Homework assignment, March 24, 2004.

1. Find the orthogonal projection of a vector $(1, 1, 1, 1)^T$ onto the subspace spanned by the vectors $\mathbf{v}_1 = (1, 3, 1, 1)^T$ and $\mathbf{v}_2 = (2, -1, 1, 0)^T$ (note that $\mathbf{v}_1 \perp \mathbf{v}_2$).

2. Find the distance from a vector (1, 2, 3, 4) to the subspace spanned by the vectors $\mathbf{v}_1 = (1, -1, 1, 0)^T$ and $\mathbf{v}_2 = (1, 2, 1, 1)^T$ (note that $\mathbf{v}_1 \perp \mathbf{v}_2$). Can you find the distance without actually computing the projection? That would simplify the calculations.

3. True or false: if E is a subspace of V, then dim $E + \dim(E^{\perp}) = \dim V$? Justify.

4. Let P be the orthogonal projection onto subspace E of an inner product space V, dim V = n, dim E = r. Find eigenvalues, eigenvectors (eigenspaces). Find algebraic and geometric multiplicities of each eigenvalue.

- 5. a) Find the matrix of the orthogonal projection onto one-dimensional subspace in \mathbb{R}^n spanned by the vector $(1, 1, ..., 1)^T$.
 - b) Let A be the $n \times n$ matrix with all entries equal 1. Compute its eigenvalues and their multiplicities (use previous problem).
 - c) Compute eigenvalues (and multiplicities) of the matrix A I, i.e. of the matrix with zeroes on the main diagonal and ones everywhere else.
 - d) Compute det(A I).

6. Read s. 1.5. Consider space \mathbb{R}^2 with the norm $\|\cdot\|_p$, introduced in this section. For $p = 1, 2, \infty$ draw the "unit ball" B_p in the norm $\|\cdot\|_p$

$$B_p := \{ \mathbf{x} \in \mathbb{R}^2 : \|\mathbf{x}\|_p \le 1 \}.$$

Can you guess how the balls B_p for other p look like?