Homework assignment, March 26, 2004.

Read s. 3.1 (Gram Schmidt orthogonalization), 3.2, 3.3

- 1. Apply Gram–Schmidt orthogonalization to the system of vectors $(1, 2, -2)^T$, $(1, -1, 4)^T$, $(2, 1, 1)^T$
- 2. Apply Gram–Schmidt orthogonalization to the system of vectors $(1,2,3)^T$, $(1,3,1)^T$. Write the matrix of orthogonal projection onto 2-dimensional subspace spanned by these vectors.
- 3. Complete an orthogonal system obtained in the previous problem to an orthogonal basis in \mathbb{R}^3 , i.e. add to the system some vectors (how many?) to get an orthogonal basis.

Can you describe how to complete an orthogonal system to an orthogonal basis in general situation of \mathbb{R}^n or \mathbb{C}^n ?

- 4. Find the distance from a vector $(2,3,1)^T$ to the subspace spanned by the vectors $(1,2,3)^T$, $(1,3,1)^T$. Note, that I am only asking to find the distance to the subspace, not the orthogonal projection.
- 5 (Legendre's polynomials:). Let inner product on the space of polynomials be defined by $(f,g) = \int_{-1}^{1} f(t) \overline{g(t)} dt$. Apply Gram-Schmidt orthogonalization to the system $1, t, t^2, t^3$.

Legendre's polynomials are particular case of the so-called orthogonal polynomials, which play an important role in many branches of mathematics.

- 6. Let $P = P_E$ be the matrix of an orthogonal projection onto a subspace E. Show that
 - a) The matrix P is self-adjoint, meaning that $P^* = P$.
 - b) $P^2 = P$.

Remark: above 2 properties completely characterize orthogonal projection, i.e. any matrix P satisfying these properties is the matrix of some orthogonal projection. We will discuss this some time later.

7. For a set $E \subset V$ its orthogonal complement E^{\perp} consists of all vectors orthogonal to E. Show that if E is a subspace,then $(E^{\perp})^{\perp} = E$.

Hint: Take **x** orthogonal to E^{\perp} and see what is its orthogonal projection onto E