Homework assignment, Feb. 4, 2004.

1. Let

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -2 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 1 & -1 \end{pmatrix}, D = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix}$$

1

- a) Mark all the products that are defined, and give the dimensions of the result: AB, $BA, ABC, ABD, BC, BC^T, B^TC, DC, D^TC^T.$
- b) Compute AB, A(3B + C), B^TA , A(BD), (AB)D.

2. Let T_{γ} be the matrix of rotation by γ in \mathbb{R}^2 . Check by matrix multiplication that $T_{\gamma}T_{-\gamma} =$ $T_{-\gamma}T_{\gamma} = I$

3. Find the matrix of the orthogonal projection in \mathbb{R}^2 onto the line $x_1 = -2x_2$. Hint: What is the matrix of the projection onto the coordinate axis x_1 ?

You can leave the answer in the form of the matrix product, you do not need to perform the multiplication.

4. Find linear transformations $A, B : \mathbb{R}^2 \to \mathbb{R}^2$ such that $AB = \mathbf{0}$ but $BA \neq \mathbf{0}$.

5. Multiply two rotation matrices T_{α} and T_{β} (it is a rare case when the multiplication is commutative, i.e. $T_{\alpha}T_{\beta} = T_{\beta}T_{\alpha}$, so the order is not essential). Deduce formulas for $\sin(\alpha + \beta)$ and $\cos(\alpha + \beta)$ from here.