COMPUTER GRAPHICS AND GEOMETRY

Nlustrating Beyond the Third Dimension

n 20 June 1990, the first copies of Beyond
the Third Dimension [1] came off the press. The production
of this 210-page volume with 240 illustrations had followed
a precise schedule with little variation from the time the
preliminary manuscript was sent to the acquisitions editor
in August 1989, until the computer disks containing all the
finished text and completed line drawings were sent to the
printer the following May. In the meantime, nearly every
sentence had been rewritten, some of them several times, in
response to a thorough editing job by the project editor,
which was-augmented in later stages by the additional com-
ments of the production editor.

Equal scrutiny was given to the computer-generated art-
work, created almost entirely at Brown University, Provi-
dence, Rhode Island, United States. In an earlier day, my
student assistants and I would have submitted careful draw-
ings to the publisher, who thén would have sent them to a
design house in New York for preliminary rendering. Then
we would have made the corrections (and it is impossible
for a design house without a professional geometer on its
staff to produce finished drawings of complicated phenom-
ena without introducing numerous mathematical errors).
The corrected drawings would then go back to the design-
ers, and this back-and-forth process would be repeated as
often as necessary in order to converge to an acceptable

Fig. 1. The vertices of an enneagon can be separated into three
groups, each group forming the vertices of a triangle, indicating a
simpler structure underlying the more complicated one.
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solution. In order for this proc-
ess to be completed in time, the
original drawings would have
had to be in place before Jan-
uvary of 1990. As it was, we
contracted the production of
computer files of the finished
drawings, containing all the in-
formation for color separations,
so that the final images were
designed and implemented as
the text was taking its final form
in March 1990. This produced
a double set of deadlines of
which several people at the pub-
lishing house predicted we
would never be able to meet.

ABSTRACT

Production of the images for
the recent volume Beyond the Third
Dimension involved the use of sev-
eral new computer-graphics tech-
niques for design of line drawings,
and considerable interaction with
artists who have worked with higher-
dimensional geometric concepts. In
this article, the authors describe
the tools used and discuss connec-
tions with the works of a number of
artists.

Although we seriously under-
estimated the amount of effort
necessary to achieve the goals
within the time-frame, we were able to do it, thanks to the
hard work of several student assistants and the full coopera-
tion of the production staff at the publishing company.

In this article, we describe some of the more interesting
challenges provided by this project, and indicate the meth-
ods that we used to produce the original artwork in our
volume. We also mention a number of interactions with
artists whose work appears in this book, including Attilio
Pierelli, Tony Robbin, Max Bill, Lana Posner, David Brisson
and Salvador Dali. Although we will not enter into a full
discussion of the mathematical technicalities, we hope to
include enough information so that interested persons with
access to computer-graphics software can reproduce their
own versions of the images described in this article. In our
production of the line drawings with shading, we used the
personal-computer drawing program Aldus FreeHand [2].
There are several other programs that offer features similar
to the ones described below.

TWO-DIMENSIONAL GEOMETRIC DESIGN

Figures from plane geometry provide good exercises for any
computer-graphics drawing program. Many such programs
can implement familiar construction procedures that go
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Fig. 2. Wave-fronts
\ emanating from an

ellipse. The lighter
lines represent
waves that are far-
i ‘ ther from the in-
itial ellipse, which
is shown in black.

Fig. 3. A representation of a 4D hypercube with two sets of paral-
lel faces highlighted. The figure is easily produced on a computer
by duplicating and translating a single initial face in each set.

back to Euclid. We can also utilize computer approxima-
tions to produce images that cannot be constructed by the
traditional ruler-and-compass procedures, for example, aregu-
lar heptagon or a regular enneagon. We can make use of
the built-in approximation capabilities of a drawing pro-
gram to achieve suitable geometric representations. For
example, Aldus FreeHand enables us to rotate any figure by
any desired angle, so we may rotate by 40° to produce aregular
nine-sided polygon, even though itis impossible to construct
the 40° angle using ruler and compass alone. That the nine
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equally spaced points determine three equilateral triangles
is a good illustration of an investigation of a complicated
figure by finding simpler figures contained within it (Fig. 1).
Preliminary work on the diagrams in our book was done
in black and white, a simpler process than that required for
color, which we wanted to do since we were also providing
illustrations for an extended essay on dimensions for the
volume On the Shoulders of Giants, published by the National
Research Council under the direction of the Mathematical
Sciences Education Board [3]. In this book, we had the great
advantage of being able to render all diagrams in full color.
In principle, our basic colors were restricted to a dozen,
chosen in consultation with the members of the publisher’s
design staff; in fact, we were able to obtain a much larger
range of colors by using each of the basic colors in several
different concentrations. We used the basic color sequence
to encode the steps of several of the more complicated
constructions, so that any reader would know that the red
portion was drawn first, then the orange, yellow, green, blue
and violet portions in sequence. Later we used similar se-
quencing to describe successive steps in one-parameter
families of curves in the plane, when we dealt with wave-
fronts emanating from a curve such as an ellipse (Fig. 2).

GEOMETRIC DESIGN IN
DIMENSIONS THREE AND HIGHER

A number of the diagrams in the book were planar pro-
jections of objects in three-dimensional (3D) and four-
dimensional (4D) space. We accomplished most of them by
traditional drafting procedures, building up orthographic pro-
jections by using the machine to transfer segments to paral-
lel positions, so that the squares in the projection of a
subdivided cube could be represented by translates of a
small number of parallelograms (Fig. 3). Again, the ability
of the program to replicate units made it possible to gener-
ate complicated objects like exploded views of decomposi-
tions of cubes (Fig. 4) and hypercubes, or fold-out ver-
sions of 3D polyhedra (Fig. 5) and 4D polytopes (Fig. 6).
Once again, color coding was important for expressing
relationships of different parts of a figure or among figures
in a family. For example, duals of regular polyhedra were
always identified in complementary colors, and we carried
the same pattern over as we investigated the regular poly-
topes in four dimensions. Using various saturations of the
basic colors, we could simulate the appearance of shading
without having to go through the calculation of the precise

Fig. 4. An exploded view of a
cube illustrating the formula for
the cube of a binomial. The com-
puter allows each portion of the
cube to be treated as a unit,
easily allowing its position to be
adjusted relative to the other
pieces.



Fig. 5. A planar template that can be folded into a 3D pyramid,
which is one-third of a cube,

angle of inclination of each face of a polyhedron with the
direction of a light source, especially since it is not clear how
that shading should be represented in dimensions higher
than three.

In only one place in the book did we use anything other
than a solid color for each facet of a polyhedron; this was
done in the section in which we discuss intersection of
two-dimensional (2D) planes in four-space. If we color each
point of a surface by its fourth coordinate, then a plane in
three-space will appear in monochrome, say violet, while a
plane extending into four-space will have a gradation of
color expressed as a family of parallel lines going from red
to violet to blue. If a two-plane in four-space intersects a
plane in three-space at a single point, then the projection
of this configuration into three-space will be a pair of inter-
secting planes, and exactly one point on the violet line in
the second plane will intersect the violet plane. This is one
of the best ways for identification of the intersection points
of a pair of surfaces in four-space by looking at the intersec-
tion curves of their projections into three-space (Fig. 7).

A number of the figures in this book were produced
through the use of other computer-graphics devices. Some
of the most effective ones resulted from a project, carried
out over several years with a student assistant, Nicholas
Thompson, who programmed the PRIME PXCL5500 to
produce fully rendered images of surfaces in 3D and 4D
space. The primary advantage of this technology is its speed
of display, permitting real-time rotations, slicing and one-
parameter deformations of surfaces as the operator enters
various parameters by means of analogue devices such as
dials or slider bars. In our book, it was impossible to achieve
these animation effects, but we did present storyboards to
indicate various scenarios, such as perspective distortions of
the images of surfaces rotating in four-space, which we used
to illustrate a well-known sequence from the film The Hyper-
sphere: Foliation and Projections [4,5].

We were able to use the full-color capabilities of this
raster-graphics machine to present other aspects of the
geometry of higher dimensions as well. For example, the
graph of a complex-valued function of a complex variable
requires four real dimensions. In this approach, the graph
of the square-root relation is represented as a surface that
intersects itself along a segment ending at a pinch point. By
coloring the points of the original disc domain according to
their angular coordinates, we may easily distinguish the two
different sheets passing through a given intersection curve
and even identify the coordinates of the angles, for example,

Fig. 6. Just

as a 3D cube
can be un-
folded into
six squares
that form a
cross-shape
in the plane,
so can the 4D
hypercube be
unfolded into
eight cubes in
three-space.

when a blue region intersects the orange region halfway
around the disc.

CREATING THE ARTWORK FOR
BEYOND THE THIRD DIMENSION

Two major processes were used to produce the line-art in
Beyond the Third Dimension. One was to describe the shapes
to the computer using mathematical formulas, and have the
computer perform 3D-t0-2D transformations in order to ren-
der a perspective drawing of the objects in question. The other
was to use the computer as an electronic canvas with which
the operator places each line or shaded region individually,
with the precision and flexibility inherent in the com-
puter. The former process might well be called computer-
generated artwork, whereas the latter is more properly
denoted computer-assisted art. Both processes were critical

Fig. 7. Two planes in four-space may intersect at a single point.
Here, the two planes are shown in three-space with the fourth di-
mension represented by shading. Although the two planes appear
to intersect along a line, the only intersection that occurs in four
dimensions is at the point where the colors also match.

Banchoff and Cervone, ustrating Beyond the Third Dimension

275



to the production of the book, and each has its advantages
and disadvantages.

The computer-generated diagrams appear primarily in
chapter 3, simulating the water levels that would occur as
different objects sink into a pool. The advantage here is that
the computer can generate hundreds of lines and patches
far more quickly and accurately than an artist could, and
once drawn the picture can be rotated in three dimensions
in order to get the best view (the importance of this ability
should not be underestimated). There are a number of
disadvantages, however. For best results, the computer
needs to produce a large number of lines and patches; this
requires that the shape of the ohject be given as a formula,
and this may not be easy to do. Second, the artist usually has
only global control over the object and cannot manipulate
the lines or patches individually. In order to overcome this
problem, we decided to combine the computer-generated
approach with the computer-aided method—that is, we
would use the computer to produce a draft image and then
use the illustration program to add the final touches re-
quired for the finished piece.

This process introduced a whole set of problems of its
own. To begin with, the program that generated the images
did not run on a Macintosh personal computer, which we
used for producing the text and other artwork, but rather
on a Sun workstation. Furthermore, the image-generating
program did not produce data files that could be used with
our illustration program. Finally, the Macintosh we were
using was not attached to the same network as the Sun
workstation; this alone made getting the data files to the
Macintosh difficult.

Fortunately, the program used to produce the computer-
generated artwork was written here at Brown University, and
the developers were able to modify it sufficiently to produce
data files that could be used on the Macintosh. Only a
limited amount of the visual information normally available
in the program was transferable, however. The ability to
shade the faces was not transportable, for example, which is
why all the patches in the diagrams appearing in our book are
of a single color. (We have since been able to remove this
limitation, but not in time to get the results into the book.)

Once the files were produced, getting them to the Macin-
tosh was not so much difficult as it was tedious. This is much
easier now that we have the Macintosh properly networked,
but the images for the book had to be moved by computer
disk, and, since they were quite large files (on the order of
100K for a single diagram of a torus), this took some time.
One reason for such large files is that each line segment and
each patch is a separate object within a file, resulting in
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Fig. 8. When the apex of a pyramid is
moved, it can be made taller, shorter or
skewed. As the vertex is moved, all the lines
joining it to the base are automatically re-
drawn by the computer.

thousands of individual items in each file. Furthermore, the
files included every line and patch, even if they were com-
pletely hidden by other ones.

Despite these problems, however, the results were quite
good. This combination of computer-generated and com-
puter-aided artwork is very powerful—and is not fully util-
ized in the computing community. Further software devel-
opment in this area could be very rewarding.

The remainder of the artwork was perfectly suited to the
computer-aided approach. The difficulties here are the
same as those faced by an artist using more traditional tools:
finding the best view before the object is drawn, getting the
perspective right, making sure the sides of a cube are really
square, and so forth. Computer tools can be a big help in
solving these problems.

Aldus FreeHand is an object-oriented drawing program,
which means‘that when a line or a square is drawn on the
page, it does not merely become a part of the picture, but
retains its identity as a line or square. This means, for
example, that the endpoint of the line can be moved, and
the entire line will move to the new position. If a square is

" placed so that it obscures part of a line, the square can be

moved to another part of the picture, and the line that was
underneath the square will automatically be redrawn by the
program. This sharply contrasts with traditional art tools,
with which a line drawn on a piece of paper is only so much
graphite on the page—if it is necessary to move it, the line
must be erased and drawn again somewhere else, possibly
destroying lines that intersect it.

Not only can the computer artist move the endpoint of a
single line, the endpoints of many lines can be moved at
once. For example, in a typical two-point perspective draw-
ing of a cube, all four corners of one face can be selected
and moved at once, stretching the cube into a rectangular
box. Or the vertex of a pyramid can be moved to create a
skewed pyramid or a taller pyramid or a shorter one (Fig.
8). For drawings made up of straight lines and regions filled
with solid colors, this is an extremely flexible and powerful
environment.

Another important feature of computer-aided illustra-
tion involves the ease of duplication of existing objects. For
example, once the bottom face of a cube is drawn, the top
face can be created simply by duplicating the bottom face
and moving it vertically. The lower face itself can be built by
drawing the front two edges, then duplicating them and
moving the duplicates to form two back edges. Finally, the
vertical edges can be duplicates of a single vertical edge at
the front corner. We chose to use orthogonal projections
rather than perspective drawings for most of the diagrams,



partly for mathematical reasons and partly for computa-
tional reasons: the procedure outlined above for producing
an orthogonal projection of a cube is much easier than the
one required to produce a picture of a cube in true perspec-
tive. The illustration program we used provides a number
of crucial features, including the ability to duplicate move-
ments of objects as well as the objects themselves.

These techniques are enhanced by a feature called snap
guides. These are vertical or horizontal lines that can be
placed anywhere within the picture and that act as magnets
for objects; whenever an object is moved near enough to a
snap guide, the object will ‘snap’ to the line. This way it is
simple to align multiple objects horizontally or vertically.
One of the hardest parts of drawing mathematical objects is
getting the ends of lines to match up correctly. This is
accomplished easily through the use of horizontal and ver-

' tical guides that cross at the point where the lines should
join.

One of the most important features for our purposes is
the program’s ability to resize objects—not just by eye but
by specific percentages of the original size—and to have the
shrinkage occur toward a specific point. For example, it is
simple to find the midpoint of a diagonal line in the follow-
ing way: first duplicate the line, then shrink the duplicate
toward one of its endpoints to 50% of its original size; the
other endpoint will now be at the midpoint of the original
line—no measurements or calculations are required. To
divide a line into thirds, simply duplicate it, then shrink the
duplicate to 33% its original size, but this time shrink it
toward its center {the program provides this option, so we
do not have to find its center first); the endpoints of the
duplicate now divide the original line into thirds. For a final
example, with a drawing of a pyramid, one can show a
horizontal slice halfway up the pyramid, by simply duplicat-
ing the base and shrinking it by 50%, this time toward the
vertex of the pyramid (Fig. 9). The duplicated base will
shrink by 50% and move halfway up the pyramid, both at
the same time. As this example indicates, the combination
of duplication, alignment and resizing makes these software
functions even more powerful.

Although we used a 2D drawing program, it is possible to
use its features to produce 3D drawings without too much
difficulty. The first step involves the choice of a line segment
thatrepresents a unit length in each of the three coordinate
directions (for example, the front edge of a cube together
with the front two edges of its base). This is one of the harder
parts of drawing; it can either be done mathematically, by
calculating the exact positions of these initial lines, or by
estimating them by hand (in this case, it is usually easiest to
draw a cube and adjust it until it looks right, then remove

all but the edges described above). Once these lines have
been produced, any point in three-space can be located by
appropriately resizing and translating these line segments.

The process just described still requires calculating the
three-dimensional positions of the points in the drawing
(something that computers are well-suited to do, but that
humans find tiresome). Fortunately for us, the very geome-
try of the problems we were illustrating provided much
easier methods. For example, in chapter 5 we describe the
duals to the regular polyhedra, and the diagrams were
constructed in essentially the same way outlined in the text
itself. Take, for instance, the cube and its dual, the octa-
hedron. The cube is easily constructed from the three unit-
coordinate linessegments, as indicated above; once we have
the cube, it is easy to find the centers of its square faces by
drawing a diagonal and sizing it to 50% toward one of its
endpoints. It is then a simple matter to join these centers
together to form the octahedron. The whole process should
take only a few minutes for someone practiced in the art of
computer-aided drawing, and the result is a beautiful and
perfectly accurate mathematical drawing (Fig. 10).

For diagrams with filled-in patches, shading can help
make an object look more three-dimensional, however, for
objects only made of lines, this effect is harder to achieve.
When two lines cross on the page but do not really cross in
three-space, visual ambiguity can result. Artists have tradi-
tionally solved this problem by breaking the line that is
farthest behind, leaving a slight gap around the top line.
This makes it clear which line is on top. This effect is
achieved on the computer in a surprisingly simple way.
Unlike the traditional pencil, the computer can draw in
white as well as black; one way to produce the desired broken
line is to draw the back line first. Next, draw a wide white
line where the top line is to cross the back line, then
duplicate it on top of that as a thinner black line. The result
will be a black line with a thin white border around it on top
of another black line; the white border will obscure the black

Fig. 9. A pyramid can be cut in half by duplicating its base and

shrinking it by 50% toward its apex.

Fig. 10. Beginning with a cube, the centers of each face are found by shrinking a diagonal to 50%, and then these centers are joined to

form an octahedron, dual to the cube.
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Fig. 11.
Lana
Posner,
Perspective
Twist 1V,
acrylic, 24
X 30 in,
1983. This
painting
shows true
perspec-
tive in each
portion of
the figure,
but an im-
possible
configura-
tion overall.

line below, resulting in the desired effect of a break. There
are a number of advantages to this approach: first, the ends
of the broken line will be parallel to the line that crosses it.
Second, if the upper line needs to be repositioned for any
reason, it is simple to move both the black and the white
lines together; thus the ‘break’ will move along with the line.
This makes it convenient to update the picture. On the other
hand, some care must be taken near the endpoints of the
white line so as not to obscure lines that are supposed to
meet at a corner. )

This brings us to the final phase of production: correc-
tions and updates. One of the real advantages we enjoyed
with the use of computers for artwork production was the
ease with which updates were accomplished. If the publisher
requested a change to a diagram, it could usually be made
the same day. Moreover, it is simple to produce more than
one copy of a picture and modify each in slightly different
ways in order to consider a number of possible modification
options. Each is an original (no paste-ups or overlays), and
the best one can be chosen purely on its visual merits. Our
publishers were skeptical about our ability to produce the
artwork in-house, and the rate at which we were able to
produce corrections amazed them.

The original diagrams were drawn at whatever sizes
were most convenient for the artist. The publisher used
photo-reductions to lay out the book, and then gave us the
measurements for the final diagrams. The ability of the
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Fig. 12. James Billmyer, Untitled, oil, 30 x 30 in, 1970. Billmyer’s
linear paintings lead the viewer off the page and back again in
four different directions.

illustration program to resize objects (in this case, the entire
diagram) came in handy again, as it allowed us to reduce
the original drawings to exactly the required sizes. Photo-
reducing would have reduced not only the overall size of the
diagram, but also the width of each line and the size of the
text in the picture. The illustration program, however, al-
lowed us to reduce the size of the diagram while leaving the
line widths unchanged; thus line-sizes were consistently
maintained from figure to figure.

THE ARTISTS OF
BEYOND THE THIRD DIMENSION

Many artists have permitted their work to be displayed in the
book as illustrations of the interaction between dimension-
ality and art. Lana Posner and I began working together 10
years ago when her work was displayed at the Providence Art
Club. The use of impossible figures to explore perception
of form is illustrated most clearly in her painting Perspective
Twist (Fig. 11). Although each portion of the painting
suggests a natural three-dimensional interpretation, there is
no consistent interpretation of the configuration asa whole,
a phenomenon explored most completely and effectively by

Fig. 13. Computer graphic based on Max
Bill’s forms depicted in his lithographs The
Theme and Variation 1 of 1938. Equal-sided
polygons propose outward from a triangle
in the center to a regular octagon.



M. C. Escher [6-9]. Using the computer, we investigated the
challenge of realizing this image as the projection of afigure
in space by arbitrarily assigning additional coordinates to
vertices of the image, either preserving central symmetry or
assigning the same additional coordinates to points situated
symmetrically with respect to the center of the picture. The
assigning of one additional coordinate to each point lifted
the picture into three-space, necessarily introducing self-
intersections, since no consistent lifting was possible. The
assigning of two additional coordinates, however, made
it possible for us to see the original image as the projec-
tion into the plane of a figure in four-space that had no
self-intersections whatsoever. Rotation of this figure through
different complete turns provided families of images, coa-
lescing back to the original. We did not work long enough
to determine which choices of additional coordinates would
provide the most artistically pleasing four-dimensional sculp-
ture based on the original image, but this does seem to be
a good project.

Paintings that come off the canvas in
different ways appear in other guises as
well. The work of the late James
Billmyer is a particularly impressive il-
lustration of the way a two-dimexnsional
oil painting can take on higher-dimen-
sional significance. Billmyer worked for
anumber of years with Hans Hofmann,
an artist who stressed the importance of
having objects move out from the can-
vas and then resolve back into it. By
dealing with multiple rhythms, each
with its family of angles on the plane
and each with its representative color,
Billmyer created patterns that would
take the viewer out of the plane in inde-
pendent directions before resolving
back to the plane (Fig. 12). Billmyer
and I spent many fascinating hours ex-
amining the higher-dimensional pat-
terns that arose from the canvas, remi-
niscent of the forms that appeared in
the film The Hypercube: Projections and
Slicing [10].

Max Bill carried out a series of inves-
tigations of polygonal forms in the
1930s, and one image in particular
seems to illustrate the increasing se-
quence of n-gons, spiralling out from a
generating triangle (Fig. 13) [11]. Ac-
cording to Bill, the original painting
was inaccurately reproduced when it
was first published in Paris in 1938.
With his permission, my assistant and I
created a version of his image with the
colors in the palette selected for our
volume.

We had originally intended to use a
photograph of a Bill sculpture of a
Mébius band as the opening image for
the final chapter on non-Euclidean ge-
ometry and nonorientable surfaces
[12-14]. Unfortunately the photoli-
thograph of the artist’s work that we
purchased from the publisher turned
out to be too large for our page, so it

could not be used. Fortunately there was a good replace-
ment, the Klein bottle rendered in glass by William D. Clark,
a retired physicist living in California. Over the years there
have been any number of glass-blown realizations of this
important surface, but none has been more effective than
the one developed over many years by Clark. The photo-
graph of his image with a blue background is especially
effective for displaying its beautifully constructed form.

Also appearing in an extremely attractive photograph is
the stainless steel sculpture, Ipercubo, (the hypercube) by
Attilio Pierelli, a sculptor residing in Rome (Color Plate C
No. 3). As the leader of the Dimensionalismo art movement
in Italy, he remains at the forefront in rendering the central
projections of four-dimensional figures in materials that
bring out their structure in new ways, with multifaceted
reflections that reveal new symmetries as the object turns or
as the viewer walks around it. Some of these effects notably
appear in the film Dimensions [15].

Fig. 14. Salvador Dali, Corpus Hypercubicus (The Crucifixion), oil on canvas, 7 61/2 X 483/4 in,
1955. (Metropolitan Museum of Art, gift of Chester Dale Collection)
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Tony Robbin’s work is beautifully reproduced in a pho-
tograph in this volume, but no single picture can begin to
do justice to the experience of viewing his structures from
different angles [16]. As the viewer moves, the shadows of
3D wire figures emanating from the canvas play against the
2D acrylic painting. Other works of Robbin explore this
phenomenon of the interaction of sculpture and painting
more fully by allowing the viewer to see red or green shadows
with anaglyph glasses, providing two different projections.

This concept of providing different images to the leftand
right eyes is, of course, the basis of ordinary stereoscopic
viewing. Extraordinary, however, is the description of hyper-
stereoscopic vision, as developed by the late David Brisson,
founder of the Hypergraphics Group, which has brought
together the efforts of many painters, sculptors and film-
makers, all inspired by the challenge of representing geome-
try of one dimension in the medium of another [17] (Color
Plate C No. 4). A single hyperstereogram represents the
projection of a figure from four-space into a pair of planes
that do not meet in a line parallel to the spine of the viewer,
as in ordinary stereoptic viewing, but rather in a single point.
In viewing such a hyperstereogram, the observer sees differ-
ent parts of the object in focus depending on the sideways
inclination. The insights to be gained by a systematic and
complete investigation of this remarkable phenomenon are

only beginning to be appreciated. The film Dimensions men- -

tioned above is dedicated to Brisson, who appears in the film
along with his wife, sculptor Harriet Brisson [18].

My most fascinating connection with artists interested in
dimension is my association with Salvador Dali, beginning
in 1976 and extending over a series of a dozen visits until
1986, 2 years before his death. For a number of years, my
computer-graphics colleague Charles Strauss and I had dis-
played Dali’s Corpus Hypercubicus (Fig. 14) as an example of
the way artists use higher-dimensional imagery in conscious
ways in their paintings. When the Washington Postran a story
on our work, they included in the background a photograph
of that surrealist painting. Shortly after that, we received a
call inviting us to New York to confer with Dali, who was
interested in ways of creating and presenting stereoscopic
oil paintings. We were impressed by the level of his technical
knowledge, and he was impressed in particular by the fold-
ing model of the hypercube that was devised as a part of my
1964 thesis on global differential geometry. He kept the
model, and subsequently included a copy of it in his mu-
seum in Figueres, Catalonia, Spain. When he was asked
about the inspiration for the Corpus Hypercubicus, he referred
to the philosophy of Raimondo Lulio [19], coincidentally
already familiar to me. That coincidence produced a mutual
respect that led to a series of invitations from Dali over the
next few years to show our new slides, videotapes and films,
and to see his new works in progress. Strauss and I began at
this time to work on the project, described in detail in the
book, on the use of perspective to explore illusions, not just
in the plane but in three-dimensional space in a variety of
scales. By the time we visited Dali in Paris in 1981, the project
had literally gone off the earth, never to be built. Although
I discussed this and other projects with Dali in three further
visits to Spain, we never completed a project together. Dali
did always seem to enjoy viewing the films, and even toward
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the end he still delighted in identifying the elliptic and
hyperbolic catastrophes that appeared as light caustics in
computer-generated wire-frame images of surfaces pro-
jected from four-space.

CONCLUSION

Working on the production of images for Beyond the Third
Dimension has given us an opportunity to develop a whole
range of techniques for dealing with the geometry of differ-
ent dimensions and, at the same time, establish new rela-
tionships with a variety of artists. We look forward to more
experiences of the same sort in the future.
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