Homework assignment, Feb. 9, 2004.

To be collected Wednesday, Feb. 11

1. Suppose AB = 0 for some non-zero matrix B. Can A be invertible? Justify.

2. Write matrices of the linear transformations T_1 and T_2 in \mathbb{R}^5 , defined as follows: T_1 interchanges the coordinates x_2 and x_4 of the vector \mathbf{x} , and T_2 just adds to the coordinate x_2 a times the coordinate x_4 , and does not change other coordinates, i.e.

$$T_{1}\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\\x_{5}\end{pmatrix} = \begin{pmatrix}x_{1}\\x_{4}\\x_{3}\\x_{2}\\x_{5}\end{pmatrix}, \quad T_{2}\begin{pmatrix}x_{1}\\x_{2}\\x_{3}\\x_{4}\\x_{5}\end{pmatrix} = \begin{pmatrix}x_{1}\\x_{2}+ax_{4}\\x_{3}\\x_{4}\\x_{5}\end{pmatrix};$$

here a is some fixed number.

Show that T_1 and T_2 are invertible transformations, and write the matrices of the inverses. **Hint:** it may be simpler, if you first describe the inverse transformation, and then find its matrix, rather than trying to guess (or compute) the inverses of the matrices T_1 , T_2 .

- 3. Multiplication of a 2-vector by an arbitrary 2×2 matrix usually requires 4 multiplications. Suppose a 2×1000 matrix D contains coordinates of 1000 points in \mathbb{R}^2 . How many multiplications is required to transform these points using 2 arbitrary 2×2 matrices A and B. Compare 2 possibilities, A(BD) and (AB)D.
- 4. Write 4×4 matrix performing perspective projection to x-y plane with center $(d_1, d_2, d_3)^T$.
- 5. Give examples of matrices (say 2×2) such that:
 - a) A + B is not invertible although both A and B are invertible;
 - b) A + B is invertible although both A and B are not invertible;
 - c) All of A, B and A + B are invertible

6. Let A be an invertible simmetric $(A^T = A)$ matrix. Is the inverse of A symmetric? Justify.

7. (The hard one) A transformation T in \mathbb{R}^3 is a rotation about the line y = x + 3 in x-y plane through an angle γ . Write 4×4 matrix corresponding to this transformation. You can leave the result as a product of matrices.