Homework assignment, March 15, 2004.

See if you can do Exercise 1.4 in Ch. 4.

1. Diagonalize the following matrices, if possible:

a)
$$\begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$$
.
b) $\begin{pmatrix} -1 & -1 \\ 6 & 4 \end{pmatrix}$.
c) $\begin{pmatrix} -2 & 2 & 6 \\ 5 & 1 & -6 \\ -5 & 2 & 9 \end{pmatrix}$ ($\lambda = 2$ is one of the eigenvalues)

2. Find all square roots of the matrix

$$A = \left(\begin{array}{cc} 5 & 2\\ -3 & 0 \end{array}\right)$$

i.e. find all matrices B such that $B^2 = A$. **Hint:** Finding a square root of a diagonal matrix is easy. You can leave your answer as a product.

- 3. Let A be $n \times n$ matrix. True or false:
 - a) A^T has the same eigenvalues as A.
 - b) A^T has the same eigenvectors as A.
 - c) If A is is diagonalizable, then so is A^T .

Justify your conclusions.

- 4. Let A be a 3×3 matrix with eigenvalues 1, 2, 5. What is trace (A^3) , det $(A^2 + 2A 2I)$?
- 5. a) Consider the transformation T in the space $M_{2\times 2}$ of 2×2 matrices, $T(A) = A^T$. Find all its eigenvalues and eigenvectors. Is it possible to diagonalize this transformation? **Hint:** While it is possible to write a matrix of this linear transformation in some basis, compute characteristic polynomial, and so on..., it is easier to find eigenvalues and eigenvectors directly from the definition.
 - b) Can you do the same problem but in the space of $n \times n$ matrices?