Homework assignment, Jan. 30, 2004.

- 1. Find a basis in the space of 3×2 matrices $M_{3 \times 2}$.
- 2. True or false:
 - (a) Any set containing a zero vector is linearly dependent
 - (b) A basis must contain **0**;
 - (c) subsets of linearly dependent sets are linearly dependent;
 - (d) subsets of linearly independent sets are linearly independent;
 - (e) If $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = \mathbf{0}$ then all scalars α_k are zero;
- 3. Recall, that a matrix is called *symmetric* if $A^T = A$. Write down a basis in the space of *symmetric* 2×2 matrices (there are many possible answers). How many elements are in the basis?
- 4. Write down a basis for the space of 3×3 antisymmetric $(A^T = -A)$ matrices. How many elements are in this basis?
- 5. (Extra credt) Is it possible that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent, but the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3$ and $\mathbf{w}_3 = \mathbf{v}_3 + \mathbf{v}_1$ are linearly *independent*?