matrix is called ill conditioned. What is
“big” here depends on the problem: with what precision you can find your
right side, what precisicion is required for the solution, etc.

4.4. Effective rank of a matrix. Theoretically, rank of a matrix is easy
to compute: one just needs to row reduce matrix and count pivots. However,
in practical applications not everything is so easy. The main reason is that
very often we do not know exact matrix, we only know its approximation
up to some presision.

Moreover, even if we know exact matrix, most computer programs in-
troduce round-off errors in the computations, so effectively we cannot dis-
tinguish between a zero pivot and a very small pivot.

A simple näıve idea of wrking with round-off errors is as follows. When
computing the rank (and other objects relaterd to it, like column space,
kernel, etc) one simply sets up a tolerance (some small number) and if the
pivot is smaller than the tolerance, count it as zero. Advantage of this
approach is its simplicity: it is very easy to program. However, the main
disadvantage is that is is impossible to see what the tolerance is responsible
for. For example, what do we lose is we set up the tolerance equal 10−6.
How much better will be 10−8?

While the above approach works well for well conditioned matrices, it is
not very reliable in general case.

A better approach is to use singular values. It requires more computa-
tions, but gives much better results, which are easier to interpret. In this
approach we also set up some small number as a tolerance, and then per-
form singular value decomposition. Then we simply treat singular values
smaller than the tolerance as zero. The advantage of this approach is that
we can see what we are doing. The singular values are the half-axes of the
ellipsoid A(B) (B is the closed unit ball), so by setting up the tolerance we
just desiding how “thin” should be the ellipsoid to be considered “flat”
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5. Structure of orthogonal matrices

Theorem 5.1. Let U be an orthogonal operator in Rn. Suppose that det U =
1.1 Then there exists an orthonormal basis v1,v2, . . . ,vn such that the ma-
trix of U in this basis has block diagonal form

Rϕ1

Rϕ2

0
. . .

Rϕk0
In−2k

 ,

where Rαk
are 2-dimensional rotations,

Rϕk
=
(

cos ϕk − sinϕk

sinϕk cos ϕk

)
and In−2k stands for the identity matrix of size (n− 2k)× (n− 2k).

Proof. We know that if p is a polynomial with real coefficient and λ is its
complex root, p(λ) = 0, then λ is a root of p as well, p(λ) = 0 (this can
easily be checked by plugging λ into p(z) =

∑n
k=0 akz

k).
Therefore, all complex iegenvalues of a real matrix A can be split into

pairs λk, λk.
We know, that eigenvalues of a unitary matrix have absolute value 1,

so all complex eigenvalues of A can be written as λk = cos αk + i sinαk,
λk = cos αk − i sin αk.

Fix a pair of complex eigenvalues λ and λ, and let u ∈ Cn be the
eigenvector of U , Uu = λu. Then Uu = λu. Split u into real and imaginary
parts, i.e. define

xk := Reu = (u + u)/2, y = Imu = (u− u)/(2i),

so u = x + iy (note, that x,y are real vectors, i.e. the vectors with real
entries). Then

Ux = U
1
2
(u + u) =

1
2
(λu + λu) = Re(λu).

Similarly

Uy =
1
2i

U(u− u) =
1
2i

(λu− λu) = Im(λu).

Since λ = cos α + i sinα, we have

λu = (cos α+ i sin α)(x+ iy) = ((cos α)x−(sinα)y)+ i((cos α)y+(sinα)x).

1For an orthogonal matrix U det U = ±1.
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so

Ux = Re(λu) = (cos α)x−(sinα)y), Uy = Im(λu) = (cos α)y+(sinα)x.

In other word, U leaves the 2-dimensional subspace Eλ spanned by the vec-
tors x,y invariant and the matrix of the restriction of U onto this subspace
is the rotation matrix

R−α =
(

cos α sinα
− sinα cos α

)
.

Note, that the vectors u and u (eigenvectors of a unitary matrix, cor-
responding to different eigenvalues) are orthogonal, so by the Pythagorean
Theorem

‖x‖ = ‖y‖ =
√

2
2
‖u‖.

It is easy to check that x ⊥ y, so x,y is an orthogonal basis in Eλ. If we
mutiply each vector in the basis x,y by the same non-zero number, we do
not chage matrices of linear transformations, so without loss of generality
we can assume that ‖x‖ = ‖y‖ = 1 i.e. that x,y is an orthogonal basis in
Eλ.

Let us complete the orthonormal system v1 = x,v2y to an orthonormal
basis in Rn. Since UEλ ⊂ Eλ, i.e. Eλ is an invariant subspace of U , the
matrix of U in this basis has the block triangular form

R−α ∗

0 U1


where 0 stands for the (n− 2)× 2 block of zeroes.

Since the rotation matrix R−α is invertible, we have UEλ = Eλ. There-
fore

U∗Eλ = U−1Eλ = Eλ,

so the matrix of U in the basis we constructed is in fact block diagonal,
R−α 0

0 U1

 .

Since U is unitary

I = U∗U =


I 0

0 U∗
1 U1

 ,
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so, since U1 is square, it is also unitary.
If U1 has complex eigenvalues we can apply the same procedure to de-

crease its size by 2 untill we are left with a block that has only real eigen-
values. Real eigenvalues can be only +1 or −1, in some orthonormal basis
the matrix of U has the form

R−α1

R−α2

0
. . .

R−αd

−Ir0
Il


;

here Ir and Il are identity matrices of size r× r and l× l respectively. Since
det U = 1, the multiplicity of the eigenvalue −1 (i.e. r) must be even.

Note, that 2× 2 matrix −I2 can be interpreted as the rotation through
the angle π. Therefore the above matrix has the form from the conclusion
of the theorem with ϕk = −αk or ϕk = π �

If an orthogonal matrix has determinant −1, its structure is described
by the following theorem.

Theorem 5.2. Let U be an orthogonal operator in Rn, and let det U =
−1.Then there exists an orthonormal basis v1,v2, . . . ,vn such that the ma-
trix of U in this basis has block diagonal form

Rϕ1

Rϕ2

0
. . .

Rϕk0
Ir

−1


,

where r = n− 2k − 1 and Rαk
are 2-dimensional rotations,

Rϕk
=
(

cos ϕk − sinϕk

sinϕk cos ϕk

)
and In−2k stands for the identity matrix of size (n− 2k)× (n− 2k).

We leave the proof as an exercise for the reader. The modification that
one should make to the proof of Theorem 5.1 are pretty obvious.

Note, that it follows from the above theorem that an orthogonal 2 × 2
matrix U with determinant −1 is always a reflection.





Chapter 7

Bilinear and quadratic
forms

1. Main definition

A bilenear form on Rn is a function L = L(x,y) of two arguments x,y ∈ Rn

which is linear in each argument, i.e. such that

1. L(αx1 + βx2,y) = αL(x1,y) + βL(x2,y)
2. L(x, αy1 + βy2) = αL(x,y1) + βL(x,y2)

2. Diagonalization of quadratic forms

3. Positive definite forms

4. Minimax characterization of eigenvalues and the
Silvester’s criterion of positivity
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Chapter 8

Advanced spectral
theory

1. Cayley–Hamilton Theorem

2. Simple irreducible blocks (Jordan’s blocks)

3. Jordan decomposition theorem
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