Homework assignment, April 14, 2004.

Due Friday, 4/16 (collected)

1. True or false:

- a) Every unitary operator $U: X \to X$ is normal.
- b) A matrix is unitary if and only if it is invertible.
- c) If two matrices are unitarily equivalent, then they are also similar.
- d) The sum of self-adjoint operators is self-adjoint.
- e) The adjoint of a unitary operator is unitary
- f) The adjoint of a normal operator is normal.
- g) If all eigenvalues of a linear operator are 1, then the operator must be unitary or orthogonal.
- h) If all eigenvalues of a normal operator are 1, then the operator is identity.
- i) A linear operator may preserve norm but not the inner product.
- 2. True or false: The sum of normal operators is normal? Justify your conclusion.
- 3. Orthogonally diagonalize the matrix,

$$A = \left(\begin{array}{cc} 7 & 2\\ 2 & 4 \end{array}\right),$$

i.e. represent it as $A = UDU^*$, where D is diagonal and U is unitary.

Among all square roots of A, i.e. among all matrices B such that $B^2 = A$, find one that has positive eigenvectors. You can leave B as a product.

4. Orthogonally diagonalize the rotation matrix

$$R_{\alpha} = \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array}\right).$$

where α is not a multiple of π . Note, that you will get complex eigenvalues in this case.

5. Orthogonally diagonalize the matrix

$$A = \left(\begin{array}{cc} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{array}\right).$$

Hints: you will get real eigenvalues in this case. Also, the trigonometric identities $\sin 2x = 2 \sin x \cos x$, $\sin^2 x = (1 - \cos 2x)/2$, $\cos^2 x = (1 + \cos 2x)/2$ (applied to $x = \alpha/2$) will help to simplify expressions for eigenvectors.

6. Can you describe the linear transformation with matrix A from the previous problem geometrically? Is has a very simple geometric interpretation.

7. Prove that a normal operator with unimodular eigenvalues (i.e. with all eigenvalues satisfying $|\lambda_k| = 1$) is unitary. **Hint:** consider diagonalization