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Abstract

The medians of an odd-sided polygon are the lines joining vertices to the

middle of their opposite sides. Triangles have concurrent medians but odd poly-

gons with more sides are not always so lucky. In this paper we show that if

n − 1 medians of an odd n-gon are concurrent, then the remaining median is

also concurrent with the others. Equivalently, for n odd any dn
2
e+1 consecutive

vertices (in a general position) uniquely determine in every case an n-gon with

concurrent medians. Thus pentagons with concurrent medians, for instance, are

determined by choosing four vertices at random in the plane.

A short history

In the fall of 1998 I had the chance of being the teaching assistant for Thomas Ban-

choff’s course Fundamental problems of Geometry. The course format relied heavily

on a web-based discussion which I helped Tom monitor. One of the problems Tom

put up for the students was simply the following: which pentagons have concurrent

medians?

At that point Tom himself didn’t even know the answer (if such a classification

question ever has a “right” answer), which was typical of his mathematical ouverture

d’esprit. However, Tom did tell me he supposed those pentagons were exactly the

linear deformations of the regular pentagon. I agreed with him and gave it no more

thought; the students would figure out the details for us.

Then a few days later I awoke sweaty and clammy-handed; I’d had a nightmare

featuring a pentagon with concurrent medians and a pair of parallel sides. This
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Figure 1: A pentagon with concurrent medians and parallel sides.

nightmarish pentagon (shown in Fig. 1) could not be the linear image of the regular

pentagon since linear transformations preserve parallelism.

Without having seen the pentagon himself, Tom told me to show it in class. When

I’d finished drawing the construction I had to run to meet another appointment,

but with the pentagon still on the board and looking somewhat dismayed at the

appearance of this odd case, Tom said: “You’re making a very dramatic exit, do

you realize?” It was undoubtedly, thanks to Tom, the high point of my career as a

teaching assistant.

We thus knew the class of pentagons with concurrent medians was larger than the

set of linear deformations of the regular pentagon, but without knowing exactly how

much larger. Our initial observations seemed to indicate there were seven degrees of

freedom in all: six degrees of freedom only accounted for all the translates of linear

deformations of the regular pentagon (two degrees of freedom for the origin plus four

degrees of freedom for the transformation), whereas eight degrees of freedom seemed

too much. Indeed, from four vertices A, B, C and D—or a total of eight degrees

of freedom—one could infer the point O where medians crossed, and from there a

unique position for the last vertex E such that the line through O and B bisected

the side DE (see Fig. 2), but there seemed no a priori reason why the line through

O and C would bisect the side AE. In fact, our less-than-approximate hand sketches

strongly suggested this wasn’t the case.

Undeterred, one of the students, David Ziff, decided to model the construction on

Geometer’s Sketchpad. What he discovered was that the line through C and O always

bisected the side AE. We were at once surprised and delighted by Ziff’s discovery: it

meant that we finally knew what had to be proved (naturally Geometer’s Sketchpad

was only a source of empirical evidence and it still befell to us to find a “real” proof).
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Figure 2: Determining the last vertex of a pentagon with concurrent medians from

its first four vertices. It is not obvious whether A and E are equidistant from the line

through O and C.

Banchoff found a first proof of Ziff’s observation using vector geometry and I later

devised a Euclidean proof (none of the students found a proof). Unknown to us at

the time, G.C. Shephard had just recently mentioned the same result as a problem

for the reader in a paper of his, the reference of which I have momentarily lost. I do

not know any other references to this result. In this paper we shall give a new simple

proof of Ziff’s observation which applies not just to pentagons but to odd n-gons in

general.

Our main result has two equivalent formulations:

Theorem 1 If an odd n-gon has n − 1 concurrent medians then the last median is

concurrent with the rest.

Theorem 2 If n is odd and P1, . . . , Pdn/2e+1 are points in general position then there

exist unique points Pdn/2e+2, . . . , Pn such that the polygon P1P2 · · ·Pn has concurrent

medians.

(A set of points is in “general position” if its distribution in the plane is essentially

random.)
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Figure 3

We shall first show that Theorem 2 is a consequence of Theorem 1. We shall

then give a proof of Theorem 1 for the case n = 5, which the reader should have no

problem generalizing to other values of n.

Notation: if A and B are two points then AB denotes the line through A and B,

|AB| denotes the 2-by-2 determinant of the points A and B considered as vectors,

and AB denotes the segment from A to B. The median through a vertex V is always

denoted MV , even if the line has no label on the accompanying diagram (which we

do to allow us to reduce clutter). If L is a line and S is a segment, then “L bisects S”

and “L is a median of S” mean the same, namely that L contains the midpoint of S.

A reduction

In this section we show that Theorem 2 reduces to Theorem 1. It is sufficient to

show that every group of dn
2
e + 1 vertices uniquely determines an n-gon with n − 1

concurrent medians. We use the following elementary lemma:

Lemma 3 (See Fig. 3) Let L1 and L2 be two non-parallel lines intersecting at a

point O and let P be a point not on L2. Let Q be the intersection of the parallel to L2

through P with L1 and let R be the intersection of L2 with the parallel to OP through

Q. Then R is the unique point on L2 that is the same distance to L1 as P and which

is on the opposite side of L1 from P .

Proof: Obviously there exists only one point on L2 which is the same distance to L1

as P and which is on the other side of L1 from P . But R is on L2 and by construction

P , Q, R, and O form a parallelogram whose diagonal OQ coincides with L1, meaning
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Figure 4

P and R are equidistant to L1 and on opposite sides.

As a corollary the point E found in the construction of Fig. 2 is the unique point

such that that the line through O and the midpoint of BC bisects the segment DE.

Thus when n = 5 any 4 = dn
2
e + 1 vertices in general position uniquely determine a

pentagon with 4 = n−1 concurrent medians (namely the mediansMA, MB, MD and

ME). So Theorem 2 reduces to Theorem 1 when n = 5.

Now let n = 7. Since dn
2
e+1 = 5 we wish to show that any general placement of 5

consecutive vertices A, B, C, D and E uniquely determines a 7-gon with 6 concurrent

medians. The point O of intersection of the medians is given by the intersection of

medians MA and ME , which are known from the initial vertices. The rest of the

construction proceeds analogously to the case n = 5 (see Fig. 4) until all vertices of

the heptagon have been determined, at which point exactly 6 = n − 1 medians are

known to pass through O directly by construction.

In general, if P1P2 . . . Pdn

2
e+1 are d

n
2
e + 1 consecutive vertices of an odd n-gon,

then the medians through P1 and Pdn

2
e+1 are known since the opposite side of P1 is

Pdn

2
ePdn

2
e+1 and the opposite side of Pdn

2
e+1 is P1P2. Therefore the point of inter-
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section O of the medians will be known. Now each remaining median of the n-gon

will either go through one of the vertices P2, . . . , Pdn

2
e or else through a midpoint

of one of the known sides; assuming the medians are concurrent through O, we thus

know all their positions. Then by repeated applications of Lemma 3 we may succes-

sively determine unique positions for vertices Pdn

2
e+2, . . . , Pn such that side PkPk−1

is bisected by MP
k−dn

2
e
for dn

2
e + 2 ≤ k ≤ n (the only remaining median which may

not be concurrent through O is thus median MPbn
2
c
). Thus we have n− 1 concurrent

medians and Theorem 1 can be applied.

How to prove Theorem 1

Our new shiny proof of Theorem 1 rests on the following simple result:

Lemma 4 Let O be the origin of the Cartesian plane, and let P , Q and R be three

points. Then OP is a median of the segment QR if and only if |PQ| = |RP |.

Proof: First assume OP is a median of QR. Since Q and R are at equal distance

from OP , the parallelograms spanned by P and Q and spanned by P and R have

equal area (see Fig. 5). So the two determinants |PQ| and |RP | are equal in absolute

value, but they must also be the same sign since Q and R are on opposite sides of

OP . Therefore |PQ| = |RP |.

Similarly if |PQ| = |RP | then Q and R must be at an equal distance from OP

and on opposite sides of OP given that the determinants have equal sign. Therefore

OP is a median of QR.

We shall now just give a proof of Theorem 1 for the case n = 5. Limiting ourselves

to n = 5 allows us to focus on the ideas rather than on the notation. However, the
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proof’s structure is so transparent that the reader should have no problem general-

izing it to other (odd) values of n. The reader may also wish to check that the same

proof applies for the case n = 3, in which case Theorem 1 simply states that the three

medians of a triangle are concurrent.

Proof of Theorem 1 for n = 5: Let ABCDE be a pentagon in which all medians—

except possibly for MC—intersect at a point O, which we assume WLOG to be the

origin of the Cartesian plane. By Lemma 4 we have that

|AC| = |DA| (since OA is a median)

|DA| = |BD| (since OD is a median)

|BD| = |EB| (since OB is a median)

|EB| = |CE| (since OE is a median)

(1)

And therefore

|CE| = |EB| = |BD| = |DA| = |AC|

which implies that OC is a median of AE by Lemma 4.

7


