
To the Students at the Geometry Center on April 29, 1995

Let’s finish that problem we started to discuss at the end of the morning, about the

volume of a ball in higher dimensions. We should be able to establish the formula for the

4-ball, and hopefully get enough information so we can make a good conjecture about the

n-dimensional volume of a ball in n-dimensional space.

We can start with some estimates that don’t even use calculus. A ball of radius R

sits inside a cube of side length 2R so in general the volume Vn(R) of an n-ball of radius

R will be less than (2R)n = 2nRn.

Certainly zero is a lower bound for the volume and we can do better by observing

that the n-ball must contain the analogue of the diamond in the plane and the octahedron

in 3-space, those being the smallest figures that contain the points at distance R along

each of the coordinate axes. Since the vertices of this figure are the midpoints of the sides

of the analogue of the cube, the figure is called the n-dimensional cube − dual. In the

plane we get four triangles, each one-half the area of a subsquare of side length R in one

of the quadrants, for a total area of 4(R2)(1/2) = 2R2. In 3-space, we get eight triangular

pyramids, one in each octant, each with volume (1/3)(1/2)R3 for a total of (23)(R3)/(2 ·3).

In general the n- dimensional volume of the n-dimensional cube dual will be (2n)(Rn)/n!.
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For low dimensions, this is a reasonably good lower bound: For n = 2, we have 2R2 <

πR2 < 4R2, and, using the familiar formula, if n = 3, we have (8/6)R3 < (4/3)πR3 < 8R3,

not such a good approximation. It gets worse, since (2n)/n! will approach 0 as n goes to

infinity. This is easy to see since from 4 onwards, at each step we multiply the numerator

by 2 and the bottom by something at least twice that great, so the new expression is less

than half the value at the previous step.

This leads to an interesting question. Once we do find an expression for the volume

of the n-ball, what happens to the ratio of this volume to the volume 2nRn of the n-cube

as n becomes arbitrarily large?

It is easier to get some better upper bounds, although good lower bounds are a bit

harder to come by. In 3-space, the ball of radius R sits inside a solid cylinder of radius R

and height 2R, so V3(R) < (2R)(πR
2) = (2π)R3. As it happens, V3(R) = (4/3)πR

3, so the

volume of the 3-ball is two-thirds the volume of the circumscribing cylinder, a discovery

that Archimedes found so significant that he instructed it to be inscribed on his tombstone.

We may think of the solid cylinder in 3-space as the “product” of a disc of radius R

in the coordinate plane of the first two coordinates, and a segment of length 2R in the
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remaining coordinate line. In 4-space, we will have four independent coordinate directions,

and the 4-ball will be contained in the “product” of a disc of radius R in the plane of the

first two coordinates and another disc of radius R in the plane of the second two. Thus

V4(R) < π2. As it happens, V4(R) = (1/2)(π
2) so the hypervolume of the 4-ball of radius

R is exactly one-half the hypervolume of the “bicylinder” which is the product of two discs

of radius R. It isn’t clear who was the first mathematician who discovered this, but it was

certainly known in the early part of the nineteenth century, when people first began to ask

questions about the higher-dimensional measurements analogous to area in the plane and

volume in 3-space.

The basic insight that links volume in n-space with elementary calculus is that once we

can find the derivative of a function of one variable, we can use techniques of integration to

approximate the function, and sometimes we can compute it exactly. This is the content

of the Fundamental Theorem of Calculus, the most powerful tool for calculating areas,

volumes, and hypervolumes.

Using the slicing idea studied in Flatland , we can express the area of a disc of radius R

by moving a vertical line across the disc and keeping track of the length of the intersection,

starting with length 0 at position −R, then increasing to 2R at position 0, thereafter

decreasing to 0 at position R. By the Pythagorean theorem, the length of the segment at

postion x is 2
√
R2 − x2, and the integral of this quantity with respect to x from −R to R

will give the area of the disc.
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Note that either by using a “change of variable” formula, or by observing the effect of

scaling on approximating rectangles, we can see that the integral of 2
√
R2 − x2 from −R

to R with respect to x is R2 times the integral of 2
√
1− t2 from -1 to 1 with respect to t,

and this last quantity, the area of the unit disc, is defined to be π. Thus
∫ R

−R
2
√
R2 − x2 dx

= R2
∫ 1

−1
2
√
1− t2 dt and V2(R) = πR2.

In 3-space, we can compute the volume of a ball of radius R by slicing it by planes

perpendicular to the x-axis and keeping track of the areas of the slices as x runs from −R

to R. By the Pythagorean theorem once again, the slice of the sphere at position x is a

disc of radius
√
R2 − x2, with area area π

√
R2 − x2

2
= π(R2 − x2). The antiderivative of

this expression with respect to x is π(R2x − x3/3) so
∫ R

−R
π(R2 − x2) dx = π((2/3)R3 −

(2/3)(−R)3) = (4/3)πR3, the familiar formula for the volume of a 3-ball.
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In 4-space, as we slice a 4-ball by 3-dimensional hyperplanes perpendicular to the x-

axis, we obtain 3-dimensional balls as the slices. We may then compute the hypervolume

of the 4-ball of radius R by keeping track of the volumes of these slices at position x as

x runs from −R to R. The volume of the slice at position x is (4/3)π
√
R2 − x2

3
and our

task is to integrate this from −R to R with respect to x.

We can use this expression to get an upper bound on V4(R) since (4/3)π(
√
R2 − x2)3 =

(4/3)π(R2 − x2)
√
R2 − x2 = (4/3)π(R2)

√
R2 − x2 − (4/3)π(x2)

√
R2 − x2. This gives the

integral of the difference of two expressions, so the integral of the first will be larger than

V4(R). But
∫ R

−R
(4/3)π(R2)

√
R2 − x2 dx = 2/3πR2 multiplied by the area of the 2-disc of

radius R, so V4(R) < (2/3)πR
2V2(R) = (2/3)π

2R4.

This is closer to the predicted quantity (1/2)π2R4 but it is still too large by the value

of the integral of the second expression above.

It would be possible to integrate the second expression by parts and recombine the

expressions to get the final answer, but it is somewhat better to use another technique

of integration, trigonometric substitution. This is a natural technique since we used

the Pythagorean theorem to determine the integrand in the first place, and by look-

ing at the diagram we used, we obtain all the quantities we need for a substitution:

x = R sin(t),
√
R2 − x2 = R cos(t), dx/dt = R cos(x). As x goes from −R to R, t goes

from −π/2 to π/2. (Note that we could have chosen a substitution x = cos(t) based on a

different triangle, but this leads to integrals that are more difficult to handle.)

5



t

x

R

If we make this trigonometric substitution in the integral for the area of the disc in

the plane, we get
∫ R

−R
2
√
R2 − x2 dx =

∫ π/2

−π/2
2R cos(t)(dx/dt) dt =

∫ π/2

−π/2
2R2 cos2(t) dt

Using the trigonometric identity cos(2t) = 2 cos2(t) − 1, we have
∫ π/2

−π/2
2R2 cos2(t) dt =

∫ π/2

−π/2
R2(cos(2t)+1). By symmetry of the cosine graph, the integral of the first expression

is zero, so the area is just
∫ π/2

−π/2
R2 = πR2.

In 3-space, the integration is easier. The integral of π(
√
R2 − x2)2 with respect

to x from −R to R transforms to
∫ R

−R
π(R2 − x2) dx =

∫ π/2

−π/2
πR2 cos2(t)(dx/dt) dt =

∫ π/2

−π/2
πR3 cos3(t) dt =

∫ π/2

−π/2
πR3(1 − sin2(t)) cos(t) dt = πR3(sin(t) − sin3(t)/3)|π/2

−π/2 =

2(1− 1/3)πR3 = (4/3)πR3 = V3(R).

The analogy is now clear. To get the volume of the 4-ball of radius R, we integrate

(4/3)π(
√
R2 − x2)3 with respect to t from −R to R, and the trigonometric substitution

transforms this to the integral of
∫ π/2

−π/2
(4/3)πR3 cos3(t)(dx/dt) dt. Thus the hypervolume

is
∫ π/2

−π/2
(4/3)πR4 cos4(t)(dx/dt) dt

Now we use the trigonometric identity twice: cos4(t) = (cos2(t))2 = ((cos(2t) +

1)/2)2 = (cos2(2t) + 2 cos(2t) + 1)/4. Since cos2(2t) = (cos(4t) + 1)/2 we obtain the

identity cos4(t) = cos(4t)/4+cos(2t)/2+3/8. Once again by symmetry, the integral of the

first two terms will be 0. Thus
∫ π/2

−π/2
(4/3)πR4 cos4(t)(dx/dt) dt = (3/8)π and the desired
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hypervolume is (4/3)πR4(3/8)π = (1/2)π2R4 = V4(R), quod erat demonstrandum!

So, now what about higher dimensions? It should be very clear by now that the key is

the computation of integrals of powers of the cosine. Let C(n) =
∫ π/2

−π/2
cosn(t)(dx/dt) dt,

so, by our calculations above, C(1) = 2, C(2) = (1/2)π,C(3) = 4/3, and C(4) = (3/8)π.

We might already conjecture at this point that for odd n we obtain a rational number

and for even n, a rational number multiplied by π. This conjecture is reinforced when we

calculate, as above, that C(5) = 16/15 and C(6) = (5/16)π.

We can use these values to find the formulas for the volumes of the balls of radius R in

various dimensions: V1(R) = 2R, V2(R) = πR2,V3(R) = (4/3)R
3,V4(R)(1/2)π

2R4. Note

that V4(R) = R4π2(1/2) = R4V3(1)C(4), and in general Vn(R) = RnVn−1(1)C(n). Thus

V5(R) = R5V4(1)C(5) = R5(π2/2)(16/15) = R5π2(8/15) and V6(R) = R6V5(1)C(6) =

R6π2(8/15)(5/16)π = R6π3(1/2 · 3).

This last expression is very suggestive, coupled with the formulas for the volumes

in the other even dimensions: V2(R) = πR2, V4(R) = π2R4(1/2), V6(R) = π3R6(1/6).

The conjecture for even dimensions n = 2m seems quite clear: V2m(R) = πmR2m(1/m!).

This turns out to be correct, and it can be established using mathematical induction.

The corresponding formula for odd dimensions n = 2m + 1 is slightly more complicated:

V2m+1(R) = 2
2m+1πmR2m+1m!/(2m+1)!, and this can also be extablished by mathemati-

cal induction. In each case, a key step is the recursion formula C(n) = [(n−1)/n]C(n−2),

which follows immedaitely by integration by parts.

These final formulas are very close to the ones we were developing in the last hour of

our session. Enjoy mathematics, and keep on asking “What about higher dimensions?”
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