Homework assignment, Feb. 27, 2004.

Read Sections 1–3 of Chapter 3. Skip proofs of Theorems 3.4, 3.5 (we will go over them next class).

1. If A is an $n \times n$ matrix, how the determinants det A and det(5A) are related? **Remark:** det(5A) = 5 det A only in the trivial case of 1×1 matrices

2. How the determinants $\det A$ and $\det B$ are related if

a)

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2a_1 & 3a_2 & 5a_3 \\ 2b_1 & 3b_2 & 5b_3 \\ 2c_1 & 3c_2 & 5c_3 \end{pmatrix}.$$

b)

$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}, \qquad B = \begin{pmatrix} 3a_1 & 4a_2 + 5a_1 & 5a_3 \\ 3b_1 & 4b_2 + 5b_1 & 5b_3 \\ 3c_1 & 4c_2 + 5c_1 & 5c_3 \end{pmatrix}$$

In the following two problems you can use the fact that $\det A = \det A^T$, so you can use either column or row operations to compute determinants.

3. Using column or row operations compute the determinants

$\left \begin{array}{ccc} 0 & 1 & 2 \\ -1 & 0 & -3 \\ 2 & 3 & 0 \end{array}\right , \qquad \left \begin{array}{ccc} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right $	$\left. \begin{array}{c} 3\\6\\9 \end{array} \right ,$	$\begin{vmatrix} 1 \\ -3 \\ 0 \\ 2 \end{vmatrix}$	$ \begin{array}{c} 0 \\ 1 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} -2 \\ 1 \\ -1 \\ 0 \end{array} $	3 2 1 1	,	$ 1 \\ 1$	$x \\ y$	
	•		5	0	T				

4. A square $(n \times n)$ matrix is called skew-symmetric (or antisymmetric) if $A^T = -A$. Prove that if A is skew-symmetric and n is odd, then det A = 0. Is this true for even n?

In the following problem you can use the fact that det(AB) = det A det B.

5. A square matrix is called *nilpotent* if $A^k = \mathbf{0}$ for some positive integer k. Show that for a nilpotent matrix $A \det A = 0$.

6. Suppose a matrix M can be written in a block triangular form

$$\left(\begin{array}{cc}A & B\\ \mathbf{0} & C\end{array}\right)$$

where A and B are square matrices. Show that $\det M = \det A \det C$.