Homework assignment, April 12, 2004.

1. Orthogonally diagonalize the matrix,

$$A = \left(\begin{array}{cc} 3 & 2\\ 2 & 3 \end{array}\right)$$

Find all square roots of A, i.e. find all matrices B such that $B^2 = A$. Note, that all square roots of A are self-adjoint.

- 2. True or false: any self-adjoint matrix has a sel-adjoint square root. Justify.
- 3. True or false:
 - a) A product of two self-adjoint matrices is self-adjoint.
 - b) If A is self-adjoint, then A^k is self-adjoint.

Justify your conclusions

- 4. Let A be $m \times n$ matrix. Prove that
 - a) A^*A is self-adjoint.
 - b) All eigenvalues of A^*A are non-negative.
 - c) $A^*A + I$ is invertible.
- 5. Give a proof if the statement is true, or give a counterexample if it is false;
 - a) If $A = A^*$ then A + iI is invertible.
 - b) If U is unitary, $U + \frac{3}{4}I$ is invertible
 - c) If a matrix A is real, A iI is invertible
- 6. Let U be a 2×2 orthogonal matrix with det U = 1. Prove that U is a rotation matrix.

- 7. Let U be a 3×3 orthogonal matrix with det U = 1. Prove that
 - a) 1 is an eigenvalue of U;
 - b) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is an orthonormal basis, such that $U\mathbf{v}_1 = \mathbf{v}_1$ (remember, that 1 is an eigenvalue), then in this basis the matrix of U is

$$\left(\begin{array}{rrr}1&0&0\\0&\cos\alpha&-\sin\alpha\\0&\sin\alpha&\cos\alpha\end{array}\right),$$

where α is some angle.

Hint: Show, that since \mathbf{v}_1 is an eigenvector of U, all entries below 1 must be zero, and since \mathbf{v}_1 is also an eigenvector of U^* (why?), all entries right of 1 also must be zero. Then show that the lower right 2×2 matrix is an orthogonal one with determinant 1, and use the previous problem.