
Homework assignment, April 5, 2004.

Solutions

1. Find least square solution of the system
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2. Find the matrix of the orthogonal projection P onto the column space of
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3. Find the best straight line fit (least square solution) to the points (−2, 4), (−1, 3), (0, 1),
(2, 0).

Solution: Need to solve axk + b = yk, k = 1, 2, 3, 4 for a and b (xk, yk are given). Equation
to solve by least squares: ⎛
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A∗A =

(
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)
, A∗b =

( −11
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)
.



Normal equation A∗Ax = A∗b:
(
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a
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=
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)
Solution:

(
a
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=
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)

Answer: y = −36
35

x + 61
35

.

4. Fit a plane z = a + bx + cy to four points (1, 1, 3), (0, 3, 6), (2, 1, 5), (0, 0, 0).
To do that

a) Find 4 equations with 3 unknowns a, b, c such that the plane pass through all 4 points
(This system does not have to have a solution)

b) Find the least square solution of the system

Solution: Need to solve a + bxk + cyk = zk, k = 1, 2, 3, 4 for a b and c (xk, yk, zk are given).
Equation to solve by least squares:
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Normal equation A∗Ax = A∗b:
⎛
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Answer: y = −0.75 + 1.46x + 2.02y.

5. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal
projection onto the orthogonal complement E⊥.

a) Wnat are P + Q and PQ?

b) Show that P − Q is its own inverse.

Solution:

a) P + Q = I, PQ = O.

b) (P − Q)(P − Q) = (using PQ = QP = 0) = P 2 − QP − PQ + Q2 = P 2 + Q2 =
(using P 2 = P,Q2 = Q) = P + Q = I.


